REVIEW

Open Access

Comment on "Functional inequalities associated with Jordan-von Neumann type additive functional equations"

Choonkil Park¹ and Jung Rye Lee^{2*}

* Correspondence: jrlee@daejin.ac. kr

²Department of Mathematics, Daejin University, Kyeonggi 487-711, Korea Full list of author information is available at the end of the article

Abstract

Park et al. proved the Hyers-Ulam stability of some additive functional inequalities. There is a fatal error in the proof of Theorem 3.1. We revise the statements of the main theorems and prove the revised theorems.

2010 Mathematics Subject Classification: Primary 39B62; 39B72; 39B52.

Keywords: Jordan-von Neumann functional equation, Hyers-Ulam stability, functional inequality

1 Introduction and preliminaries

Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

We are given a group G and a metric group G' with metric $\rho(\cdot, \cdot)$. Given $\epsilon > 0$, does there exist a $\delta > 0$ such that if $f: G \to G'$ satisfies $\rho(f(xy), f(x) f(y)) < \delta$ for all $x, y \in G$, then a homomorphism $h: G \to G'$ exists with $\rho(f(x), h(x)) < \epsilon$ for all $x \in G$?

Hyers [2] considered the case of approximately additive mappings $f: E \to E'$, where *E* and *E'* are Banach spaces and *f* satisfies *Hyers' inequality*

 $\|f(x+\gamma) - f(x) - f(\gamma)\| \le \varepsilon$

for all $x, y \in E$. It was shown that the limit

$$L(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$$

exists for all $x \in E$ and that $L : E \to E'$ is the unique additive mapping satisfying

$$\|f(x)-L(x)\|\leq\varepsilon.$$

Rassias [3] provided a generalization of Hyers' Theorem which allows the *Cauchy difference to be unbounded.*

Theorem 1.1. (Rassias). Let $f : E \to E'$ be a mapping from a normed vector space E into a Banach space E' subject to the inequality

$$\|f(x+y) - f(x) - f(y)\| \le \varepsilon (\|x\|^p + \|y\|^p)$$
(1.1)

© 2012 Park and Lee; licensee Springer. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

for all $x, y \in E$, where ϵ and p are constants with $\epsilon > 0$ and p < 1. Then the limit

$$L(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$$

exists for all $x \in E$ and $L: E \to E'$ is the unique additive mapping which satisfies

$$\left\|f(x) - L(x)\right\| \le \frac{2\varepsilon}{2 - 2^p} \|x\|^p \tag{1.2}$$

for all $x \in E$. If p < 0 then inequality (1.1) holds for $x, y \neq 0$ and (1.2) for $x \neq 0$.

Rassias [4] during the 27th International Symposium on Functional Equations asked the question whether such a theorem can also be proved for $p \ge 1$. Gajda [5] following the same approach as in Rassias [3] gave an affirmative solution to this question for p > 1. It was shown by Gajda [5], as well as by Rassias and Šemrl [6] that one cannot prove a Rassias' type theorem when p = 1 (cf. the books of Czerwik [7] and Hyers et al. [8]).

Rassias [9] followed the innovative approach of Rassias' theorem [3] in which he replaced the factor $||x||^p + ||y||^p$ by $||x||^p \cdot ||y||^q$ for $p,q \in \mathbb{R}$ with $p + q \neq 1$. Găvruta [10] provided a further generalization of Rassias' theorem. During the last two decades a number of papers and research monographs have been published on various generalizations and applications of the Hyers-Ulam stability to a number of functional equations and mappings (see [11-13]).

Throughout this article, let *G* be a 2-divisible abelian group. Assume that *X* is a normed space with norm $|| \cdot ||_X$ and that *Y* is a Banach space with norm $|| \cdot ||_Y$.

Gilányi [14] showed that if f satisfies the functional inequality

$$\|2f(x) + 2f(y) - f(xy^{-1})\| \le \|f(xy)\|$$
(1.3)

then f satisfies the Jordan-von Neumann functional equation

$$2f(x) + 2f(y) = f(xy) + f(xy^{-1})$$

See also [15]. Gilányi [16] and Fechner [17] proved the Hyers-Ulam stability of the functional inequality (1.3).

