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Abstract

In this article, we prove the existence of solutions for the general variational
inequality j(x, y) ≥ f(x) - f(y) and Minty type theorem by using the generalized KKM
theorem in topological spaces without linear structure. Some properties of solutions
set for the general variational inequality are studied by Minty type theorem. As
applications, equivalence between Browder fixed point theorem and Ky Fan’s
minimax inequality are studied in topological spaces.
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1 Introduction
The existence of solutions and the properties of solutions set for general variational

inequality were studied by many authors in linear topologcal spaces (see [1-7]). These

results depend deeply on the linear structure of spaces. In 1987, Horvath [8] used the

concept of retractile subset family to replace the convexity assumptions and established

the KKM theorem in H-space. Motivated by Horvath’s work, the various extensions of

KKM theorem and their applications in many aspects were investigated by various

authors under the assumption without convexity. Recently, Ding [9,10] and Deng and

Xia [11] introduced the class of finitely continuous topological spaces (in short FC-

spaces) without any convexity and linear structure. The class of FC-spaces includes the

classes of H-spaces, G-convex spaces, G-H-convex spaces, L-convex spaces and many

topological spaces with convexity structure. The purpose of this article is to study the

existence of solutions for the following general variational inequality (in short VI(1.1))

φ(x, y) ≥ f (x) − f (y), (1)

Minty type theorem and the properties of the solutions set for general variational

inequality(1.1) in FC-spaces.

2 Preliminaries
Let E be a topological space, X be a nonempty subset of E. Throughout this article, we

assume that 〈X〉 denotes all nonempty finite subset of X, Δn denotes the standardn-

simplex (e0,..., en) in Rn+1, Δk denotes k-sub-simplex of Δn with vectors (ei0 , . . . , eik),

(0 ≤ k ≤ n), R = (-∞, +∞), R̄ = (−∞, +∞]. The following definitions can be found in

[4,7,9,11].
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Definition 2.1. (E,�N) is said to be a finitely continuous space (in short FC-space) if

E is a topological space and for each N = {x0,..., xn} Î 〈E〉, there exists a continuous

mapping �N: Δn ® E. A subset X of (E, �N) is said to be an FC-subspace of E if for

each N = {x0,...,xn} Î 〈E〉 and for any {xi0 , . . . , xik} ⊂ X ∩ N, �N(Δk) ⊂ X, where

�k = co{eij : j = 0, . . . , k}.
Definition 2.2. Let X be an FC-subspace of (E, �N).

(1) f : X ® R is said to be an R-convex function if for each N = {x0, ..., xn} Î 〈X〉,

f (xt) ≤
n∑
i=0

tif (xi), where xt = ϕN

(
n∑
i=0

tiei

)
, ti ∈ [0, 1],

n∑
i=0

ti = 1.

(2) f : X ® R is said to be a strictly R-convex function if for each N = {x0, x1} Î 〈X〉

and x0 ≠ x1, f(xt) <tf(x0) + (1 - t)f(x1), where xt = �N(te0 + (1 - t)e1), t Î (0, 1).

(3) φ : X × X → R is said to be l-quasi-convex related to the second variant if subset

{y Î X; j(x, y) <l} is an FC-subspace for any x Î X. j is said to be R-quasi-convex

related to the second variant if j is l-quasi-convex related to the second variant for

any x Î X and l Î R.

(4) φ : X × X → R is said to be an R-semi-continuous function if for any N = {x0, x1} Î
〈X〉,

lim
t→0+

φ(xt, x1) ≤ φ(x0, x1),

where xt = �N((1 - t)e0 + te1), t Î [0, 1].

Definition 2.3. Let X be a nonempty subset of E. A function φ : X × X → R is said

to be monotone if j(x, y)+j(y, x) ≤ 0 for any x, y Î X. In addition, if j also satisfies

the condition j(x, y) + j(y, x) = 0 if and only if x = y, then j is said to be strictly

monotone.

