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Abstract
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corresponding results announced by Chen and He and Chen et al. and many others.
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1. Introduction and preliminaries
Let E be a real Banach space. A mapping T of E into itself is said to be nonexpansive if
[|Tx - Ty|| < ||x - y|| for each x,y € E. We denote by Fix(7) the set of fixed points of
T. A mapping f: E—E is called a-contraction, if there exists a constant 0 <o < 1 such
that ||flx) - f)|| < al|x - y|| for all x, y € E. Throughout this article, we denote by N
and R" the sets of positive integers and nonnegative real numbers, respectively. A
mapping y: R*—>R" is said to be an L-function if w(0) = 0, w(¢) > 0, for each ¢ > 0 and
for every t > 0 and for every s > 0 there exists u >s such that y(f) < s, for all t € [s, u],
As a consequence, every L-function y satisfies w(¢) <t, for each ¢ > 0.

Definition 1.1. Let (X, d) be a matric space. A mapping f X—X is said to be :

(i) a (w L)-function if y: R*—>R" is an L-function and d(fix), fly)) <y(d(x, y)), for all
x, ye X, withx = y:

(ii) a Meir-Keeler type mapping if for each ¢ > 0 there exists J = d(¢) > 0 such that
for each &, y € X, with ¢ < d(x, y) <¢ + 0 we have d(fix) fly)) <&

If, in Definition 1.1 we consider w(¢) = at, for each t € R*, where o € [0,1), then we
get the usual contraction mapping with coefficient o

Proposition 1.2. [1]Let (X, d) be a matric space and f: X—X be a mapping. The fol-
lowing assertions are equivalent:

(i) f is a Meir-Keeler type mapping :

(ii) there exists an L-function y: R*—>R" such that f is a (y, L)-contraction.
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Lemma 1.3. [2]Let X be a Banach space and C be a convex subset of it. Let T : C—>C
be a nonexpansive mapping and f is a (y, L)-contraction. Then the following assertions
hold:

(i) T o fis a (y, L)-contraction on C and has a unique fixed point in C;
(ii) for each o € (0, 1) the mapping x - afix) + (1 - &)T(x) is a Meir-Keeler type
mapping on C.

Lemma 1.4. [3, Proposition 2] Let E be a Banach space and C a convex subset of it.
Let f: C—C be a Meir-Keeler type mapping. Then for each ¢ > O there exists r € (0,1)
such that for each x,y € C with ||x - y|| = € we have ||fix) - fy)|| <7 ||x - y||.

From now on, by a generalized contraction mapping we mean a Meir-Keeler type
mapping or (y, L)-contraction. In the rest of the article we suppose that the y from
the definition of the (y, L)-contraction is continuous, strictly increasing and 7(t) is
strictly increasing and onto, where n(¢) := ¢ - w(t), t € R". As a consequence, we have
the 7 is a bijection on R".

A family S = {T(t) : 0 < t < 0o} of mappings of E into itself is called a nonexpansive
semigroup on E if it satisfies the following conditions:

(i) T(0)x = x for all x € E;

(ii) T(s +t) = T(s)T(¢t) for all s, t > 0O;

(iii) ||T(t)x - T(t)y|| < ||x - y|| for all w, y € E and ¢ = 0;
(iv) for all x € E, the mapping ¢ ~ T(t)x is continuous.

We denote by Fix(S) the set of all common fixed points of S, that is,
Fix(S):={x€E: T(t)x=x, 0<t< oo} =NoFix(T(t)).

In [4], Shioji and Takahashi introduced the following implicit iteration in a Hilbert

space

In

1
Xy =apx+ (1 — an)t /T(s)xnds, VneN (1.1)
n
0

where {¢,} is a sequence in (0,1), {£,} is a sequence of positive real numbers which
diverges to . Under certain restrictions on the sequence {e,}, Shioji and Takahashi
[4] proved strong convergence of the sequence {x,} to a member of F(S). In [5], Shi-
mizu and Takahashi studied the strong convergence of the sequence {x,} defined by
ty
X1 = X + (1 — ay) tl /T(s)xnds, Vn e N (1.2)

n
0

in a real Hilbert space where {T(t) : t > 0} is a strongly continuous semigroup of
nonexpansive mappings on a closed convex subset C of a Banach space E and lim,,_,..
t, = oo. Using viscosity iterative method, Chen and Song [6] studied the strong conver-
gence of the following iterative method for a nonexpansive semigroup {7(¢) : ¢ > 0}
with Fix(S) # ¥ in a Banach space:
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ty
fT(s)xnds, VneN, (1.3)
0

B = () + (1 — )|

n

where f'is a contraction. Note however that their iterate x, at step # is constructed
through the average of the semigroup over the interval (0, £). Suzuki [7] was the first
to introduce again in a Hilbert space the following implicit iteration process:

Xy =apu+ (1 —on)T(th)xn, VYneN, (1.4)

for the nonexpansive semigroup case. In 2002, Benavides et al. [8] in a uniformly
smooth Banach space, showed that if S satisfies an asymptotic regularity condition and
{a,,} fulfills the control conditions limy_ccoty = 0, Y 5o @y = 00, and limyo " =0,

then both the implicit iteration process (1.4) and the explicit iteration process (1.5)
Xpe1 = At + (1 — o) T(ty)xn, VneNl, (1.5)

converge to a same point of F(S). In 2005, Xu [9] studied the strong convergence of
the implicit iteration process (1.1) and (1.4) in a uniformly convex Banach space which
admits a weakly sequentially continuous duality mapping. Recently Chen and He [10]
introduced the viscosity approximation methods:

Yn = anf (yn) + (1 — on)T(tn)yn, VYneN, (1.6)
and
Xne1 = onf (0n) + (1 — an)T(tn)xn, VneN, (1.7)

where fis a contraction, {0} is a sequence in (0,1) and a nonexpansive semigroup {7’
(t) : t = 0}. The strong convergence theorem of {x,} is proved in a reflexive Banach
space which admits a weakly sequentially continuous duality mapping. Very recently,
motivated by the above results, Chen et al. [11] proposed the following two modified
Mann iterations for nonexpansive semigroups {7(f) : 0 < ¢ < o} and obtained the
strong convergence theorems in a reflexive Banach space E which admits a weakly
sequentially continuous duality mapping:

Yn = onXn + (1 — o) T(tn)xn,
{ Xn = ﬂnf(xn) + (1= Bu)yn (1.8)
and
Xo € C,
Yn = oy + (1 — ) T(tn )2, (1.9)

Xn+l = ﬂnf(xn) + (1 - ,Bn)an

where f: C — C is a contraction. They proved that the implicit iterative scheme {x,}
defined by (1.8) converges to an element g of Fix(S), which solves the following varia-
tion inequality problem:

((f =Dq.j(x—q)) <0 forall x € Fix(S).
Furthermore, Moudafi’s viscosity approximation methods have been recently studies

by many authors; see the well known results in [12,13]. However, the involved map-
ping f is usually considered as a contraction. Note that Suzuki [14] proved the
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equivalence between Moudafi’s viscosity approximation with contractions and Brow-
der-type iterative processes (Halpern-type iterative processes); see [14] for more details.