Park et al. [18] proved the Hyers-Ulam stability of the following functional inequalities

$$||f(x) + f(y) + f(z)|| \le ||2f(\frac{x+y+z}{2})||,$$
 (1.4)

$$\|f(x) + f(y) + f(z)\| \le \|f(x + y + z)\|,$$
(1.5)

$$\|f(x) + f(y) + 2f(z)\| \le \|2f\left(\frac{x+y}{2} + z\right)\|.$$
 (1.6)

But there is an error in the 8th line on the 6th page in the proof of [18, Theorem 3.1]. We revise the statements of the main theorems and prove the revised theorems.

In Section 2, we prove the Hyers-Ulam stability of the functional inequality (1.4).

In Section 3, we prove the Hyers-Ulam stability of the functional inequality (1.5).

In Section 4, we prove the Hyers-Ulam stability of the functional inequality (1.6).

2 Stability of a functional inequality associated with a 3-variable Jensen additive functional equation

Proposition 2.1. [18, Proposition 2.1] Let $f: G \to Y$ be a mapping such that

$$\left\|f(x)+f(y)+f(z)\right\|_{Y} \leq \left\|2f\left(\frac{x+y+z}{2}\right)\right\|_{Y}$$

for all x, y, $z \in G$. Then f is Cauchy additive.

We prove the Hyers-Ulam stability of a functional inequality associated with a Jordan-von Neumann type 3-variable Jensen additive functional equation.

Theorem 2.2. Let r > 1 and θ be nonnegative real numbers, and let $f: X \rightarrow Y$ be an odd mapping such that

$$\left\|f(x) + f(y) + f(z)\right\|_{Y} \le \left\|2f\left(\frac{x+y+z}{2}\right)\right\|_{Y} + \theta\left(\|x\|_{X}^{r} + \|y\|_{X}^{r} + \|z\|_{X}^{r}\right)$$
(2.1)

for all x,y, $z \in X$. Then there exists a unique Cauchy additive mapping $h : X \to Y$ such that

$$\|f(x) - h(x)\|_{Y} \le \frac{2^{r} + 2}{2^{r} - 2} \theta \|x\|_{X}^{r}$$
(2.2)

for all $x \in X$.

Proof. Letting y = x and z = -2x in (2.1), we get

$$\left\|2f(x) - f(2x)\right\|_{Y} = \left\|2f(x) + f(-2x)\right\|_{Y} \le (2+2^{r})\theta \|x\|_{X}^{r}$$
(2.3)

for all $x \in X$. So

$$\left\|f(x) - 2f\left(\frac{x}{2}\right)\right\|_{Y} \le \frac{2+2^{r}}{2^{r}}\theta \left\|x\right\|_{X}^{r}$$

for all $x \in X$. Hence

$$\begin{aligned} \left\| 2^{l} f\left(\frac{x}{2^{l}}\right) - 2^{m} f\left(\frac{x}{2^{m}}\right) \right\|_{Y} &\leq \sum_{j=l}^{m-1} \left\| 2^{j} f\left(\frac{x}{2^{j}}\right) - 2^{j+1} f\left(\frac{x}{2^{j+1}}\right) \right\|_{Y} \\ &\leq \frac{2+2^{r}}{2^{r}} \sum_{j=l}^{m-1} \frac{2^{j}}{2^{rj}} \theta \|x\|_{X}^{r} \end{aligned}$$
(2.4)

for all nonnegative integers *m* and *l* with m > l and all $x \in X$.

It follows from (2.4) that the sequence $\{2^n f(\frac{x}{2^n})\}$ is a Cauchy sequence for all $x \in X$. Since *Y* is complete, the sequence $\{2^n f(\frac{x}{2^n})\}$ converges. So one can define the mapping $h: X \to Y$ by

$$h(x) := \lim_{n \to \infty} 2^n f(\frac{x}{2^n})$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (2.4), we get (2.2).

$$\begin{split} \|h(x) + h(y) + h(z)\|_{Y} &= \lim_{n \to \infty} 2^{n} \left\| f\left(\frac{x}{2^{n}}\right) + f\left(\frac{y}{2^{n}}\right) + f\left(\frac{z}{2^{n}}\right) \right\|_{Y} \\ &\leq \lim_{n \to \infty} 2^{n} \left\| 2f\left(\frac{x + y + z}{2^{n+1}}\right) \right\|_{Y} + \lim_{n \to \infty} \frac{2^{n}\theta}{2^{nr}} (\|x\|_{X}^{r} + \|y\|_{X}^{r} + \|z\|_{X}^{r}) \\ &= \left\| 2h\left(\frac{x + y + z}{2}\right) \right\|_{Y} \end{split}$$

for all $x, y, z \in X$. So

$$\left\|h(x)+h(y)+h(z)\right\|_{Y}\leq\left\|2h\left(\frac{x+y+z}{2}\right)\right\|_{Y}$$

for all *x*, *y*, $z \in X$. By Proposition 2.1, the mapping $h : X \to Y$ is Cauchy additive.