Definition 2.4. Let X be a nonempty set and (Y, �N) be an FC-space. For l Î R, a

function φ : X × Y → R is said to be l-generalized R-diagonally quasi-convex (resp.,

R-diagonally quasi-concave) related to the first variant if, for each {x0, ..., xn} Î 〈X〉,

there exists N = {y0, ..., yn} Î 〈Y〉 such that, for each subset {i0, ..., ik} ⊂ {0, ..., n} and

max
0≤j≤k

φ(xij , ȳ) ≥ λ, (resp. min
0≤j≤k

φ(xij , ȳ) ≤ λ).,

max
0≤j≤k

φ(xij , ȳ) ≥ λ, (resp. min
0≤j≤k

φ(xij , ȳ) ≤ λ).

where Δk denotes k-sub-simplex of with vectors (ei0 , . . . , eik), (0 ≤ k ≤ n) related to

{yi0 , . . . , yik}.
Definition 2.5. Let X be a nonempty set and (Y, �N) be an FC-space. A mapping T :

X ® 2Y is said to be a generalized R-KKM mapping if, for each finite subset {x0, ..., xn}

Î 〈X〉, there exists N = {y0, ..., yn} Î 〈Y〉 such that, for each subset {i0, ..., ik} ⊂ {0, ..., n},

ϕN(�k) ⊂ ∪k
j=0T(xij).

Lemma 2.1. j is l-generalized R-diagonally quasi-convex (resp., R-diagonally quasi-

concave) related to the first variant if and only if the mapping G : X ® 2Y defined by

G(x) = {y ∈ Y;φ(x, y) ≥ λ}, (resp. G(x) = {y ∈ Y;φ(x, y) ≤ λ}

is a generalized R-KKM mapping.

Proof If j is l-generalized R-diagonally quasi-convex related to the first variant, then

for each {x0, ..., xn} Î 〈X〉, there exists N = {y0, ..., yn} Î 〈Y〉 such that, for each subset
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{i0, ..., ik} Î {0, ..., n} and ȳ ∈ ϕN(�k), max
0≤j≤k

φ(xij , ȳ) ≥ λ. Hence, there exists some j0 Î

{0, ..., k} such that φ(xij0 , ȳ) ≥ λ, i.e., ȳ ∈ G(xij0 ), therefore ϕN(�k) ⊂ ∪k
j=0G(xij), i.e., G is

a generalized R-KKM mapping.

Conversely, suppose that G is a generalized R-KKM mapping. Then for each {x0, ..., xn}

Î 〈X〉, there exists N = {y0, ..., yn} Î 〈Y〉 such that, for each subset {i0, ..., ik} ⊂ {0, ..., n},

ϕN(�k) ⊂ ∪k
j=0G(xij). Thus for any ȳ ∈ ϕN(�k), there exists some j0 Î {0, ..., k} such that

ȳ ∈ G(xij0 ), i.e., φ(xij0 , ȳ) ≥ λ. It follows that max
0≤j≤k

φ(xij , ȳ) ≥ λ. This completes the proof.

Definition 2.6. Let X, Y be two nonempty subsets of E. For l Î R, a function

φ : X × Y → R is said to be l-transfer compactly lower (resp., upper) semi-continuous

relate to the second variant if, for each nonempty compact subset K ⊂ Y and each y Î
K, there exists x Î X such that j(x, y) >l (resp., j(x, y) <l) implies that there exists an

open neighborhood U(y) of y in K and a point x̄ ∈ X such that φ(x̄, z) > λ (resp.,

φ(x̄, y) < λ) for all z Î U(y).

Definition 2.7. Let X, Y be two nonempty subsets of E. A mapping T : X ® 2Y is

said to be transfer compactly closed valued on X if, for x Î X and for each nonempty

compact subset K of Y, y ∉ T(x) ⋂ K implies that there exists a point x̄ ∈ X such that

y /∈ clK(T(x̄) ∩ K), where clK(T(x̄) ∩ K) is the closure of T(x̄) ∩ K in K.

Lemma 2.2. Let T : X ® 2Y be a set-valued mapping defined by

T(x) = {y ∈ Y;φ(x, y) ≤ λ}, (resp. T(x) = {y ∈ Y;φ(x, y) ≥ λ}).

Then T is transfer compactly closed valued if and only if j is l-transfer compactly

lower (resp., upper) semi-continuous related to second variant.

