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1 Introduction and preliminaries
Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin in

which he discussed a number of unsolved problems. Among these was the following

question concerning the stability of homomorphisms.

We are given a group G and a metric group G’ with metric r(·,·). Given � > 0, does

there exist a δ > 0 such that if f : G ® G’ satisfies r(f (xy), f(x) f(y)) <δ for all x,y Î G,

then a homomorphism h : G ® G’ exists with r(f(x), h(x)) <� for all x Î G?

Hyers [2] considered the case of approximately additive mappings f: E ® E’, where E

and E’ are Banach spaces and f satisfies Hyers’ inequality
∥∥f (x + y) − f (x) − f (y)

∥∥ ≤ ε

for all x,y Î E. It was shown that the limit

L(x) = lim
n→∞

f (2nx)
2n

exists for all x Î E and that L : E ® E’ is the unique additive mapping satisfying
∥∥f (x) − L(x)

∥∥ ≤ ε.

Rassias [3] provided a generalization of Hyers’ Theorem which allows the Cauchy

difference to be unbounded.

Theorem 1.1. (Rassias). Let f : E ® E’ be a mapping from a normed vector space E

into a Banach space E’ subject to the inequality

∥∥f (x + y) − f (x) − f (y)
∥∥ ≤ ε(‖x‖p + ∥∥y∥∥p) (1:1)
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for all x,y Î E, where � and p are constants with � > 0 and p < 1. Then the limit

L(x) = lim
n→∞

f (2nx)
2n

exists for all x Î E and L : E ® E’ is the unique additive mapping which satisfies

∥∥f (x) − L(x)
∥∥ ≤ 2ε

2 − 2p
‖x‖p (1:2)

for all x Î E. If p <0 then inequality (1.1) holds for x,y ≠ 0 and (1.2) for x ≠ 0.

Rassias [4] during the 27th International Symposium on Functional Equations asked

the question whether such a theorem can also be proved for p ≥ 1. Gajda [5] following

the same approach as in Rassias [3] gave an affirmative solution to this question for p

> 1. It was shown by Gajda [5], as well as by Rassias and Šemrl [6] that one cannot

prove a Rassias’ type theorem when p = 1 (cf. the books of Czerwik [7] and Hyers et

al. [8]).

Rassias [9] followed the innovative approach of Rassias’ theorem [3] in which he

replaced the factor ∥x∥p + ∥y∥p by ∥x∥p · ∥y∥q for p,q Î ℝ with p + q ≠ 1. Găvruta [10]

provided a further generalization of Rassias’ theorem. During the last two decades a

number of papers and research monographs have been published on various generali-

zations and applications of the Hyers-Ulam stability to a number of functional equa-

tions and mappings (see [11-13]).

Throughout this article, let G be a 2-divisible abelian group. Assume that X is a

normed space with norm || · ||X and that Y is a Banach space with norm || · ||Y.

Gilányi [14] showed that if f satisfies the functional inequality
∥∥2f (x) + 2f (y) − f (xy−1)

∥∥ ≤ ∥∥f (xy)∥∥ (1:3)

then f satisfies the Jordan-von Neumann functional equation

2f (x) + 2f (y) = f (xy) + f (xy−1).

See also [15]. Gilányi [16] and Fechner [17] proved the Hyers-Ulam stability of the

functional inequality (1.3).

Park et al. [18] proved the Hyers-Ulam stability of the following functional inequal-

ities

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥2f
(x + y + z

2

)∥∥∥ , (1:4)

∥∥f (x) + f (y) + f (z)
∥∥ ≤ ∥∥f (x + y + z)

∥∥ , (1:5)

∥∥f (x) + f (y) + 2f (z)
∥∥ ≤

∥∥∥2f
(x + y

2
+ z

)∥∥∥ . (1:6)

But there is an error in the 8th line on the 6th page in the proof of [18, Theorem

3.1]. We revise the statements of the main theorems and prove the revised theorems.