Now, let $T: X \to Y$ be another Cauchy additive mapping satisfying (2.2). Then we have

$$\begin{split} \left\| h(x) - T(x) \right\|_{Y} &= 2^{n} \left\| h\left(\frac{x}{2^{n}}\right) - T\left(\frac{x}{2^{n}}\right) \right\|_{Y} \\ &\leq 2^{n} \left(\left\| h\left(\frac{x}{2^{n}}\right) - f\left(\frac{x}{2^{n}}\right) \right\|_{Y} + \left\| T\left(\frac{x}{2^{n}}\right) - f\left(\frac{x}{2^{n}}\right) \right\|_{Y} \right) \\ &\leq \frac{2(2^{r} + 2)2^{n}}{(2^{r} - 2)2^{nr}} \theta \left\| x \right\|_{X}^{r}, \end{split}$$

which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that h(x) = T(x) for all $x \in X$. This proves the uniqueness of h. Thus the mapping $h : X \to Y$ is a unique Cauchy additive mapping satisfying (2.2).

Theorem 2.3. Let r < 1 and θ be positive real numbers, and let $f: X \to Y$ be an odd mapping satisfying (2.1). Then there exists a unique Cauchy additive mapping $h: X \to Y$ such that

$$\|f(x) - h(x)\|_{Y} \le \frac{2+2^{r}}{2-2^{r}} \theta \|x\|_{X}^{r}$$
(2.5)

for all $x \in X$.

Proof. It follows from (2.3) that

$$\left\|f(x) - \frac{1}{2}f(2x)\right\|_{Y} \le \frac{2+2^{r}}{2}\theta \|x\|_{X}^{r}$$

for all $x \in X$. Hence

$$\left\|\frac{1}{2^{l}}f(2^{l}x) - \frac{1}{2^{m}}f(2^{m}x)\right\|_{Y} \leq \sum_{j=l}^{m-1} \left\|\frac{1}{2^{j}}f(2^{j}x) - \frac{1}{2^{j+1}}f(2^{j+1}x)\right\|_{Y}$$

$$\leq \frac{2+2^{r}}{2}\sum_{j=l}^{m-1}\frac{2^{rj}}{2^{j}}\theta \|x\|_{X}^{r}$$
(2.6)

for all nonnegative integers *m* and *l* with m > l and all $x \in X$.

It follows from (2.6) that the sequence $\{\frac{1}{2^n}f(2^nx)\}$ is a Cauchy sequence for all $x \in X$. Since *Y* is complete, the sequence $\{\frac{1}{2^n}f(2^nx)\}$ converges. So one can define the mapping $h: X \to Y$ by

$$h(x) := \lim_{n \to \infty} \frac{1}{2^n} f(2^n x)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (2.6), we get (2.5).

The rest of the proof is similar to the proof of Theorem 2.2.

Theorem 2.4. Let $r > \frac{1}{3}$ and θ be nonnegative real numbers, and let $f: X \to Y$ be an odd mapping such that

$$\|f(x) + f(y) + f(z)\|_{Y} \le \|2f\left(\frac{x + y + z}{2}\right)\|_{Y} + \theta \cdot \|x\|_{X}^{r} \cdot \|y\|_{X}^{r} \cdot \|z\|_{X}^{r}$$
(2.7)

for all $x, y, z \in X$. Then there exists a unique Cauchy additive mapping $h : X \to Y$ such that

$$\|f(x) - h(x)\|_{Y} \le \frac{2^{r}\theta}{8^{r} - 2} \|x\|_{X}^{3r}$$
(2.8)

for all $x \in X$.