Proof. Suppose that T is transfer compactly closed valued. If for each nonempty

compact subset K ⊂ Y and each y Î K, there exists x Î X such that j(x, y) >l (resp.,

φ(x̄, y) < λ), then y ∉ T(x) ⋂ K. Thus, there exists a point x̄ ∈ X such that

y /∈ clK(T(x̄) ∩ K). Hence, there exists an open neighborhood U(y) of y in K such that

U(y) ∩ T(x̄) =
 0, i.e., φ(x̄, z) > λ (resp., φ(x̄, z) < λ) for all z Î U(y).

Conversely, for each nonempty compact subset K ⊂ Y and for any y ∉ T(x) ⋂ K, we

have (i) if y ∉ K then y /∈ clK(T(x̄) ∩ K); (ii) if y Î K and y ∉ T(x) then j(x, y) >l (resp.,

φ(x̄, z) < λ). Hence, there exists an open neighborhood U(y) of y in K and x̄ ∈ X such

that φ(x̄, z) > λ (resp. φ(x̄, z) < λ) for all z Î U(y), therefore y /∈ clK(Tx̄). This implies

that T is transfer compactly closed valued. The proof is completed.

3 Solutions of VI(1.1)
In the Sections 3 and 4, we assume that (E, �N) is an FC-space, X is a nonempty FC-

subspace of E, f : X → R̄ is a function with f ≢ +∞, and j : X × X ® R is a function

with j(x, x) ≥ 0 for all x Î X.

Theorem 3.1. Suppose that

(i) there exists a compact subset K of E and x* Î X ⋂ K such that

f (x) > φ(x, x∗) + f (x∗) (∀x ∈ X\K);

(ii) f(y) + j(x, y) - f(x) is 0-generalized R-diagonally quasi-convex related to the var-

iant y;

(iii) f(x)-j(x, y)-f(y) is 0-transfer compactly lower semi-continuous related to the var-

iant x.
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Then VI(1.1) has a solution in X ⋂ K, i.e., there exists x̄ ∈ X ∩ K such that

φ(x̄, y) ≥ f (x̄) − f (y) (∀y ∈ X).

Proof. For any y Î X, let

G(y) = {x ∈ X; f (y) + φ(x, y) ≥ f (x)}. (3:1)

Then G is a multi-valued mapping from X into itself. It is easy to see that, if

x̄ ∈ ∩y∈XG(y) 
=
 0, then x̄ is a solution of VI(1.1).

We now show that ∩y∈XG(y) 
=
 0. In fact, condition (ii) and Lemma 2.1 imply that G

is a generalized R-KKM mapping, condition (iii) and Lemma 2.2 imply that G is trans-

fer compactly closed valued. It follows from condition (i) that x ∉ G(x*) for all x Î X

\K, and so G(x*) ⊂ K, i.e., G(x∗) is a compact subset of E. By Theorem 3.4 in [11],

∩y∈XG(y) 
=
 0. In addition, ∩y∈XG(y) ⊂ G(x∗) ⊂ K , and so the solutions of VI(1.1) is in

X ⋂ K. This completes the proof.

Theorem 3.2. Suppose that

(i) there exist a compact subset K of E and x* Î X ⋂ K such that

f (x) > φ(x, x∗) + f (x∗) (∀x∗ ∈ X\K);

(ii) f(y) + j(x, y) is R-quasi-convex related to the variant y;

(iii) f(x) - j(x, y) is lower semi-continuous related to the variant x.

Then, VI(1.1) has a solution in X ⋂ K.

Proof. We first show the multi-valued mapping G defined by (3.1) is a generalized R-

KKM mapping. Suppose that G is not a generalized R-KKM mapping, then there exist

N = {x0, ..., xn} Î 〈X〉, {ei0 , . . . , eik} ⊂ {e0, . . . , en} and y’ Î �N(Δk) such that

y′ /∈
k⋃
j=0

G(xij). Since f(x) + j(x, y) is R-quasi-convex related to the variant y and

{xi0 , . . . , xik} ⊂ {y ∈ X : f (y) + ϕ(y′, y) < f (y′)}, then �N(Δk) ⊂ {y Î X : f(y) + �(y’, y) <f

(y’)}. And y’ Î �N(Δk), then f(y’) + �(y’, y’) <f(y’), i.e., �(y’, y’) < 0, this contracts �(y’, y’)

≥ 0. Therefore, G is a generalized R-KKM mapping.