In this article, inspired by above result, we introduce and study the explicit viscosity
iterative scheme for the generalized contraction fand a nonexpansive semigroup {7() :
t >0}

X0 € C,

Zn = YnXn + (1 - VH)T(tn)xm

Yn = dnXn + (1 — o) T(tn)zn,

Xn+l = ﬁnf(xn) + (1 — ﬁn))/n/ n=>0.

(1.10)

The iterative schemes (1.10) are called the three-step(modified Noor) iterations
which inspired by three-step(Noor) iterations [15-23]. It is well known that three-step
(Noor) iterations, include Mann and two-step iterative methods as special cases. If y=
1, then (1.10) reduces to (1.9). Furthermore, the implicit iteration (1.8) and explicit
iteration (1.10) are considered for the generalized contraction and a nonexpansive
semigroup in the framework of a reflexive Banach space which admits a weakly
sequentially continuous duality mapping. The strong convergence theorems are
obtained under very mild conditions imposed the parameters. The results presented in
this article improve and extend the corresponding results announced by Chen and He
[10] and Chen et al. [11] and many others.

In order to prove our main results, we need the following lemmas.

Definition 1.5. [24] A Banach space is said to admit a weakly sequentially continu-
ous normalized duality mapping ] from E in E¥ if ] : E-E* is single-valued and weak
to weak* sequentially continuous, that is, if x,, =« in E, then J(x,) —* J(x) in E*

A Banach space E is said to satisfy Opial’s condition if for any sequence {x,} in E, x,,
— x (n—oo) implies

limsup || x, —x ||< limsup || x, —y |, Vy € Ewithx #y. (1.11)
n—o0 n—o0

By [25, Theorem 1], it is well known that if £ admits a weakly sequentially continu-
ous duality mapping, then E satisfies Opial’s condition, and E is smooth.

In order to prove our main result, we need the following lemmas.

Lemma 1.6. Let E be a Banach space and x, y € E, j(x) € J(x), j(x + y) € J(x + y).
Then

Il + 2y, j(x)) <l x+yI* <l %1+ 2{pj(x +)).

In the following, we also need the following lemma that can be found in the existing
literature [13,26].

Lemma 1.7. Let {a,} be a sequence of non-negative real numbers satisfying the prop-
erty

ane1 < (1 —yn)an +8,, n=0,
where {y,} € (0,1) and {0,} € R such that
o0 _ . . Sn [e9)
Zn=13’n = 00, and either limsup, ,,» <0 or Zn=1|5n| < 00.

Then lim,,_,.. a,, = 0.
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Lemma 1.8. [27]Let {x,} and {y,} be bounded sequences in a Banach space E and
{B,} a sequence in [0,1] with 0 < lim inf,_,., B, < lim sup,_,.. B, < 1. Suppose that x,,,,
= (1 - By, + Bux, for all n > 0 and

thUP(” Vel = Vn | — |l Xne1 — X ”) <o
n—00

Then lim,, .. ||y, - x,|| = 0.

2. Modified Mann iteration for generalized contractions
Now, we are a position to state and prove our main results.

Theorem 2.1. Let E be a reflexive Banach space which admits a weakly sequenctially
continuous duality mapping ] from E into E* suppose C is a nonempty closed convex
subset of E. Let S:={T(t):t> O}be a nonexpansive semigroup on C such that
Fix(S) # @, and f: C — C a generalized contraction on C. Let {o,,} < (0,1), {B,} < (0,1),
and {t,} < (0, o) be sequences of real numbers satisfying

lim,,_, oy = limy,_, ooty = lim,_, o f" = 0. Define a sequence {x,} in C by

{yn = otnXy + (1 — an) T(tn)xn, (2.1)

Xn = Buf (xn) + (1 — Bu)yn, foralln > 1.

Then {x,} converges strongly to q, as n — ; q is the element of Fix(S)such that q is
the unique solution in Fix(S)to the following variational inequality:

(f =Dq.j(x—q)) <0 forallx e Fix(S). (2.2)
Proof. We first show that {x,} is well defined. For any n > 1, we consider a mapping
Gy, on C defined by
Gnx = Buf (x) + (1 — Bn)Unx, Vx e C,

where U, := a,,[ + (1 - o,,)T(¢,). It follows from nonexpansivity of U,, and Lemma 1.3
that G, is a Meir-Keeler type contraction. Hence G, has a unique fixed point, denoted
as x,, which uniquely solves the fixed point equation

X = dnf (%) + (1 — an)Upxy, Vn> 1.

Hence {x,} generated in (2.1) is well defined. Now we show that {x,} is bounded.
Indeed, if we take a fixed point x € Fix(§), we have

lyn —x < an 20— x| +(1 — an) || T(tn)xn — x [I<Il %0 — x ||, (2.3)

and so

I %0 — xII” = (lgn(f(xn) =x) + (1= Bn)(¥n — %), j(%n — x))
= Bn (f(xn) —f(x) + f(x) — %, j(2n — x)) +(1— ﬂn)(()’n —x),j(xn — x))
< Bl F () = F() 120 =% 1l +Bn {f (6) = x,j(xn = %))+ (1= Ba) Il yn =% Il 20 — x|
< BVl —x 1) %0 =21 +Ba | F(x) =% ] %0 = || +(1 = Ba) | 20 — xII%,

and hence
I on — x> < Yr(ll 2 —x 1) Il 20 — x|+ | f(x) —x 1l X0 —x || - (2.4)
Therefore

Nl = x 1) =l xp —x | =9 (I %0 —x 1) <l f(x) — x|,

Page 5 of 20
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equivalent to
How =l 07 (11 () = x 11)-