Proof. Letting y = x and z = -2x in (2.7), we get

$$\left\|2f(x) - f(2x)\right\|_{Y} = \left\|2f(x) + f(-2x)\right\|_{Y} \le 2^{r}\theta \|x\|_{X}^{3r}$$
(2.9)

for all $x \in X$. So

$$\left\|f(x) - 2f\left(\frac{x}{2}\right)\right\|_{Y} \le \frac{2^{r}}{8^{r}}\theta \left\|x\right\|_{X}^{3r}$$

for all $x \in X$. Hence

$$\left\| 2^{l} f\left(\frac{x}{2^{l}}\right) - 2^{m} f\left(\frac{x}{2^{m}}\right) \right\|_{Y} \leq \sum_{j=l}^{m-1} \left\| 2^{j} f\left(\frac{x}{2^{j}}\right) - 2^{j+1} f\left(\frac{x}{2^{j+1}}\right) \right\|_{Y}$$

$$\leq \frac{2^{r}}{8^{r}} \sum_{j=l}^{m-1} \frac{2^{j}}{8^{rj}} \theta \|x\|_{X}^{3r}$$

$$(2.10)$$

for all nonnegative integers *m* and *l* with m > l and all $x \in X$.

It follows from (2.10) that the sequence $\{2^n f(\frac{x}{2^n})\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{2^n f(\frac{x}{2^n})\}$ converges. So one can define the mapping $h: X \to Y$ by

$$h(x) := \lim_{n \to \infty} 2^n f(\frac{x}{2^n})$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (2.10), we get (2.8).

The rest of the proof is similar to the proof of Theorem 2.2.

Theorem 2.5. Let $r < \frac{1}{3}$ and θ be positive real numbers, and let $f: X \to Y$ be an odd mapping satisfying (2.7). Then there exists a unique Cauchy additive mapping $h:X \to Y$ such that

$$\|f(x) - h(x)\|_{Y} \le \frac{2^{r}\theta}{2 - 8^{r}} \|x\|_{X}^{3r}$$
(2.11)

for all $x \in X$. *Proof.* It follows from (2.9) that

$$\left\|f(x) - \frac{1}{2}f(2x)\right\|_{Y} \le \frac{2^{r}}{2}\theta \|x\|_{X}^{3r}$$

for all $x \in X$. Hence

$$\left\|\frac{1}{2^{l}}f(2^{l}x) - \frac{1}{2^{m}}f(2^{m}x)\right\|_{Y} \leq \sum_{j=l}^{m-1} \left\|\frac{1}{2^{j}}f(2^{j}x) - \frac{1}{2^{j+1}}f(2^{j+1}x)\right\|_{Y}$$

$$\leq \frac{2^{r}}{2}\sum_{j=l}^{m-1}\frac{8^{rj}}{2^{j}}\theta \|x\|_{X}^{r}$$
(2.12)

for all nonnegative integers *m* and *l* with m > l and all $x \in X$.

It follows from (2.12) that the sequence $\{\frac{1}{2^n}f(2^nx)\}$ is a Cauchy sequence for all $x \in X$. Since *Y* is complete, the sequence $\{\frac{1}{2^n}f(2^nx)\}$ converges. So one can define the mapping $h: X \to Y$ by

$$h(x) := \lim_{n \to \infty} \frac{1}{2^n} f(2^n x)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (2.12), we get (2.11).

The rest of the proof is similar to the proof of Theorem 2.2.

3 Stability of a functional inequality associated with a 3-variable Cauchy additive functional equation

Proposition 3.1. [18, Proposition 2.2] Let $f: G \to Y$ be a mapping such that

$$||f(x) + f(y) + f(z)||_Y \le ||f(x + y + z)||_Y$$

for all x, y, $z \in G$. Then f is Cauchy additive.

We prove the Hyers-Ulam stability of a functional inequality associated with a Jordan-von Neumann type 3-variable Cauchy additive functional equation.

Theorem 3.2. Let r > 1 and θ be nonnegative real numbers, and let $f: X \to Y$ be an odd mapping such that

$$\|f(x) + f(y) + f(z)\|_{Y} \le \|f(x + y + z)\|_{Y} + \theta(\|x\|_{X}^{r} + \|y\|_{X}^{r} + \|z\|_{X}^{r})$$
(3.1)

for all $x, y, z \in X$. Then there exists a unique Cauchy additive mapping $h : X \to Y$ such that

$$\|f(x) - h(x)\|_{Y} \le \frac{2^{r} + 2}{2^{r} - 2} \theta \|x\|_{X}^{r}$$

for all $x \in X$.

Proof. Letting y = x and z = -2x in (3.1), we get

$$\left\|2f(x) - f(2x)\right\|_{Y} = \left\|2f(x) + f(-2x)\right\|_{Y} \le (2+2^{r})\theta \|x\|_{X}^{r}$$
(3.2)

for all $x \in X$.