Condition (i) implies that x ∉ G(x*) for all x Î X\K, so, G(x*) ⊂ K, i.e., G(x∗) is a

compact subset of E. It follows from condition (iii) that G(y) is a closed subset for

each y Î X. By Theorem 3.2 in [11], ∩y∈XG(y) 
=
 0, and so VI(1.1) has a solution in X ⋂
K. This completes the proof.

By Theorems 3.1 and 3.2, it is easy to get Ky Fan’s minimax inequality in FC-spaces.

Corollary 3.1. Assume that (E, �N), X, f, j satisfy the conditions (ii) and (iii) in The-

orem 3.1.

Then there exists x̄ ∈ X such that

f (y) + φ(x̄, y) ≥ f (x̄) (∀y ∈ X).

Corollary 3.2 Assume that (E, �N), X, f, j satisfy the conditions (ii) and (iii) in Theo-

rem 3.2.

Then there exists x̄ ∈ X such that

f (y) + φ(x̄, y) ≥ f (x̄) (∀y ∈ X).

Remark 3.1 Theorems 3.1 and 3.2, Corollaries 3.1 and 3.2 extend some results of

Gwinner [1] and Ky Fan minimax inequality to FC-spaces without linear structure.
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4 Minty theorem and monotone variational inequality
In this section, we present Minty type theorem in FC-spaces.

Theorem 4.1. Suppose that

(i) j: X × X ® R is a monotone and R-semi-continuous mapping;

(ii) for each x Î X, f(y) + j(x, y) is an R-convex function related to the variant y;

(iii) for any N = {x0, x1} Î 〈X〉, lim inf
t→0+

f (xt) ≥ f (x0), where xt = �N((1 - t)e0 + te1), t Î

[0, 1].

Then there exists x̄ ∈ X such that f (y) + φ(x̄, y) ≥ f (x̄) for all y Î X if and only if

f (y) − φ(y, x̄) ≥ f (x̄) for all y Î X.

Proof. For each y Î X, let

M(y) = {x ∈ X; f (y) + φ(x, y) − f (x) ≥ 0}, (4:1)

N(y) = {x ∈ X; f (y) − φ(y, x) − f (x) ≥ 0}. (4:2)

It is sufficient to prove that
⋂
y∈X

M(y) =
⋂
y∈X

N(y). (4:3)

Since j is monotone, it is easy to see that ∩y∈XM(y) ⊂ ∩y∈XN(y). We claim that
⋂
y∈X

N(y) ⊂
⋂
y∈X

M(y). (4:4)

Suppose that (4.4) is not true. Then there exists x̄ ∈ ∩y∈XN(y) and x̄ /∈ ∩y∈XM(y) i.e.,

f (x̄) + φ(y, x̄) ≤ f (y) (∀y ∈ X), (4:5)

and there exists ȳ ∈ X such that

f (ȳ) + φ(x̄, ȳ) < f (x̄). (4:6)

Let A = {x̄, ȳ}, Setting xt = �A((1 - t)e0 + te1) for each t Î [0, 1]. By condition (iii), we

have

lim inf
t→0+

f (xt) ≥ f (x̄).

Since j is R-semi-continuous, lim sup
t→σ +

φ(xt, ȳ) ≤ φ(x̄, ȳ), we have

lim inf
t→0+

(f (xt) − φ(xt, ȳ)) ≥ f (x̄) − φ(x̄, ȳ) > f (ȳ).