Thus {x,} is bounded, and so are {7(¢t,)x,}, {fix,)}, and {y,}. Next, we claim that {x,}
is relatively sequentially compact. Indeed, By reflexivity of E and boundedness of the
sequence {x,} there exists a weakly convergent subsequence {xn} C {Xs} such that
Xy, =~p for some p € C. Now we show that peFix(S) Put
Xj = Xn, Vj = Yy @& = Ay, Bj = By and 4 = ty; for j € N, fixed ¢ > 0. Notice that

[/y]-1

lx—=T@p Il < Y I T((k+1)5)x — T(kty)a; |

k=0
+ 1L T(/g1)% = T(Ae/515)p 1 + 1 T({e/515)p = T(W)p |
= /G T — x5 0+ 1 x —p Il T( = [¢/5]5)p —p |
[t/51, % 1 = FGo) 1+ x5 = p 1L+ 1 T( = [¢/515)p = p |

<l I = fCg) I+ = p |l +max{| T(s)p = p 11: 0 < s < 1)

A

For all j € N, we have

limsup || x; — T(t)p I|< limsup || x; — p |

]—= 00 ]—= 00

Since Banach space E with a weakly sequentially continuous duality mapping satisfies
Opial’s condition, T(¢)p = p. Therefore p € Fix(S). In Equation (2.4), replace p with x
to obtain

I =p 0 (lx—p Il =yl x—p1)) < {f(p) —pilx; —p)).

Using that the duality map j is single-valued and weakly sequentially continuous
from E to E* we get that

im (g —p I (o —p =y (I —p D) < lim (f(p) = p.j(x; = p)) = 0.

If lim;_,.. ||%; - p|| = 0, then we have done.

If lim ;.. (|[% - pl| - w(||%; -p||)) = 0, then we have lim,_,.. ||x; -p|| = lim;_,.. v (||,

- plD.-
Since y is a continuous function, lim;_,.. ||x; -p|| = w(lim;_,.. ||%; -p||). By Definition
of y, we have lim;,.. ||x; - p|| = 0. Hence {x,} is relatively sequentially compact, i.e.,

there exists a subsequence {Xn;} € {xn} such that Xu; = P as j — . Next, we show that

p is a solution in Fix(S) to the variational inequality (2.2). In fact, for any x € Fix(S),
[l %0 — x> = (Buf (xa) + (1 = Bu)yn — x,j(%n — X))
= (ﬁn(f(xn) — X+ %n — X) + (1= Bn) (yn — %), j(%n — x))
=B (f(xn) — X, j (%0 — x)) + B (xn — %, j(2n — x)) +(1-8) <Vn —x,j(xn — x))
< B (f(xn) - xn/j(xn _x)) + B |l xn _x”2 + (1 - ﬂn) Fyn —x Il X0 — 2|l
< Balf (%) = %, j (X0 = %)) + B Il X0 = xlI7 + (1= Ba) || %0 — ]

Therefore,

(f(xn) — Xn, j(x — xn)) <0. (2.5)
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Since the sets {x,, - x} and {x, - flx,)} are bounded and the duality mapping j is
singled-valued and weakly sequentially continuous from E into E* for any fixed
x € Fix(S). It follows from (2.5) that

(F(9) = priCe = p)) = lim (f(x) =y j(x =) <O, V& Fix(S),

This is, p € Fix(S) is a solution of the variational inequality (2.2).

Finally, we show that p € Fix(S) is the unique solution of the variational inequality
(2.2). In fact, supposing p, q € Fix(S) satisfy the inequality (2.2) with p = g, we get that
there exists ¢ > 0 such that ||p - q|| = & By Proposition 1.4 there exists r € (0,1) such
that ||fip)- Ag)l| < rllp - ql|. We get that

((f =Dp,j(a —p)) < 0and ((f — Daq.j(p — 9)) < O.

Adding the two above inequalities, we have that
0<(1-ne <=1 llp—aql* <{(U-Hp—UT-Hajlp-q)) =<0,

which is contradiction. We must have p = g, and the uniqueness is proved.

In a similar way, it can be shown that each cluster point of sequence {x,} is equal to
q. Therefore, the entire sequence {x,} converges to g and the proof is complete.

Setting fis a contraction on C in Theorem 2.1, we have the following results
immediately.

Corollary 2.2. [11, Theorem 3.1] Let E be a reflexive Banach space which admits a
weakly sequenctially continuous duality mapping ] from E into E* suppose C is a none-
mpty closed convex subset of E. Let S = {T(t) : t > O}be a nonexpansive semigroup on
C such that Fix(S) # 0, and f: C - C a contraction on C. Let {a,} < (0,1), {B,} <
(0,1), and {t,} < (0, o) be sequences of real numbers satisfying

limy, s soty = limy, s ooty = limn_wo’f: = 0. Define a sequence {x,} in C by

Yn = tnXn + (1 — an) T(tn)Xn,
Xn = Buf (xu) + (1 = Bu)yn, foralln>1.

Then {x,} converges strongly to q, as n —> o q is the element of Fix(S)such that q is
the unique solution in Fix(S)to the following variational inequality:

(f —=Daj(x—q) <0 forallxe Fix(S).

Theorem 2.3. Let E be a reflexive Banach space which admits a weakly sequenctially
continuous duality mapping ] from E into E* suppose C is a nonempty closed convex
subset of E. Let {T(t) : t > 0}, be a nonexpansive semigroup on C such that Fix(S) # ¥,
and f: C — C be a generalized contraction on C. Let {o,} < (0,1), {8,} € (0,1), {y,.} <
[0,1], and {t,} < (0, =) be sequences of real numbers satisfying the conditions:

. o0 .
(C1) limy—00Bn = 0, Zn:O Bn = oo and lim,_, t, = 0,
(C2) lim,,yeo 0y = 0 and lim,,_,.. v, = 1,
(C3) Zzio [otne1r — o < 00, Zzio |Bne1 — Bnl < 00, and Zzio [Vne1 — vul < 00.

Define a sequence {x,} in C by

Page 7 of 20
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Xo € C,

Zn = YnXn + (1 — yn) T (tn)xn, (2.6)
Yn = nXn + (1 — ) T(tn)2n, ’
Xne1 = Buf () + (1 = Bn)yn, n=0.

Suppose
o0
Zsup | T(tn)x — T(ty—1)x ||< o0,
n=0 x€C

where Cis any bounded subset of C. Then {x,} converges strongly to q, as n — oo
where q is the unique solution in Fix(S)to the variational inequality (2.2).

