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Abstract

A central limit theorem is obtained for stationary linear process of the form

Xt =
∑∞

j=0
ajεt−j, where {εi} is strictly stationary sequence of linearly negative

quadrant dependent random variables with Eεi = 0, E|εi|s < ∞ for some s > 2, and∑∞
j=0

∣∣aj∣∣ < ∞ .
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1 Introduction and main results
Lehmann [1] introduced a new definition of negative dependence: negative quadrant

dependent sequence (NQD). A concept stronger than NQD was introduced by

Newman [2] that is said to be linear negative quadrant dependent (LNQD).

Definition 1.1. (Cf. Lehmann [1]). Two random variables X and Y are said to be

negative quadrant dependent (NQD, in short) if for any x, y Î ℝ,

P(X < x,Y < y) ≤ P(X < x)P(Y < y). (1:1)

A sequence {Xn}nÎN of random variables is said to be pairwise NQD, if Xi and Xj are

NQD for all i, j Î N+ and i ≠ j.

Definition 1.2. (Cf. Newman [2]). A sequence {Xn}nÎN of random variables is said to

be linearly negative quadrant dependent (LNQD, in short) if for any disjoint subsets

A, B Î ℤ+ and positive r′j s,∑
i∈A

riXi and
∑
j∈B

rjXj are NQD. (1:2)

Remark 1.3. It is easily seen that if {Xn}nÎN is a sequence of LNQD random vari-

ables, then {aXn + b}nÎN is still a sequence of LNQD random variables, where a and b

are real numbers.

Example 1. Consider three discrete random variables with joint density, P(x, y, z) =

P(X1 = x, X2 = y, X3 = z) with P(1, 3, 1) = P(2, 3, 1) = P(3, 2, 1) = P(3, 3, 1) = 1/11,

P(3, 3, 2) = 7/11. We could show that (X1, X2, X3) is LNQD sequence.
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Note that some applications for LNQD sequence have been found. See for example,

Newman [2] established the central limit theorem for a strictly stationary LNQD

process. Wang and Zhang [3] provided uniform rates of convergence in the central

limit theorem for LNQD sequence. Ko and Choi [4] obtained the Hoeffding-type

inequality for LNQD sequence. Fu and Wu [5] studied the almost sure central limit

theorem for LNQD sequences, and so forth.

The aim of this article is to establish a central limit theorem for stationary linear

process generated by LNQD random variables.

Let {Xn}nÎN be a stationary process of the form below defined on a probability space

(Ω, F , P)

Xt =
∞∑
j=0

ajεt−j, (1:3)

where {aj} is a sequence of real numbers with
∑∞

j=0

∣∣aj∣∣ < ∞ and {εi} is a strictly sta-

tionary sequence such that Eεi = 0, Eε2i < ∞.

The linear processes are of special importance in time series analysis and they arise

in wide variety of concepts (see, e.g., Hannan [[6], Chap. 6]). Applications to econom-

ics, engineering, and physical science are extremely broad and a vast amount of litera-

ture is devoted to the study of the theorems for linear processes under various

conditions on εt. For the linear processes, Fakhre-Zakeri and Lee [7] and Fakhre-Zakeri

and Farshidi [8] established CLT under the i.i.d. assumption on εt and Fakhre-Zakeri

and Lee [9] proved a FCLT under the strong mixing condition on εt. After Birkel [10]

gave Lemma 3 which could be used to prove an inequality the same as the form of

Doob’s maximal inequality, Kim and Baek [11] obtained a central limit theorem for

stationary linear processes generated by linearly positively quadrant dependent process.

Peligrad and Utev [12] established the central limit theorem for linear processes with

dependent innovations including martingales and mixingale.

Let Sn =
∑∞

j=0 Xj, τ 2 = σ 2 ∑∞
j=0 (aj)

2. Define for n ≥ 1 the stochastic process

ξn(u) = n−1/2τ−1S[nu], u ∈ [0, 1], (1:4)

where [x] is the greatest integer not exceeding x.

Since LNQD is much weaker than NA, and NA is much weaker than independent

case, studying the central limit theorems for LNQD fields is of interest. In this article,

we establish a CLT (FCLT) for strictly stationary linear process of the form (1.4), gen-

erated by an LNQD sequence {εi}. More precisely, we will prove the following

theorems.