Thus, there exists t* Î [0, 1] such that

f (xt) − φ(xt, ȳ) > f (ȳ) (∀t ∈ (0, t∗]),

therefore, we have

f (ȳ) + φ(xt, ȳ) < f (xt) (∀t ∈ (0, t∗]). (4:7)

Setting y = xt in (4.5), we get

f (x̄) + φ(xt, x̄) ≤ f (xt). (4:8)
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Combining (4.7) and (4.8), we have

(1 − t)(f (ȳ) + φ(xt, ȳ)) + t(f (x̄) + φ(xt, x̄)) < f (xt). (4:9)

It follows from condition (ii) that

(1 − t)(f (ȳ) + φ(x, ȳ)) + t(f (x̄) + φ(xt, x̄)) ≥ f (xt) + φ(xt, xt). (4:10)

Combining (4.9) and (4.10), we have j(xt, xt) < 0, this contradicts to j(xt, xt) ≥ 0.

Hence, (4.4) is true. The proof is completed.

Remark 4.1. Theorem 4.1 extends famous Minty theorem in FC-spaces without lin-

ear structure.

By using Minty type theorem (Theorem 4.1), we now discuss the properties of the

solutions set for VI(1.1).

Theorem 4.2. Suppose that

(i) there exist a compact subset K of E and x* Î X ⋂ K such that

f (x) > φ(x, x∗) + f (x∗) (∀x ∈ X\K);

(ii) for each x Î X, f(y) + j(x, y) is a R-convex function related to the variant y;

(iii) f(x) - j(x, y) is lower semi-continuous related to the variant x;

(iv) j(x, y) is a monotone and R-semi-continuous mapping;

(v) for any N = {x0, x1} Î 〈X〉, lim inf
t→0+

f (xt) ≥ f (x0), where xt = �N((1 - t)e0 + te1), t Î

[0, 1].

Then the solution set for VI(1.1) is a nonempty compact FC-subspace of E in X ⋂ K.

Furthermore, either (I) j is a strictly monotone function in (iv) or (II) f(y)+j(x, y) is
strictly R-convex function in (ii), then the solution of VI(1.1) is unique in X ⋂ K.

Proof Let S be the solution set for VI(1.1) in X ⋂ K. It is clear that S is nonempty by

Theorem 3.2 and S = ∩y∈XM(y), where M(y) is defined by (4.1). We show that S is a

compact FC-subspace of E in X ⋂ K. In fact, from Theorem 4.1, we have

S = ∩y∈XM(y) = ∩y∈XN(y), where N(y) is defined by (4.2). Since f(y) + j(x, y) is a R-

convex function related to the variant y, it is easy to see that N(y) is an FC-subspace of

E, then S = ∩y∈XN(y) is an FC-subspace of E. By condition (i) and (iii), we have S ⊂ K

and S = ∩y∈XM(y) is closed. Therefore, S is a nonempty compact FC-subspace of E in

X ⋂ K.

We now prove that the solution of VI(1.1) is unique in X ⋂ K under the condition

(I). In fact, let x1, x2 Î X ⋂ K be two solutions of VI(1.1) with x1 ≠ x2. Then

f (y) + φ(x1, y) ≥ f (x1) (∀y ∈ X) (4:11)

and

f (y) + φ(x2, y) ≥ f (x2) (∀y ∈ X). (4:12)

Putting y = x2 in (4.11) and y = x1 in (4.12), respectively, we have

f (x2) + φ(x1, x2) ≥ f (x1), (4:13)

f (x1) + φ(x2, x1) ≥ f (x2). (4:14)

Adding (4.13) and (4.14), we have j(x1, x2) + j(x2, x1) ≥ 0. This implies that j(x1, x2)
+ j(x2, x1) = 0 and so x1 = x2.
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Now we prove that the solution of VI(1.1) is unique in X ⋂ K under condition (II). In

fact, suppose that x1, x2 Î X ⋂ K be two solutions of VI(1.1) with x1 ≠ x2. Let N = {x1,

x2} and x̄ = ϕN( 12e0 +
1
2e1) ∈ X. Then

1
2
(f (x1) + f (x2) + φ(x1, x2) + φ(x1, x1)) > f (x̄) + φ(x1, x̄) ≥ f (x1)

Therefore, we have

φ(x1, x1) + φ(x1, x2) > f (x1) − f (x2). (4:15)

Since j(x, y) is monotone, we know that j(x, y) + j(y, x) ≤ 0 for any x, y Î X. Espe-

cially setting x = y, we have j(x, x) ≤ 0. Since j(x, x) ≥ 0 for all x Î X, it follows that

j(x, x) = 0. Therefore (4.15) implies that j(x1, x2) >f(x1)-f(x2). Analogously, we have j
(x2, x1) >f(x2)-f(x1) and so j(x1, x2) + j(x2, x1) > 0, this contradicts to the fact that j is

monotone. Thus, the solution of VI(1.1) is unique. This completes the proof.