Proof. First, we show that {x,} is bounded. Indeed, if we take a fixed point x € Fix(S).
We will prove by induction that

lx,—x||<M foralln=>0,
where M := {||xo - z||, n(||fix) - x||)}. From Definition of (2.8), notice that
Izn = x 1<y I %0 =2 | +(1 = ) || T(tn)%n = x <l %0 —x || .
It follows that
I yn—=x 1< o | xp—x || +(1—ctn) | T(tn)zn—x 1< ctn | 0= | +(1—) | xa—x <] xp—x || .

The case n = 0 is obvious.
Suppose that ||x, - x|| < M, we have

I Xper — 20 < B Il f(tn) — 2 Il +(1 = Ba) |l yn — x|l
< Bl f(xn) = Fx) I +Bn 1 f(x) = [ +(1 = Bu) Il yn —x |
SBa(lxn —x 1)+ B I f(x) = x [ +(1 = Bu) Il xn —x ||
=B (Il xn —x 1)+ Ban(n " (I f(x) = 1)) + (1= Ba) |l 2w — x|
< ,an(M) + ,Bnn(M) + (1 - ,Bn)M
= By (M) + Bn(M — ¥ (M)) + (1 — Bu)M = M.

By induction,
I % — x| < max{|| xo —x [, 7~ " (Il f(x) —x [)}, V¥n>o0.

Thus {x,} is bounded, and so are {T(t,)x,}, .}, 2.}, {1(t,)z,), and {fix,)}. As a result,
we obtain by condition (C1),

I Xni1 = n ll= Ba Il f(xn) —yn = O. (2.7)
We next show that

I %0 — T(tn)xn = O. (2.8)
It suffices to show that

Il Xpe1 — 0 |l— 0. (2.9)
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Indeed, if (2.9) holds, then noting (2.7), we obtain

I xn — T()%n | <N 20 — X1 I+ 1 xns1 = ¥n I+ 1 yn = T()zn | + 1| T(t0)2n — T(tn)xn |
<N xn = X 1+ 1 Xner = Yo Il ot |20 = T(6n)2n |+ 1l 20— %a |l
<l xn = Xner 1+ 1 Xpa1r — ¥ I 4o 1 X0 — T(a)xn | +en | T(tn)xn — T(tn)zn |l
+ |l zp — X ||
<N xn = Xper [+ 11 %ner = Yo Il ot | %0 = T(tn)x | +otn | X0 — 20 || + 1| 20 — x|l
<l xn = Xner 1+ 1 Xpar — ¥ 4o | 200 — T(En)xn | +(1 +0tm) 1| X0 — 2 ||
<N xn = X I+ 1 Xnen = Yo I ot | X0 — Tt )xn |l
+ (1 +an)(1 =) Il xn — T(ta)xn || -

It follows from (C2) that

| %0 — T(t)Xn | <l X — Xpe1 |+ | Xpe1 — Y | +tn | X0 — T(t0) %0 |l

+(1+ o)1 —yu) | X0 — T(ty)xn ||I— 0asn — oo.

Suppose that (2.9) is not holds, there exists ¢ > 0 and subsequence || Xn;+1 — Xn; || of ||
X, + 1-%,|| such that || Xn+1 — Xn; 1> € for all j € N. By Proposition 1.4, there exists r €
(0,1) such that [ f(xn+1) —f(n) IS7 | X1 —xn | for all j e N. Put

Xj = X, @ = otny, Bj = By ¥ = vny and §j = Iy, for j € N. We calculate x;,; - x;. Observing

that
X1 = Bif () + (1 — Bj)y; and x5 = Bi—1f(xj-1) + (1 — Bj—1)¥j-1,
we get
X1 — X5 = Bif (%) + (1 — B)yj — Bi-1f (x-1) — (1 — Bj-1)yj—1
= Bi(f(x) — f(xj-1)) + (Bj — Bi—1)f (x-1) + (1 = B))(yj — ¥j-1) (2.10)
= (Bj — Bi-1)yj-1-
That is

I % — x5 11 < Bir 11 %5 — xi—1 | +18 — Bi—al I f(xi—1) || +(1 = By) Il yj — ¥j—1 II(2 1)
+ 1B = Bl v Il -

Noticing that
Vi =oixj+ (1 —e)T(4)z and i1 = aj_1x-1 + (1 — &j—1)T(tj-1)zj-1.
We obtain that

Vi — Vi1 = axj + (1 — o) T(4)zj — j—1xi—1 — (1 — aj=1) T(tj=1)zj—1-
= o (x5 — xj-1) + (o5 — &j—1)xj1 (2.12)
+(1 = oj-1)(T(4)zj—1 — T(tj-1)zj-1) + (1 — o) (T(t;)z — T(tj)zj_lg'
— (o — 1) T()z1.

This implied that

lyi—vicr I <ol a5 —x—1 || +leg — 1] || %1 |l
+(1—aj-1) | T()zi-1 — T(ti-1)zi-1 | +(1 — o) || 7 — zj—1 11(2.13)
+ oy — i1 | T(4)zj—1 |l -
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Again from (2.6) we obtain
zj — zji—1 = yi(x — x-1) + (1 — ) (T(5)x; — T()xj-1)
+ (1= y)(T(4)xi-1 — T(ti-1)x-1) + (v — ¥j—1) (xj-1 — T(t-1)xj-1),
that is,

Iz —zi—1 Il <% % —x-1 11 +(1—¥) | T()x — T(5)x-1 |
+(L=9) I T(5)x-1 — T(—1)x-1 || +lyj — ¥j—1l I xj—1 — T(ti—1)xj-1 |

2.14
<l x—x-1 | +(1 = ) || T(t)x—1 — T(ti—1)x-1 |l ( )
+ v =yl T x-1 = T(t-1)x-1 Il
Substituting (2.14) into (2.13),
Ty —vie I <o Il % —xj—1 || +log — 1| I xj-1 |l
+ (1 —aj-1) | T(t)zi—1 — T(ti-1)zj—1 | +log — j1| || T(t)zj-1 ||
+(1 =) 1 —x-1 | +(1 — o) (1 — ) | T(5)x5-1 — T(4-1)xj-1 |
+ (1 =)y — vial | %1 — T(61)%y |
( DY) — vi-1 -1 (ti-1)xj-1 1] (2.15)

<l % = X1 I +leg — @il [ %51 ||
+ || T(t)zj—1 — T(tj—1)zj—1 || +lotj — 1| || T(t)zj—1 |l
1 T()xj-1 = T(t-1)%j-1 |
+1¥ = vl 15 = T(G-1)x-1 |1 -