Theorem 1.4. Let {Xt} be a stationary linear process of the form (1.3), where {aj} is a

sequence of constants with
∑∞

j=0

∣∣aj∣∣ < ∞ and {εi} is a strictly stationary LNQD

sequence with Eεi = 0. Assume

0 < σ 2 = Eε21 + 2
∞∑
i=2

E(ε1εi) < ∞, (1:5)

E|εi|s < ∞ for some s > 2. (1:6)
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Then the linear process {Xt} fulfills the CLT.

Example 2. Let Xt =
∑∞

j=0

∣∣aj∣∣ εt−j be a strictly stationary linear process generated by

LNQD sequence, where εt is a strictly stationary LNQD sequence random variables with

Eεt = 0 and E|εt|
s < ∞ for some s > 2 satisfying (1.5) and (1.6). Here we suppose that the

linear operators aj are geometrically bounded, in the sense that there exist real constants

b > 0 and 0 <r < 1 such that aj ≤ brj for all j > 0. Then this process satisfies Theorem 1.4.

Theorem 1.5. Let {Xt} be a stationary linear process of the form (1.3), defined in The-

orem 14. If (1.5) and (1.6) are fulfilled, then the process {ξn} satisfies the FCLT; that is,

the process {ξn} converges weakly to Wiener measure W on the space of all functions on

[0,1], which have left-hand limits and are continuous from the right.

2 Proofs
The following lemma is needed to prove Theorems 1.4 and 1.5 and it is established by

modifying the proof of Lemma 3 in Fakhre-Zakeri and Lee [9]. Doob’s maximal

inequality has played an important role in their proof. However, in our case, Doob’s

maximal inequality cannot be used, instead the inequality E(max1≤k≤n |ε1 + ... + εk|
r) ≤

Bnr/2 for r > 2 and B as in Lemma 2.2 will be used.

Lemma 2.1. Let {εi} be a strictly stationary LNQD sequence with mean zero and

0 < Eε2i < ∞. Let Xt =
∑∞

j=0
ajεt−j, Sk =

∑k

t=1
Xt, X̃t =

(∑∞
j=0

aj

)
εt, and let

S̃k =
∑k

t=1 X̃t, where {aj} is a sequence of real numbers with
∑∞

j=0

∣∣aj∣∣ < ∞ . If (1.5) and

(1.6) are fulfilled, then

(n−1/2) max
1≤k≤n

∣∣∣S̃k − Sk
∣∣∣ P→ 0. (2:1)

We close this section by introducing a maximal inequality which is needed to prove

Lemma 2.1.

Lemma 2.2. Let {εt} be a strictly stationary LNQD sequence with mean zero and

0 < Eε2i < ∞. Assume that (1.6) and (1.7) hold. Then there exist r > 2 and a constant

B not depending on n such that for n ≥ 1

E
(
max
1≤k≤n

|ε1 + · · · + εk|r
)

≤ Bnr/2. (2:2)

According to Lemma 3.4 of Zhang [13], we can easily obtain the result.

Proof of Lemma 2.1. As in the proof of Lemma 3 of Fakhre-Zakeri and Lee [9], we have

S̃k =
k∑
t=1

⎛
⎝ k−t∑

j=0

aj

⎞
⎠ εt +

k∑
t=1

⎛
⎝ k−t∑

j=k−t+1

aj

⎞
⎠ εt

=
k∑
t=1

⎛
⎝ t−1∑

j=0

ajεt−j

⎞
⎠ +

k∑
t=1

⎛
⎝ k−t∑

j=k−t+1

aj

⎞
⎠ εt.

(2:3)

Thus

S̃k − Sk = −
k∑
t=1

⎛
⎝ ∞∑

j=t

ajεt−j

⎞
⎠ +

k∑
t=1

⎛
⎝ k−t∑

j=k−t+1

aj

⎞
⎠ εt

:= I + II.