In Section 2, we prove the Hyers-Ulam stability of the functional inequality (1.4).

In Section 3, we prove the Hyers-Ulam stability of the functional inequality (1.5).

In Section 4, we prove the Hyers-Ulam stability of the functional inequality (1.6).
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2 Stability of a functional inequality associated with a 3-variable Jensen
additive functional equation
Proposition 2.1. [18, Proposition 2.1] Let f : G ® Y be a mapping such that

∥∥f (x) + f (y) + f (z)
∥∥
Y ≤

∥∥∥2f
(x + y + z

2

)∥∥∥
Y

for all x, y, z Î G. Then f is Cauchy additive.

We prove the Hyers-Ulam stability of a functional inequality associated with a Jor-

dan-von Neumann type 3-variable Jensen additive functional equation.

Theorem 2.2. Let r > 1 and θ be nonnegative real numbers, and let f : X ®Y be an

odd mapping such that

∥∥f (x) + f (y) + f (z)
∥∥
Y ≤

∥∥∥2f
( x + y + z

2

)∥∥∥
Y
+ θ(‖x‖rX +

∥∥y∥∥rX + ‖z‖rX) (2:1)

for all x,y, z Î X. Then there exists a unique Cauchy additive mapping h : X ® Y

such that

∥∥f (x) − h(x)
∥∥
Y ≤ 2r + 2

2r − 2
θ ‖x‖rX (2:2)

for all x Î X.

Proof. Letting y = x and z = -2x in (2.1), we get
∥∥2f (x) − f (2x)

∥∥
Y =

∥∥2f (x) + f (−2x)
∥∥
Y ≤ (2 + 2r)θ ‖x‖rX (2:3)

for all x Î X. So

∥∥∥f (x) − 2f
( x

2

)∥∥∥
Y

≤ 2 + 2r

2r
θ ‖x‖rX

for all x Î X. Hence

∥∥∥2lf
( x

2l

)
− 2mf

( x
2m

)∥∥∥
Y

≤
m−1∑
j=l

∥∥∥2jf
( x
2j

)
− 2j+1f

( x
2j+1

)∥∥∥
Y

≤ 2 + 2r

2r

m−1∑
j=l

2j

2rj
θ ‖x‖rX

(2:4)

for all nonnegative integers m and l with m >l and all x Î X.

It follows from (2.4) that the sequence {2nf ( x
2n )} is a Cauchy sequence for all x Î X.

Since Y is complete, the sequence {2nf ( x
2n )} converges. So one can define the mapping

h : X ® Y by

h(x) := lim
n→∞ 2nf (

x
2n

)

for all x Î X. Moreover, letting l = 0 and passing the limit m ® ∞ in (2.4), we get

(2.2).
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It follows from (2.1) that

∥∥h(x) + h(y) + h(z)
∥∥
Y = lim

n→∞ 2n
∥∥∥f

( x
2n

)
+ f

( y
2n

)
+ f

( z
2n

)∥∥∥
Y

≤ lim
n→∞ 2n

∥∥∥2f
( x + y + z

2n+1

)∥∥∥
Y
+ lim

n→∞
2nθ
2nr

(‖x‖rX +
∥∥y∥∥rX + ‖z‖rX)

=
∥∥∥2h

( x + y + z

2

)∥∥∥
Y

for all x, y, z Î X. So

∥∥h(x) + h(y) + h(z)
∥∥
Y ≤

∥∥∥2h
( x + y + z

2

)∥∥∥
Y

for all x, y, z Î X. By Proposition 2.1, the mapping h : X ® Y is Cauchy additive.