Substituting (2.15) into (2.11),

a1 =25 1l < Bir I —x5-1 1| +18j — Bi—al | flx-1) | +(1 = Bj) | x5 — %1 ||
+(1 =Byl —aja| | x|
+(1=8) | T(t))zj-1 — T(G-1)zi-1 | +(1 = Byley — 1 || ()21 |
+(1=8) Il T(t)x—1 — T(ti—1)x5-1 |l
+ (1 =By — Vil I x-1 — T(-1)x5-1 |l
+168j = Bi—1l | yj—1 |l (2.16)
<A =(1=7)B) 1% —x-1 Il +18i = Bi—1l | f(xi-1)
+ oy —aj-1] | x-1 |l
+ | T(4)zj-1 — T(ti-1)z1-1 || +lej — 1| | T(5)zj-1 |
+ |1 T(t)x-1 — T(t-1)x5-1 |l
+ 1y = Y1l I x-1 — T(t-1)x5-1 |l

+18i = Bi—1l lyi—1 Il .
Hence,
%1 =211 < (1= (1=1)8) Il 5 — xj—1 | +(2leyj — o1 + 2185 — Bj—1| + [y} — ¥j-11)M
+sup || T(t))x — T(ti—1)x || + sup || T(t))z — T(tji-1)z |, 2.17)
xe{x,) z€{zp}

where M 2 max{]51-T(2)51 ||l b L1 T6) 25411 g1} for all )

By assumption, we have that Z]Ofl Bj = o, and
25 Qo —aja ]+ 2185 = Bimal + 1y — ¥im1l + 8Py | TG = T(G-1)% | +sup ey | T()z — T(G-1)z I]) < oo, Hence,
Lemma 1.7 is applicable to (2.17) and we obtain |[x;,; - x;||—0, which is a contradic-
tion. So (2.9) is proved. Applying Theorem 2.1, there is a unique solution g € Fix(S) to

the following variational inequality:

(f(@) —a.j(x—q)) <0 forallx e Fix(S).
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Next, we show that

lim sup {f(q) = g, j(xn1 — )} < . (2.18)
Indeed, we can take a subsequence {xy,} of {x,} such that

lim sup {f(q) = 4. j(xuer = )} = lim (/(9) = 4,j(xne1 = 9)).

By the reflexivity of E and boundedness of the sequence {x,}, we may assume, with-
out loss of generality, that X,, = p for some p € C. Now we show that p € Fix(S). Put
Xi = Xn,, Ot = O, Bi = PBn, and i = ty, for i € N, let ¢; > 0 be such that

T t: A
ti—> 0 and I (1)): Xl -0, i— oo.
i
Fix ¢ > 0. Notice that
[t/ti]—-1
I —=T@p I < Y I T((e+ 1)t:)x; — T(kti)xi |
k=0

+ | T([¢/a])xi — T([t/t]e)p | + 1| T([¢/t]e)p — T()p |
<[yl | T(t)xi —xi [l + [l xi —p Il + 1| T(t = [t/t:]t:)p —p |
- t“ T(t;)x; — x; ||
< i
< t” T(t;)x; — x; ||

L

+lxi—pll+ I T(t = [t/t:]t)p—p |l
+xi—pll +max{|| T(s)p—p [I: 0 < s < t;}.

For all i € N, we have

limsup || x; — T(¢)p 1< limsup || x; —p | -
00 i>00
Since Banach space E with a weakly sequentially continuous duality mapping satisfies
Opial’s condition, this implies T(t)p = p. Therefore p € Fix(S). In view of the varia-
tional inequality (2.2) and the assumption that duality mapping J is weakly sequentially
continuous, we conclude

lim sup {f(q) = g j(xu1 = )} = lim (f(9) = 4. j(xne1 = )
= {f(@) —ajlp—a) <o.

Then (2.18) is proved. Finally show that x,, — ¢, ie. ||x, - g|| > 0. Suppose that ||x,
- g|| » 0, then there exists ¢ > 0 and a subsequence {xn} of {x,} such that
| xny — q II= € for all j € N. Put %j = X, &j = &tn, Bj = Pn; and §j = tn; for j € N. By Propo-
sition 1.4, there exists r € (0,1) such that [|flx)) - flg)|| < 7||x; - q|| for all j € N. As a
matter of fact, from Lemma 1.6 we have that
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I x50 = qll® =Il Bif (%) + (1 = B)) (e + (1 — &) T(1)2)) — qlI?
=l (1 = B) (el — @) + (1 — (T(5)z — ) + B;(f (%) — D)7
< (1= B) Il el — q) + (1 — ) (T(5))z — D)1I* + 28 {f () — 4. j(x01 — 4))
<(1=B8) (o5l % —qll +(1 — o) | T(5)z —q [1)
+ 26 {f() = F(@), j(xp1 — @) + 285 (f(0) — 4. j(xj1 — q))
< (1=8) x5 —ql* + 28 1| f(x) = F(@) Illl 301 — q | +2B; {f(4) — 4 j(x:1 — @)
<(1=8) x5 —ql* + 287 || x5 — q llll 151 — q | +28; {f(q) — 4. j(xs1 — )
< (1= x5 —ql* + Bir(ll 5 — >+ || 51 — ql1*) + 28 {f(q) — 4. j(x51 — q))
<((X =B+ B1) Il 55— ql* + Bir | 51 — qlI* + 28 {f(@) — 4. j(x51 — 9))-

It follows that

(1-(@2-nB+8)
<

Il %01 = qlI* < 1= By Il —ql*+ | iﬁ;jr (@ = a.j(x1 — @)
S s f”zﬂjr b=t s ) - a0 -a)
<! _1(i ;jrr)ﬁj I — ql* + lﬂfr Il —qll” + lz_ﬂjr {f(@) = a.j(x1 = a))
< g @) - aitsa )
- <1 - 2(11:;/3]») I x5 — qlI> + BEM + fﬂ {f(9) = 4.1 — @)}

<0-20-08) - at e (|2 6@ - aitsa - )+ )

where M > 0 such that M > ! || xj — g||%>. That is,

— 1-r

I %0 = qlI> < (1= %) Il 5 —qll* + 8, (2.19)

5; .
where 7 = 2(1 - 7)B; and V; = (ljr)z (f(q) — 4, j(%1 — q)) + 2({"’4) B;.
It follows by condition (B1) that 3 — 0 and Z;’fl ¥j = 00. From (2.18) we have

5; 1 M
li j ~ li —q,i(xig — li )
Py SR (e VO =0 =Dl 50 -
1
<li -4 j j+1 — =< 0.
slimsup | 2 (f(a) — a.i(xi1 — a))

Using Lemma 1.7 onto (2.19), we conclude that ||x; - g|| — 0. This is a contradic-
tion. Hence x,, — q.