(2:4)
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It suffices to prove

(n−1/2) max
1≤k≤n

|I| P→ 0, (2:5)

and

(n−1/2) max
1≤k≤n

|II| P→0. (2:6)

First, by Minkowski’s inequality and Lemma 2.2 we have for r > 2

n−r/2E max
1≤k≤n

∣∣∣∣∣∣
k∑
t=1

∞∑
j=t

ajεt−j

∣∣∣∣∣∣
r

= n−r/2E max
1≤k≤n

∣∣∣∣∣∣
∞∑
j=1

j∧k∑
t=1

ajεt−j

∣∣∣∣∣∣
r

≤ n−r/2

⎛
⎜⎝ ∞∑

j=1

∣∣aj∣∣
⎧⎨
⎩E max

1≤k≤n

∣∣∣∣∣∣
j∧k∑
t=1

ajεt−j

∣∣∣∣∣∣
r⎫⎬
⎭

1/r
⎞
⎟⎠

r

≤ n−r/2

⎛
⎝ ∞∑

j=1

∣∣aj∣∣B1/r(j ∧ n)1/2

⎞
⎠

r

= n−r/2

⎛
⎝ ∞∑

j=1

∣∣aj∣∣B1/r(j ∧ n)1/2

⎞
⎠

r

=

⎛
⎝ ∞∑

j=1

∣∣aj∣∣B1/r((j ∧ n)/n)1/2

⎞
⎠

r

= o(1).

(2:7)

Hence (2.5) is proved by the Markov inequality. To prove (2.6), write II = IIk1 + IIk2,

where IIk1 = a1εk + a2(εk + εk-1) + ... + ak(εk + ... + ε1) and IIk2 = (ak+1 + ak+2 + ... )

(εk + ... + ε1), and let {pn} be a sequence of positive integers such that

pn → ∞ and pn/n → 0 as n → ∞. (2:8)

Then

n−1/2 max
1≤k≤n

|IIk2| ≤
⎛
⎝ ∞∑

j=1

∣∣aj∣∣
⎞
⎠ n−1/2 max

1≤k≤pn
|εk + · · · + ε1|

+

⎛
⎝∑

j>pn

∣∣aj∣∣
⎞
⎠ n−1/2 max

1≤k≤pn
|εk + · · · + ε1|

:= III + IV.

(2:9)

It follows from (2.2), (2.8), that for r > 2 and a constant B1,⎛
⎝ ∞∑

j=1

∣∣aj∣∣
⎞
⎠

r

n−r/2 max
1≤k≤pn

|εk + · · · + ε1|r

≤
⎛
⎝ ∞∑

j=1

∣∣aj∣∣
⎞
⎠

r

B1(pn/n)r/2 = o(1).

(2:10)
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and thus III
P→ 0 by the Markov inequality. Similarly, by assumption

∑∞
j=1

∣∣aj∣∣ < ∞
for r > 2 and a constant B2,

⎛
⎝∑

j>pn

∣∣aj∣∣
⎞
⎠

r

n−r/2 max
1≤k≤pn

|εk + · · · + ε1|r

≤
⎛
⎝∑

j>pn

∣∣aj∣∣
⎞
⎠

r

B2 = o(1).

(2:11)

and thus IV
P→0 by the Markov inequality. Hence, n−1/2max1≤k≤n |IIk2| P→ 0. It

remains to show that Ln = n−1/2max1≤k≤n |IIk1| P→ 0. For each m ≥ 1, define IIk1,m =

b1εk + b2(εk + εk-1) + ... + bk(εk + ... + ε1), where bk = ak for k ≤ n and bk = 0 otherwise,

and let Ln,m = n-1/2 max1≤k≤n |IIk1,m|. Then

Ln,m ≤ n−1/2(|a1| + · · · + |am|)(|ε1| + · · · + |εm|) P→0 as n → ∞. (2:12)

for each m, and

∣∣Ln,m − Ln
∣∣ ≤ n−1/2 max

1≤k≤n

∣∣∣∣∣
k∑
i=1

(ai − bi)(εk + · · · + εk−i+1)

∣∣∣∣∣ . (2:13)

Since

∣∣∣∣∣
k∑
i=1

(ai − bi)(εk + · · · + εk−i+1)