Now, let T : X ® Y be another Cauchy additive mapping satisfying (2.2). Then we

have

∥∥h(x) − T(x)
∥∥
Y = 2n

∥∥∥h
( x
2n

)
− T

( x
2n

)∥∥∥
Y

≤ 2n
(∥∥∥h

( x
2n

)
− f

( x
2n

)∥∥∥
Y
+

∥∥∥T
( x
2n

)
− f

( x
2n

)∥∥∥
Y

)

≤ 2(2r + 2)2n

(2r − 2)2nr
θ ‖x‖rX ,

which tends to zero as n ® ∞ for all x Î X. So we can conclude that h(x) = T(x) for

all x Î X. This proves the uniqueness of h. Thus the mapping h : X ® Y is a unique

Cauchy additive mapping satisfying (2.2).

Theorem 2.3. Let r < 1 and θ be positive real numbers, and let f : X ® Y be an odd

mapping satisfying (2.1). Then there exists a unique Cauchy additive mapping h : X ®
Y such that

∥∥f (x) − h(x)
∥∥
Y ≤ 2 + 2r

2 − 2r
θ ‖x‖rX (2:5)

for all x Î X.

Proof. It follows from (2.3) that
∥∥∥∥f (x) − 1

2
f (2x)

∥∥∥∥
Y

≤ 2 + 2r

2
θ ‖x‖rX

for all x Î X. Hence

∥∥∥∥
1
2l
f (2lx) − 1

2m
f (2mx)

∥∥∥∥
Y

≤
m−1∑
j=l

∥∥∥∥
1
2j
f (2jx) − 1

2j+1
f (2j+1x)

∥∥∥∥
Y

≤ 2 + 2r

2

m−1∑
j=l

2rj

2j
θ ‖x‖rX

(2:6)

for all nonnegative integers m and l with m > l and all x Î X.

It follows from (2.6) that the sequence { 1
2n f (2

nx)} is a Cauchy sequence for all x Î

X. Since Y is complete, the sequence { 1
2n f (2

nx)} converges. So one can define the map-

ping h : X ® Y by
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h(x) := lim
n→∞

1
2n

f (2nx)

for all x Î X. Moreover, letting l = 0 and passing the limit m ® ∞ in (2.6), we get

(2.5).

The rest of the proof is similar to the proof of Theorem 2.2.

Theorem 2.4. Let r > 1
3and θ be nonnegative real numbers, and let f : X ® Y be an

odd mapping such that

∥∥f (x) + f (y) + f (z)
∥∥
Y ≤

∥∥∥2f
(x + y + z

2

)∥∥∥
Y
+ θ · ‖x‖rX · ∥∥y∥∥rX · ‖z‖rX (2:7)

for all x, y, z Î X. Then there exists a unique Cauchy additive mapping h : X ® Y

such that

∥∥f (x) − h(x)
∥∥
Y ≤ 2rθ

8r − 2
‖x‖3rX (2:8)

for all x Î X.

Proof. Letting y = x and z = -2x in (2.7), we get
∥∥2f (x) − f (2x)

∥∥
Y =

∥∥2f (x) + f (−2x)
∥∥
Y ≤ 2rθ ‖x‖3rX (2:9)

for all x Î X. So

∥∥∥f (x) − 2f
( x

2

)∥∥∥
Y

≤ 2r

8r
θ ‖x‖3rX

for all x Î X. Hence

∥∥∥2lf
( x

2l

)
− 2mf

( x
2m

)∥∥∥
Y

≤
m−1∑
j=l

∥∥∥2jf
( x
2j

)
− 2j+1f

( x
2j+1

)∥∥∥
Y

≤ 2r

8r

m−1∑
j=l

2j

8rj
θ ‖x‖3rX

(2:10)

for all nonnegative integers m and l with m > l and all x Î X.

It follows from (2.10) that the sequence {2nf ( x
2n )} is a Cauchy sequence for all x Î

X. Since Y is complete, the sequence {2nf ( x
2n )} converges. So one can define the map-

ping h : X ® Y by

h(x) := lim
n→∞ 2nf (

x
2n

)

for all x Î X. Moreover, letting l = 0 and passing the limit m ® ∞ in (2.10), we get

(2.8).