5 Applications
In 1968, Browder [12] established the fixed point theorem for set-valued mappings in

Hausdorff topological vector spaces. This theorem plays an important role in solving

quasi-variational inequality (see [3,13]). As applications, we now generalize the Brow-

der fixed point theorem to FC-spaces by using Corollary 3.4 and prove the equivalent

relation between Browder fixed point theorem and Ky Fan’s minimax inequality in FC-

spaces without linear structure.

Theorem 5.1. Let (E, �N) be an FC-space and X be a compact FC-subspace of E. Sup-

pose that T : X ® 2X is a set-valued mapping satisfying one of the following conditions

(i) for each x Î X, T(x) is a nonempty FC-subspace of X and for each y Î X, T-1(y) is

an open subset of X;

(ii) for each x Î X, T(x) is an open subset of X, and for each y Î X, T-1(y) is a none-

mpty FC-subspace of X.

Then T has a fixed point in X.

Proof. Suppose that condition (i) is satisfied and T has no fixed point in X. For x, y

Î X, let

φ(x, y) =
{−1, ((x, y) ∈ graph(T)),
0, ((x, y) /∈ graph(T)),

where graph(T) = {(x, y);y Î T(x)}. Since for each x Î X, x ∉ T(x) we have j(x, x) =
0. Now we verify that all conditions of Corollary 3.2 are satisfied. In fact, for l Î R

and x Î X, we have

{y ∈ X;φ(x, y) < λ} =
⎧⎨
⎩
X, (λ > 0),
T(x), (−1 < λ ≤ 0),

 0, (λ ≤ −1).

This implies that j(x, y) is R-quasi-convex related to the variant y. For each y Î X

and l Î R,

{x ∈ X;φ(x, y) ≥ λ} =
⎧⎨
⎩


 0, (λ ≥ 0),
X\T−1(y), (−1 < λ ≤ 0),
X, (λ ≤ −1).
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This implies that j(x,y) is upper semi-continuous related to the variant x. From Cor-

ollary 3.2, there exists x̄ ∈ X such that φ(x̄, y) ≥ 0 for all y Î X.

Since j(x, y) ≤ 0 for all x, y Î X, we know that φ(x̄, y) = 0 for all y Î X, i.e., T(x̄) =
 0,
which is a contradiction.

Now we suppose that the condition (ii) is satisfied. Let H(x) = T-1(x) = {y Î X; x Î T

(y)} for x Î X. Then H satisfies condition (i). Hence, H has a fixed point in X and so T

has a fixed point in X. This completes the proof.

Theorem 5.2. Browder type fixed point theorem (Theorem 5.1) is equivalent to Ky

Fan’s minimax inequality (Corollary 3.2).

Proof. Using the Ky Fan’s minimax inequality to prove the Browder fixed point theo-

rem has been shown by Theorem 5.1. Now we prove that Ky Fan’s minimax inequality

using Browder fixed point theorem. In fact, if the conclusion of Corollary 3.2 is not

true, then for each x Î X, there exists y Î X such that f(y) + j(x, y) <f(x). Set

T(x) = {y ∈ X; f (y) + φ(x, y) < f (x)}.

Then T(x) is a nonempty FC-subspace of X for any x Î X and for any y Î X.

T−1(y) = {x ∈ X; f (y) + φ(x, y) < f (x)} = {x ∈ X; f (x) − φ(x, y) > f (y)}

is an open subset of X. Therefore there exists x̄ ∈ X such that x̄ ∈ T(x̄), i.e.,

f (x̄) + φ(x̄, x̄) < f (x̄) and so φ(x̄, x̄) < 0. This is a contraction. The proof is completed.
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