The rest of the proof is the same as in the proof of Theorem 2.2.

Theorem 3.3. Let r < 1 and θ be positive real numbers, and let $f: X \to Y$ be an odd mapping satisfying (3.1). Then there exists a unique Cauchy additive mapping $h:X \to Y$ such that

$$||f(x) - h(x)||_Y \le \frac{2+2^r}{2-2^r}\theta ||x||_X^r$$

for all $x \in X$.

Proof. It follows from (3.2) that

$$\left\| f(x) - \frac{1}{2}f(2x) \right\|_{Y} \le \frac{2+2^{r}}{2}\theta \|x\|_{X}^{r}$$

for all $x \in X$.

The rest of the proof is the same as in the proofs of Theorems 2.2 and 2.3.

Theorem 3.4. Let $r > \frac{1}{3}$ and θ be nonnegative real numbers, and let $f: X \to Y$ be an odd mapping such that

$$\|f(x) + f(y) + f(z)\|_{Y} \le \|f(x + y + z)\|_{Y} + \theta \cdot \|x\|_{X}^{r} \cdot \|y\|_{X}^{r} \cdot \|z\|_{X}^{r}$$
(3.3)

for all $x, y, z \in X$. Then there exists a unique Cauchy additive mapping $h : X \to Y$ such that

$$\|f(x) - h(x)\|_{Y} \le \frac{2^{r}\theta}{8^{r} - 2} \|x\|_{X}^{3r}$$

for all $x \in X$.

Proof Letting y = x and z = -2x in (3.3), we get

$$\left\|2f(x) - f(2x)\right\|_{Y} = \left\|2f(x) + f(-2x)\right\|_{Y} \le 2^{r}\theta \|x\|_{X}^{3r}$$
(3.4)

for all $x \in X$.

The rest of the proof is the same as in the proofs of Theorems 2.2 and 2.4.

Theorem 3.5. Let $r < \frac{1}{3}$ and θ be positive real numbers, and let $f: X \to Y$ be an odd mapping satisfying (3.3). Then there exists a unique Cauchy additive mapping $h: X \to Y$ such that

$$\|f(x) - h(x)\|_{Y} \le \frac{2^{r}\theta}{2 - 8^{r}} \|x\|_{X}^{3r}$$

for all $x \in X$. *Proof.* It follows from (3.4) that

$$\left\|f(x) - \frac{1}{2}f(2x)\right\|_{Y} \le \frac{2^{r}}{2}\theta \|x\|_{X}^{3}$$

for all $x \in X$.

The rest of the proof is the same as in the proofs of Theorems 2.2 and 2.5.

4 Stability of a functional inequality associated with the Cauchy-Jensen functional equation

Proposition 4.1. [18, Proposition 2.3] Let $f: G \to Y$ be a mapping such that

$$\|f(x) + f(y) + 2f(z)\|_{Y} \le \|2f(\frac{x+y}{2}+z)\|_{Y}$$

for all $x, y, z \in G$. Then f is Cauchy additive.

We prove the Hyers-Ulam stability of a functional inequality associated with a Jordan-von Neumann type Cauchy-Jensen functional equation.

Theorem 4.2. Let r > 1 and θ be nonnegative real numbers, and let $f: X \to Y$ be an odd mapping such that

$$\left\|f(x) + f(y) + 2f(z)\right\|_{Y} \le \left\|2f\left(\frac{x+y}{2} + z\right)\right\|_{Y} + \theta\left(\|x\|_{X}^{r} + \|y\|_{X}^{r} + \|z\|_{X}^{r}\right)$$
(4.1)

for all x, y, $z \in X$. Then there exists a unique Cauchy additive mapping $h : X \to Y$ such that

$$\|f(x) - h(x)\|_{Y} \le \frac{2^{r} + 1}{2^{r} - 2} \theta \|x\|_{X}^{r}$$

for all $x \in X$.

Proof. Replacing x by 2x and letting y = 0 and z = -x in (4.1), we get

$$\|f(2x) - 2f(x)\|_{Y} = \|f(2x) + 2f(-x)\|_{Y} \le (1 + 2^{r})\theta \|x\|_{X}^{r}$$

$$(4.2)$$

for all $x \in X$. So

$$\left\|f(x) - 2f\left(\frac{x}{2}\right)\right\|_{Y} \le \frac{1 + 2^{r}}{2^{r}}\theta \left\|x\right\|_{X}^{r}$$

for all $x \in X$.