The rest of the proof is similar to the proof of Theorem 2.2.

Theorem 2.5. Let r < 1
3and θ be positive real numbers, and let f : X ® Y be an odd

mapping satisfying (2.7). Then there exists a unique Cauchy additive mapping h:X ® Y

such that
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∥∥f (x) − h(x)
∥∥
Y ≤ 2rθ

2 − 8r
‖x‖3rX (2:11)

for all x Î X.

Proof. It follows from (2.9) that
∥∥∥∥f (x) − 1

2
f (2x)

∥∥∥∥
Y

≤ 2r

2
θ ‖x‖3rX

for all x Î X. Hence

∥∥∥∥
1
2l
f (2lx) − 1

2m
f (2mx)

∥∥∥∥
Y

≤
m−1∑
j=l

∥∥∥∥
1
2j
f (2jx) − 1

2j+1
f (2j+1x)

∥∥∥∥
Y

≤ 2r

2

m−1∑
j=l

8rj

2j
θ ‖x‖rX

(2:12)

for all nonnegative integers m and l with m >l and all x Î X.

It follows from (2.12) that the sequence { 1
2n f (2

nx)} is a Cauchy sequence for all x Î

X. Since Y is complete, the sequence { 1
2n f (2

nx)} converges. So one can define the map-

ping h : X ® Y by

h(x) := lim
n→∞

1
2n

f (2nx)

for all x Î X. Moreover, letting l = 0 and passing the limit m ® ∞ in (2.12), we get

(2.11).

The rest of the proof is similar to the proof of Theorem 2.2.

3 Stability of a functional inequality associated with a 3-variable Cauchy
additive functional equation
Proposition 3.1. [18, Proposition 2.2] Let f : G ® Y be a mapping such that

∥∥f (x) + f (y) + f (z)
∥∥
Y ≤ ∥∥f (x + y + z)

∥∥
Y

for all x, y, z Î G. Then f is Cauchy additive.

We prove the Hyers-Ulam stability of a functional inequality associated with a Jor-

dan-von Neumann type 3-variable Cauchy additive functional equation.

Theorem 3.2. Let r > 1 and θ be nonnegative real numbers, and let f : X ® Y be an

odd mapping such that
∥∥f (x) + f (y) + f (z)

∥∥
Y ≤ ∥∥f (x + y + z)

∥∥
Y + θ(‖x‖rX +

∥∥y∥∥rX + ‖z‖rX) (3:1)

for all x, y, z Î X. Then there exists a unique Cauchy additive mapping h : X ® Y

such that

∥∥f (x) − h(x)
∥∥
Y ≤ 2r + 2

2r − 2
θ ‖x‖rX

for all x Î X.

Park and Lee Journal of Inequalities and Applications 2012, 2012:47
http://www.journalofinequalitiesandapplications.com/content/2012/1/47

Page 6 of 9



Proof. Letting y = x and z = -2x in (3.1), we get
∥∥2f (x) − f (2x)

∥∥
Y =

∥∥2f (x) + f (−2x)
∥∥
Y ≤ (2 + 2r)θ ‖x‖rX (3:2)

for all x Î X.

The rest of the proof is the same as in the proof of Theorem 2.2.

Theorem 3.3. Let r < 1 and θ be positive real numbers, and let f : X ® Y be an odd

mapping satisfying (3.1). Then there exists a unique Cauchy additive mapping h:X ® Y

such that

∥∥f (x) − h(x)
∥∥
Y ≤ 2 + 2r

2 − 2r
θ ‖x‖rX

for all x Î X.

Proof. It follows from (3.2) that
∥∥∥∥f (x) − 1

2
f (2x)

∥∥∥∥
Y

≤ 2 + 2r

2
θ ‖x‖rX

for all x Î X.

The rest of the proof is the same as in the proofs of Theorems 2.2 and 2.3.