The proof is completed.

If y,, = 1, then we have the following Corollary.

Corollary 2.4. Let E be a reflexive Banach space which admits a weakly sequenctially
continuous duality mapping ] from E into E* suppose C is a nonempty closed convex
subset of E. Let {T(¢t) : t > 0} be a nonexpansive semigroup on C such that Fix(S) # ¢,
and f: C — C be a generalized contraction on C. Let {o,,} < (0,1), {8,} € (0,1), and {t,}
C (0, =) be sequences of real numbers satisfying the conditions:

. o0 .
(C1) limyocfn =0, )~ Bu= 00 and limyocty = 0,
(C2) lim,,_,.. o, = 0,
(C3) Zzio lotper — o < 00, Zf,io |Bns1 — Bul < oo.
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Define a sequence {x,} in C by

X0 € C,
Yn = 0nXn + (1 — o) T(tn)Xn, (2.20)
Xne1 = Buf (xn) + (1 = Bn)yn, n=>0.

Suppose > 520 | T(tn)xn—1 — T(ta—1)%n—1 l|< 00. Then {x,} converges strongly to g, as
n — oo where q is the unique solution in Fix(S)to the variational inequality (2.2).

Setting f is a contraction on C in Corollary 2.4, we have the following results
immediately.

Corollary 2.5. [11, Theorem 3.2] Let E be a reflexive Banach space which admits a
weakly sequenctially continuous duality mapping J from E into E* suppose C is a none-
mpty closed convex subset of E. Let {TI(t) : t > 0} be a nonexpansive semigroup on C
such that Fix(S) # 0, and f: C — C be a contraction on C. Let {o,,} < (0,1), {8,} €
(0,1), and {t,} < (0, ) be sequences of real numbers satisfying the conditions:

. o .
(C1) lim, .00 = O, Zn=0 Bn = o0 and lim,,_, t, = 0,
(C2) lim,,_,.. o, = 0,
(C3) ZZZ() [ape1 — o < 00, ZZZ() |Bre1 — Bul < 00.

Define a sequence {x,} in C by

Xo € C,
Yn = 0nXn + (1 — an) T (tn)Xn, (2.21)
Xn+l = ﬁnf(xn) + (1 — ,Bn))/n/ n=>0.

Suppose Y 2o || T(tn)xn—1 — T(tn—1)%n—1 ll< 0o Then {x,} converges strongly to g, as
n — oo where q is the unique solution in Fix(S)to the variational inequality (2.2).
Questions

(i) Could we obtain Theorem 2.3 with other control conditions which are different
from (C2) and (C3)?

(ii) Could we weaken the control condition (*) by the strictly weaker condition (**):
lim,_, sosup,. & || T(tn)x — T(ta—1)x |I= 0?

The following theorem gives the affirmative answers to these question mentioned
above.

Theorem 2.6. Let E be a reflexive Banach space which admits a weakly sequenctially
continuous duality mapping ] from E into E* suppose C is a nonempty closed convex
subset of E. Let {T(t) : t > 0}, be a nonexpansive semigroup on C such that Fix(S) # ¢,
and f: C — C be a generalized contraction on C. Let {o,,} < (0,1), {B,} < (0,1), {3} <
[0,1] and {t,} < (0, =) be sequences of real numbers satisfying the conditions:

o
(B1) limy— 0B = 0, ano Bu = 00 and limy_, ooty = 0,
(B2) o, + (1 + a,)(1 - ¥,) € [0,a) for some a € (0,1),
(B3) 0 < lim inf,_,.. &, < lim sup,_,.. o, < 1,
(B4) lim,, 5ee (Y41 - ¥) = 0.
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Define a sequence {x,} in C by

X0 € C,
Zn = YnXn + (1 - Vn)T(tn)xn/

2.22
Yn = dnXn + (1 — o) T(tn)zn, ( )
Xn+l = ﬂnf(xn) + (1 - ,Bn))/nr n=>0.

Suppose

lim sup || T(tn)x — T(tu-1)x [I= 0,
n—oo -~

xeC

where Cis any bounded subset of C. Then {x,} converges strongly to q, as n — oo;
where q is the unique solution in Fix(S)to the variational inequality (2.2).

Proof. First, we show that {x,} is bounded. Indeed, if we take a fixed point x € Fix(S).
We will prove by induction that

| x, —x|[<M foralln=>0,

where M := {||xo - z||,n""(||fix) - %||)}. From Definition of (2.22), notice that
lzn =X 1< v I %0 =X | +(1 =) || T(tn)xn —x <l %0 —x || .

It follows that
I yn—x 1< o | xn—x | +(1—atn) || T(tn)zn—x 1< ot | 20— || +(1—en) I| p—x <] xp—x || .

The case n = 0 is obvious.
Suppose that ||x, - x|| < M, we have

I %ne1 = I < B I f(%n) =2 1 +(1 = Bn) I yn —x |l
< Bu 1 f(xn) = fC) I +Bn I f(x) —x I +(1 = By) 1y — x|
< BVl xn —x 1)+ Bn I f(x) —x | +(1 = Bn) | %0 — x|l
= B (I 2w —x 1)+ Bun (™ (1 F() =2 1)) + (1= Bu) [l 20 — x|
< Buy (M) + Bun(M) + (1 — B )M
= ¥ (M) + (M — ¥ (M)) + (1 — Bu)M = M.
By induction,
Il —x || < max{l| xo —x |, n~ (Il f(x) =x )}, Vn=o0.
Thus {x,} is bounded, and so are {T(t,)x,.}, (7.}, {z.} and {flx,))}. As a result, we obtain
by condition (B1),
I Xpe1 — Y ll= B |l f(xn) —¥Yn ll— 0. (2.23)
We next show that

| X0 — T(tn)xs = O. (2.24)

It suffices to show that

| Xne1 — Xn |I= 0. (2.25)
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Indeed, if (2.25) holds, then noting (2.23), we obtain