The rest of the proof is similar to the proof of Theorem 2.2.

Theorem 4.3. Let r < 1 and θ be positive real numbers, and let $f: X \to Y$ be an odd mapping satisfying (4.1). Then there exists a unique Cauchy additive mapping $h: X \to Y$ such that

$$||f(x) - h(x)||_{Y} \le \frac{1 + 2^{r}}{2 - 2^{r}} \theta ||x||_{X}^{r}$$

for all $x \in X$.

Proof. It follows from (4.2) that

$$\left\|f(x) - \frac{1}{2}f(2x)\right\|_{Y} \le \frac{1+2^{r}}{2}\theta \,\|x\|_{X}^{r}$$

for all $x \in X$.

The rest of the proof is similar to the proofs of Theorems 2.2 and 2.3.

Author details

¹Department of Mathematics, Hanyang University, Seoul 133-791, Korea ²Department of Mathematics, Daejin University, Kyeonggi 487-711, Korea

Authors' contributions

All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 8 November 2011 Accepted: 28 February 2012 Published: 28 February 2012

References

- 1. Ulam, SM: A Collection of the Mathematical Problems. Interscience Publ, New York (1960)
- Hyers, DH: On the stability of the linear functional equation. Proc Natl Acad Sci USA. 27, 222–224 (1941). doi:10.1073/ pnas.27.4.222
- Rassias, ThM: On the stability of the linear mapping in Banach spaces. Proc Am Math Soc. 72, 297–300 (1978). doi:10.1090/S0002-9939-1978-0507327-1
- Rassias, ThM: Problem 16; 2. report of the 27th international symposium on functional equations. Aequationes Math 39, 292–293 (1990). 309
- 5. Gajda, Z: On stability of additive mappings. Int J Math Math Sci. 14, 431–434 (1991). doi:10.1155/S016117129100056X
- Rassias, ThM, Šemrl, P: On the behaviour of mappings which do not satisfy Hyers-Ulam stability. Proc Am Math Soc. 114, 989–993 (1992). doi:10.1090/S0002-9939-1992-1059634-1
- Czerwik, P: Functional Equations and Inequalities in Several Variables. World Scientific Publishing Company, New Jersey, Hong Kong, Singapore, London (2002)
- 8. Hyers, DH, Isac, G, Rassias, ThM: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998)
- Rassias, JM: On approximation of approximately linear mappings by linear mappings. J Funct Anal. 46, 126–130 (1982). doi:10.1016/0022-1236(82)90048-9
- Găvruta, P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J Math Anal Appl. 184, 431–436 (1994). doi:10.1006/jmaa.1994.1211
- Jun, K, Lee, Y: A generalization of the Hyers-Ulam-Rassias stability of the Pexiderized quadratic equations. J Math Anal Appl. 297, 70–86 (2004). doi:10.1016/j.jmaa.2004.04.009
- 12. Jung, S: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press Inc., Palm Harbor, Florida (2001)
- 13. Park, C: Homomorphisms between Poisson JC*-algebras. Bull Braz Math Soc. 36, 79–97 (2005). doi:10.1007/s00574-005-0029-z
- 14. Gilányi, A: Eine zur parallelogrammgleichung äquivalente ungleichung. Aequationes Math. 62, 303–309 (2001). doi:10.1007/PL00000156
- 15. Rätz, J: On inequalities associated with the Jordan-von Neumann functional equation. Aequa-tiones Math. 66, 191–200 (2003). doi:10.1007/s00010-003-2684-8
- 16. Gilányi, A: On a problem by K. Nikodem Math Inequal Appl. 5, 707–710 (2002)
- 17. Fechner, W: Stability of a functional inequalities associated with the Jordan-von Neumann functional equation. Aequationes Math. **71**, 149–161 (2006). doi:10.1007/s00010-005-2775-9
- Park, C, Cho, Y, Han, M: Functional inequalities associated with Jordan-von Neumann-type additive functional equations. J Inequal Appl 2007 (2007). Article ID 41820, 13

doi:10.1186/1029-242X-2012-47

Cite this article as: Park and Lee: Comment on "Functional inequalities associated with Jordan-von Neumann type additive functional equations". Journal of Inequalities and Applications 2012 2012:47.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com