Theorem 3.4. Let r > 1
3and θ be nonnegative real numbers, and let f : X ® Y be an

odd mapping such that
∥∥f (x) + f (y) + f (z)

∥∥
Y ≤ ∥∥f (x + y + z)

∥∥
Y + θ · ‖x‖rX · ∥∥y∥∥rX · ‖z‖rX (3:3)

for all x, y, z Î X. Then there exists a unique Cauchy additive mapping h : X ® Y

such that

∥∥f (x) − h(x)
∥∥
Y ≤ 2rθ

8r − 2
‖x‖3rX

for all x Î X.

Proof Letting y = x and z = -2x in (3.3), we get
∥∥2f (x) − f (2x)

∥∥
Y =

∥∥2f (x) + f (−2x)
∥∥
Y ≤ 2rθ ‖x‖3rX (3:4)

for all x Î X.

The rest of the proof is the same as in the proofs of Theorems 2.2 and 2.4.

Theorem 3.5. Let r < 1
3and θ be positive real numbers, and let f : X ® Y be an odd

mapping satisfying (3.3). Then there exists a unique Cauchy additive mapping h : X ®
Y such that

∥∥f (x) − h(x)
∥∥
Y ≤ 2rθ

2 − 8r
‖x‖3rX

for all x Î X.

Proof. It follows from (3.4) that
∥∥∥∥f (x) − 1

2
f (2x)

∥∥∥∥
Y

≤ 2r

2
θ ‖x‖3rX

for all x Î X.
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The rest of the proof is the same as in the proofs of Theorems 2.2 and 2.5.

4 Stability of a functional inequality associated with the Cauchy-Jensen
functional equation
Proposition 4.1. [18, Proposition 2.3] Let f :G ® Y be a mapping such that

∥∥f (x) + f (y) + 2f (z)
∥∥
Y ≤

∥∥∥2f
(x + y

2
+ z

)∥∥∥
Y

for all x, y, z Î G. Then f is Cauchy additive.

We prove the Hyers-Ulam stability of a functional inequality associated with a Jor-

dan-von Neumann type Cauchy-Jensen functional equation.

Theorem 4.2. Let r > 1 and θ be nonnegative real numbers, and let f : X ® Y be an

odd mapping such that

∥∥f (x) + f (y) + 2f (z)
∥∥
Y ≤

∥∥∥2f
(x + y

2
+ z

)∥∥∥
Y
+ θ(‖x‖rX +

∥∥y∥∥rX + ‖z‖rX) (4:1)

for all x, y, z Î X. Then there exists a unique Cauchy additive mapping h : X ®Y

such that

∥∥f (x) − h(x)
∥∥
Y ≤ 2r + 1

2r − 2
θ ‖x‖rX

for all x Î X.

Proof. Replacing x by 2x and letting y = 0 and z = -x in (4.1), we get
∥∥f (2x) − 2f (x)

∥∥
Y =

∥∥f (2x) + 2f (−x)
∥∥
Y ≤ (1 + 2r)θ ‖x‖rX (4:2)

for all x Î X. So

∥∥∥f (x) − 2f
( x

2

)∥∥∥
Y

≤ 1 + 2r

2r
θ ‖x‖rX

for all x Î X.

The rest of the proof is similar to the proof of Theorem 2.2.

Theorem 4.3. Let r < 1 and θ be positive real numbers, and let f : X ® Y be an odd

mapping satisfying (4.1). Then there exists a unique Cauchy additive mapping h : X ®
Y such that

∥∥f (x) − h(x)
∥∥
Y ≤ 1 + 2r

2 − 2r
θ ‖x‖rX

for all x Î X.

Proof. It follows from (4.2) that
∥∥∥∥f (x) − 1

2
f (2x)

∥∥∥∥
Y

≤ 1 + 2r

2
θ ‖x‖rX

for all x Î X.

The rest of the proof is similar to the proofs of Theorems 2.2 and 2.3.
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