I n — T()%n | <N 20 — X1 I+ 1 xns1 = ¥n I+ 1 yn — T()zn | + 1| T(t0)2n — T(tn)xn |
<N xn = X 1+ 1 Xner = Yo Il ot |20 = T(6n)2n |+ 1l 20— %a |l
<l xn = Xner |+ 1l Xnar — ¥ Il 4o 1 % — T(Ea)xn | +an | T(tn)xn — T(tn)zn |l
+ |l zp — X ||
<N xn = Xper [+ €1 %ner = Yo [l ot | %0 = T(tn)x [ +otn | X0 — 20 || + 1| 20 — x|
<l xn = Xner 1+ 1 Xpar = ¥ | 4o | 200 — T(En)xn | +(1 +0tm) 1| X0 — 2 ||
<N xn = X I+ 1 Xner = Yo I+t | X0 — Tt )xn |l
+ (1 +an)(1 = yu) Il xn = T(tn)n

and hence (1 - (an +(1+ an)(l - %fz)))”‘xn 'T(tn)xnll < len - xn+1|| + ||x”+1 - y"” -0
as n — . Using (B2), we conclude that (2.24) holds. Define the sequence {u,} by

Xn+1 — OnXn

Uy = ’
" (1 —oyn)

where o, = (1 - B,)c,. Then x,,; = 0,x, + (1 - 0,)u,. Next multiplication gives us
that

(xn+2 - Un+1xn+1) Xn+1 — OnXn
Ups1 — Up = -

1—o0pa 1—o0y
_ lgn+1f(xn+l) + (1 — B )Yn+1 — On+1Xn+1 . ﬂnf(xn) + (1 - ﬁn))’n — OnpXp
1—o0na 1—op
_ (.Bn+1f(x"+1) _ ,an(xn)>
1—oan 1—oay
+ (l + ﬂn+1)(an+1xn+1 + (1 - ‘xn+1)T(tn+1)Zn+1) — Op+1Xn+1
1 —ona
(1 = Bn)(anxn + (1 — otn)T(tn)zn) — ctniXn
- 1—o0,
_ (ﬂmlf(xml) _ lsnf(xn)>
1—onn 1—op

+ (T(tn+1)zn+1 — 1 in;iu-l T(tn+1)Zn+1> - <T(tn)zn _ . inO‘n T(tn)zn)
1 fn;_l (f(xn+1) - T(tn+1)zn+1) - 1 fﬂ (f(xn) — T(tn)zn)
n+1 op

+ (T(tna1)zne1 — T(tne1)zn) — (T(tne1)zn — T(tn)zn).

Then we have

P o)~ Twen |

+ 1l zper =z Il + |l T(tn+l)zn - T(tn)zn -

.B +1
| Unsr —un || < " Il f(xn+1) - T(tn+1)zn+1 I —
1—o0n 1

(2.26)

From (2.22) we have

Znst = 2Zn = VYne1Xns1 + (1 = Vet ) T(tne1 )onen — Vadn — (1 — yu) T(tn)%n
= Vni1 (X1 — %n) + (Vne1 — ¥)%n + (1 = Ve 1 ) (T (Ens1) X1 — T(tne1) %)
+ (1 = Y )(T(tna1 )30 — T(tn)xn) — (Vner — va) T(tn)xn
= Vo1 (%ne1 — %n) + (Yne1 — Vu) (%0 — T(6n)%n)
+ (1 = Vet )(T(tne1)Xne1 — T(tne1)%n) + (1 = Yna1 ) (T(tns1 Joen — T(tn)xn),
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that is,

I zZner — 2o | < Vet | Xns1r — Xn | +|Vne1 — ¥l 1| X0 — T(tn)xn I +(1 - Vn+1) | Xne1 — X ||
+ (1 = Yuer) | T(tns1 )% — T(tn)xn |l (227)
<[ xner = %n | +1Vne1 = Val I X0 = T(tn)xn | T(tne1)%0 — T(ta)xn || -

Substituting (2.27) into (2.26) that

il el B et fn;’lm_l I Ganer) = T(tner Joner | = fﬂgﬂ I f () — T(tn)2n |
+Vne1 = Yl Il %0 = T(0a)xn I+ | T(tns1)xn — T(tn)2n
+ || T(tns1)zn — T(tn)zn |
= ﬁ;l I Goner) = Tt Yomr | = fnan L) — T)en | (228)
+ Vne1 = Yl I %0 — T(tn)xn || + 51(1p) I T(tns1)x — T(ta)x |
+ SL‘lp) Il T(tn1)z = T(tn)z | -
By (B1), (B4), limnﬁoosupxe{x” | T(tns1)x — T(t)x ||= O,
limn_,oosupze{zn} | T(ts+1)z — T(t2)z lI= 0 and (2.28), we obtain that
lim sup(|| Unet — Un || — || Xne1 — Xn ||) <0.
n—oo

Hence by Lemma 1.8, we have lim,, ... ||, - x,|| = 0. It follows from (B3) that

lim || %51 — x4 ||= lim(l _O'n) | uy —xy [|I= 0.
n—o0 n—o00

Hence (2.24) holds. Applying Theorem 2.1, there is a unique solution g € Fix(S) to
the following variational inequality:

(f(@) —q.j(x—q)) <0 forallx e Fix(S).
Next, we show that

lim sup {f(@) — 4.j(xn1 —q)) < 0. (2.29)

Indeed, we can take a subsequence {x,,} of {x,} such that
limsup {f(q) = ¢, j(xn1 — ) = lim {f(q) — ,j(xns1 — 9)).
n—00 =00

By the reflexivity of E and boundedness of the sequence {x,}, we may assume, with-
out loss of generality, that X,, — p for some p € C. Now we show that p € Fix(S). Put
Xi = Xp, 0t = Oy, Bi = By, and ti =ty for i € N, let ¢; = 0 be such that

Il T(ti)oe; — i ||
4]

t; — 0 and —- 0, i— oo.

Fix t > 0. Notice that

[t/t]-1
loa—T(@p Il < D I T((e+ 1)t)xi — T(kti)x; |
k=0

+ 1l T([e/til)xi — T([e/alt)p 1| + || T([t/6]t)p — T(0)p |
< [/a] N T()xi—xi |+ lxi—p I+ 1 T( = [¢/a]a)p—p |
- tH T(ti)xi — x; ||
< .
- t” T(t:)xi — x; ||

ti

+llxi—pll+ 11 Tt — [t/t]a)p —p

+ i —p Il +max{|| T(s)p —p [: 0 <5 < 1;}.
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For all i € N, we have

limsup || xi = T(¢)p |< limsup || x; —p | .

i— 00 i—00

Since Banach space E with a weakly sequentially continuous duality mapping satisfies
Opial’s condition, this implies T(t)p = p. Therefore p € Fix(S). In view of the varia-
tional inequality (2.2) and the assumption that duality mapping J is weakly sequentially

continuous, we conclude
limsup {f(9) = 4. j(xne1 — ) = lim {f(9) = q,j(xnic1 = 9))
= {f(@) —ajp—a) <o.