∣∣∣∣∣ =
⎧⎪⎨
⎪⎩
0, k ≤ m,∣∣∣∣∣

k∑
i=m+1

ai(εk + · · · + εk−i+1)

∣∣∣∣∣ , otherwise, (2:14)

the right-hand side of (2.13) is

≤ n−1/2 max
m<k≤n

(
k∑

i=m+1

|ai| |εk + · · · + εk−i+1|
)

≤ n−1/2 max
m<k≤n

k∑
i=m+1

|ai| max
m<i≤k

|εk + · · · + εk−i+1|

≤ n−1/2
∑
i>m

|ai| max
m<k≤n

max
m<i≤k

(|εi + · · · + εk| + |ε1 + · · · + εk−i|)

≤ n−1/2
∑
i>m

|ai|
(
max
m<k≤n

|ε1 + · · · + εk| + max
m<k≤n

max
m<i≤k

|ε1 + · · · + εk−i|
)

≤ n−1/2
∑
i>m

|ai|
(
max
1≤j≤n

∣∣ε1 + · · · + εj
∣∣ + max

1≤j≤n

∣∣ε1 + · · · + εj
∣∣)

= 2n−1/2
∑
i>m

|ai| max
1≤j≤n

∣∣ε1 + · · · + εj
∣∣.

(2:15)

Therefore, it follows from (2.2), (2.12), (2.13) and the Markov inequality that for any

δ > 0,
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lim
m→∞ lim

n→∞ sup P(
∣∣Ln,m − Ln

∣∣ > δ)

≤ lim
m→∞ 2rδ−r

⎛
⎝∑

j>m

∣∣aj∣∣
⎞
⎠

r

lim
n→∞ sup n−r/2E max

1≤j≤n

∣∣ε1 + · · · + εj
∣∣r

≤ B lim
m→∞ 2rδ−r

⎛
⎝∑

j>m

∣∣aj∣∣
⎞
⎠

r

= 0.

(2:16)

In view of (2.16) and (2.15), it follows from Theorem 4.2 Billingsley [[14], p. 25].

Proof of Theorem 1.4. As in Lemma 2.1, set X̃t = (
∑∞

j=0
aj)εt, and

S̃n =
∑n

t=1 X̃t = (
∑∞

j=0 aj)
∑n

t=1 εt. Then by (1.4), we have

EX̃2
t + 2

∞∑
t=2

E(X̃1X̃t) =

⎛
⎝ ∞∑

j=0

aj

⎞
⎠

2

Eε21 + 2

⎛
⎝ ∞∑

j=0

aj

⎞
⎠

2 ∞∑
t=2

E(ε1εt)

=

⎛
⎝ ∞∑

j=0

aj

⎞
⎠

2

σ 2 = τ 2 < ∞.

(2:17)

Since X̃′
ts form a stationary LNQD sequence, {X̃t}t∈N satisfies the CLT by Theorem 12

of Newman [2]; that is,

n−1/2S̃n
D→N(0, τ 2). (2:18)

According to Lemma 2.1, we also have

n−1/2
∣∣∣S̃n − Sn

∣∣∣ P→0. (2:19)

Hence from (2.18) and (2.19) the desired conclusion follows.

Proof of Theorem 1.5. Note that {X̃t} is a stationary LNQD process and that,

E
∣∣∣X̃t

∣∣∣s = E

∣∣∣∣∣∣
⎛
⎝ ∞∑

j=0

aj

⎞
⎠ εt

∣∣∣∣∣∣
s

=

∣∣∣∣∣∣
∞∑
j=0

aj

∣∣∣∣∣∣
s

E|εt|s ≤
⎛
⎝ ∞∑

j=0

∣∣aj∣∣
⎞
⎠

s

E|εt|s. (2:20)

Thus it follows from Lemma 2.2 and (2.20), that {X̃t} satisfies the conditions of Cor-

ollary 2 of Birkel [10]. This implies that Theorem 1.5 holds for the sequence {ξ̃n},

where we define ξ̃n as in (1.4), with S̃r replacing Sr. By Lemma 2.1,
∣∣∣ξ̃n(u) − ξn(u)

∣∣∣ P→0

for all 0 ≤ u ≤ 1. Hence, the desired conclusion follows.
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