Then (2.29) is proved. Finally, show that x,, — ¢, i.e,, ||x,-q|| — 0. Suppose that ||x,,-
q|| » 0, then there exists ¢ > 0 and a subsequence {Xn;} of {x,} such that | xo, —¢q [|> ¢
for all j € N. Put %j = Xy, @&j = &tn;, Bj = Pn; and 4 = ty; for j € N. By Proposition 1.4,
there exists r € (0,1) such that ||flx)) - flg)|| < 7||x; - g|| for all j € N. As a matter of

fact, from 1.6 we have that

%0 = aqli® =1l Bif (x5) + (1 = By (e + (1 — ) T(5)z)) — gl
=l (1 = B (x5 — q) + (1 — ) (T(5)z) — ) + B(F (%) — )|
< (1= 8) Il (x5 — @) + (1 = ) (T(5)5 — DI* + 28 {f (%)) — 4. (%01 — @)
<1 =B (ol x—q Il +(1 =) | T(5)z — q 1)
+2Bi(f (%) — (), i (%1 — @) + 28 {f (@) — 4. j(x51 — 4))
< (1=8) x5 —ql* + 28 || f(x) = F(@) Illl %301 — q || +2B; {f(9) — 4, i(xs1 — )
<=8 Ix—al®+ 287 1| x5 — q Il X1 — g | +28;{f(9) — 4,j(%5:1 — )
< (1= 1% —ql* + Bir(ll 5 — >+ || %1 — ql1*) + 28 {f(a) — 4, (%51 — q))
< (=B +B7) 15— qlI” + Bir || 51 — q11> + 28, (@) — 6,§(x51 — q))-

It follows that

(1—(@2-npi+B)

2
I %01 —glI* <

2B
% —ql* + | _ﬂ,}sjr [f(@) = a.j(x1 — 9))

1 —/3]‘1’
SR e P hsmare P @) - o - )
t=pr 1—pr 7 1 2
1-—(2-1)B; B? 28 .
< 1(_ ﬁ]_r) Py =gt T =l s @) = a(a —a)
1—Br—2(1—-r1)B; 28; _
= ]1—,i§jf P Il % — qll” + B7M + I_Jr(f(q)—q,](xj”—q))
2(1 —r1)B; 28; ‘
= (1 T 1pr ]) Il —al? + g7M+ 7 {f(9) = . — )

= (=201 =0)8) % —ql* + 4 (1 ir (F(a) = a.j(xi1 — a)) + ﬂjM>'

where M > 0 such that M > ' || xj — g||% That is,

a1 = ql? < (1= %) | 5 —4qlI* + 5, (2.30)

Where Vi = 2(1 - r)ﬁj and }8/]1 = (1—1r)2 (f(q) - qu(xj+1 - q)) + 2({\A—r) 'Bj'

Page 17 of 20



Wangkeeree and Preechasilp Journal of Inequalities and Applications 2012, 2012:6 Page 18 of 20
http://www.journalofinequalitiesandapplications.com/content/2012/1/6

It follows by condition (B1) that % — 0 and Z;fl ¥j = 00. From (2.29) we have

8 1
li J < i - /> ji+1 — li j
meup, SHmp ) V@ =it =l iy
. 1 ,
< lim sup > (@) = a.j(xa — ) < 0.

Using Lemma 1.7 onto (2.30), we conclude that ||x; -g|| — 0. This is a contradiction.
Hence x,—q.

The proof is completed.

If 7, = 1, then we have the following Corollary.

Corollary 2.7. Let E be a reflexive Banach space which admits a weakly sequenctially
continuous duality mapping ] from E into E* suppose C is a nonempty closed convex
subset of E. Let {T(t) : t > 0}, be a nonexpansive semigroup on C such that Fix(S) # 0,
and f: C — C be a generalized contraction on C. Let {o,,} < (0,1), {8,} € (0,1), and {t,}
C (0, =) be sequences of real numbers satisfying the conditions:

(B1) lim,—o0Bn = 0, Zzio Bn =00,
(B2) 0 < lim inf,_,.. &, < lim sup,_,.. o, < 1,
(B3) lim,,_,.. t, = O.

Define a sequence {x,} in C by

Xo € C,
Yn = Xy + (1 — an)T(tn)%n,
Xn+l = Ian(xn) + (1 - ,Bn))/n/ n> 0.

Suppose lim,, .. ||T(¢,)x,.1 - T(t,1)x,1|| = 0. Then {x,} converges strongly to g, as n
— oo where q is the unique solution in Fix(S)to the variational inequality (2.2).

Setting f'is a contraction on C in Corollary 2.7, we have the following results
immediately.

Corollary 2.8. Let E be a reflexive Banach space which admits a weakly sequenctially
continuous duality mapping ] from E into E* suppose C is a nonempty closed convex
subset of E. Let {T(t) : t > 0}, be a nonexpansive semigroup on C such that Fix(S) # ¢,
and f: C — C be a contraction on C. Let {a,,} < (0,1), {B,} < (0,1), and {t,} < (0, =) be
sequences of real numbers satisfying the conditions:

(B1) lim,_.oBn = 0, Z;.,io Bn =00,
(B2) 0 < lim inf,_,.. o, < lim sup,_,.. o, < 1,
(B3) lim,,_,.. t, = O.

Define a sequence {x,} in C by

Xo € C,
Yn = dpXp + (1 — o) T(tn)Xn,
Xn+1 = Ian(xn) + (1 - ,Bn))/n/ n> 0.

Suppose lim,, .. ||T(¢,)x,.1 - T(t,1)x,1|| = 0. Then {x,} converges strongly to g, as n
— oo where q is the unique solution in Fix(S)to the variational inequality (2.2).
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Remark 2.9. Theorem 2.3 generalize and improve [11, Theorem 3.2]. In fact,

(i) The iterations (1.10) can reduce to (1.9).

(ii) The contraction is replaced by the generalized contraction in both modified
Mann iterations (1.8) and (1.9).

(iii) We can obtain the Theorem 2.3 with control conditions (B2), (B3), and (B4)
which are different from (C2) and (C3).
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