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1. Introduction
It is well known that multilinear theory plays an important role in harmonic analysis

and mathematicians pay much attention to it, see [1,2] for more details. In 1992, Gra-

fakos [1] first proved that the multilinear fractional operator Imβ (�f )(x) is bounded from

Lp1 × · · · × Lpm spaces to Lr space with 1/r + a/n = 1/s, where 1/s = 1/pl + ··· + 1/pm

and s satisfies n/(n + a) ≤ s <n/a with multilinear fractional Imβ (�f )(x) defined as follow-

ing:

Imβ (�f )(x) =
∫
Rn

1∣∣y∣∣n−β

m∏
i=1

fi(x − θiy)dy, (1:1)

for fixed nonzero real numbers θi(i = 1, ..., m) and 0 <b <n.

Later, Ding and Lu [3] improved Grafakos’s results to the case when Imβ (�f )(x) has a
rough kernel Ω0(x) with Ω0(x) Î Lr(Sn-1) and

Imβ,�0
(�f )(x) =

∫
Rn

�0(y)∣∣y∣∣n−β

m∏
i=1

fi(x − θiy)dy, (1:2)

Ding and Lu proved that Imβ,�0
(�f )(x) is bounded from Lp1 × · · · × Lpk spaces to Lq

spaces with 1/p1 + ...... + 1/pk - 1/q = b/n. Obviously, Ding and Lu’s results improved

the main results in [1].

In 1999, Kenig and Stein [2] studied a new kind of multilinear fractional integral

associated with the bilinear fractional integrals operators, they defined the (k + 1)-lin-

ear fractional integrals as following,
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Iα,A
(
f1, ..., fk+1

)
(x) =

∫
(Rn)k

f1
(
�1

(
y1, ..., yk, x

))

· · · fk+1
(
�k+1

(
y1, ..., yk, x

)) dy1, ..., dyk∣∣(y1, ..., yk)∣∣nk−α
, 0 < α < kn,

where for a fixed k Î N and 1 ≤ i, j ≤ k + 1, a linear mapping ℓj : R
n(k+1) ® Rn, 1 ≤ j

≤ k + 1 is defined by

�j (x1..., xk, x) = A1jx1 + · · · + Akjxk + Ak+1,jx. (1:3)

Here, Aij is an n × n matrix and a (k + 1)n × (k + 1)n matrix A = (Aij) (i = 1, ..., k +

1, j = 1, ..., k + 1,) satisfies the following assumptions:

(I) For each 1 ≤ j ≤ k + 1, Ak+1,i is an invertible n × n matrix.

(II) A is an invertible (k + 1)n × (k + 1)n matrix.

(III) For each j0, 1 ≤ j0 ≤ k + 1, consider the kn × kn matrix Aj0 =
(
Aj0

)
�m, where

(
Aj0

)
�m =

{
A�,m 1 ≤ � ≤ k, 1 ≤ m ≤ k,m < j0
A�,m+1 1 ≤ � ≤ k, 1 ≤ m ≤ k,m < j0.

.

Obviously, when k = 1 and A11 = I, A21 = I, A12 = -I, A22 = I, Ia,A (f1, f2)(x) becomes

the classical bilinear fractional integral, that is

Iα,A
(
f1, f2

)
(x) = Bα

(
f1, f2

)
(x) =

∫
Rn

f1(x + t)f2(x − t)
dt

|t|n−α
. (1:4)

In [2], Kenig and Stein proved that Ba(f1, f2)(x) is bounded from Lp1 × Lp2 to Lq with

1/p1 + 1/p2-1/q = a/n for 1 ≤ p1, p2 ≤ ∞. Later, Ding and Lin [4] considered the fol-

lowing bilinear fractional integral with a rough kernel,

Bα,�0

(
f1, f2

)
(x) =

∫
Rn

f1(x + t)f2(x − t)�0(t)
dt

|t|n−α
,

where Ω0(y’) is a rough kernel belongs to Ls(Sn-1)(s > 1) without any smoothness on

the unit sphere.

Ding and Lin proved the following theorem,

Theorem A ([4])

Assume that 0 < α < n, 1 < s′ < n
α, 1/p1 + 1/p2 - a/n, 1/q = 1/p1 + 1/p2 - a/n, and

that s < min{p1, p2}, then for 1 ≤ p1, p2 ≤ ∞, we have∥∥Bα,�0

(
f1, f2

)∥∥
Lq ≤ C

∥∥f1∥∥Lp1 ∥∥f2∥∥Lp2 .
For the research of partial differential equation, mathematicians pay much attention

to the singular integral (or fractional integral) with a variable kernel Ω(x, y), see [5,6]

for more details. A function Ω(x, y) is said to be belonged to L∞(Rn) × Lq(Sn-1) if the

function Ω(x, y) satisfies the following conditions:

(i) Ω(x, lz) = Ω(x, z) for any x, z ÎRn and l > 0.

(ii) ‖�‖L∞ (Rn)×Lq(Sn−1) = sup
x∈Rn

(∫
Sn−1

∣∣�(x, z′)
∣∣qdσ (

z′
))1/q

< ∞.
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Recently, Chen and Fan [7] considered the following bilinear fractional integral with

a variable kernel,

Bα,�
(
f1, f2

)
(x) =

∫
Rn

f1(x + t)f2(x − t)
�(x, t)
|t|n−α

dt, (1:5)

they proved the following result,

Theorem B([7])

Let 1/p = 1/p1 + 1/p2 - a/n and Ω(x, y) Î L∞(Rn) × Ls(Sn-1) with s’ < min{p1, p2} and

s > n
n−α, then∥∥Bα,�

(
f1, f2

)∥∥
Lp ≤ C

∥∥f1∥∥Lp1 ∥∥f2∥∥Lp2 .
Obviously, Chen and Fan’s result improved the main results in [4] and the method

they used is different from [4].

In this article, we will consider the (k + 1)-linear fractional integral with a multiple

variable kernel �
(
x, �y). Before state the main results in this article, we first introduce a

multiple variable function �
(
x, �y) ∈ L∞(Rn) × Lr

(
Snk−1

)
satisfying the following

conditions:

(i) �
(
x,λ�y) = �

(
x, �y) for any l > 0.

(ii) ‖�‖L∞ (Rn)×Lr(Snk−1) = sup
x∈Rn

(∫
Snk−1

∣∣�(x, �y′)∣∣rdσ (�y′)) < ∞..

Now, we define the (k + 1)-linear fractional integral with a multiple variable kernel

�(x, �y) ∈ L∞(Rn) × Lr
(
Snk−1

)
as following:

I�α,A
(
f1, ..., fk+1

)
(x) =

∫
(Rn)k

f1
(
�1

(
y1, ..., yk, x

))

· · · fk+1
(
�k+1

(
y1, ..., yk, x

)) �(x, �y)∣∣(y1, ..., yk)∣∣nk−α
, dy1, ..., dyk,

where the linear mapping ℓj is defined as in (1.3) and the corresponding matrix A

satisfies the assumptions (I), (II) and (III). What’s more, we assume that for each 1 ≤ j0
≤ k + 1, Aj0 is an invertible kn × kn matrix.

Our main results are as following,

Theorem 1.1.

Assume that (I), (II) and (III) hold, if �(x, �y) ∈ L∞(Rn) × Lr
(
Snk−1

)
for r > nk

nk−α
and

0 <a <kn, then

∥∥I�α,A (
f1, ..., fk+1

)∥∥
Lp.∞ ≤ C

k+1∏
i=1

∥∥fi∥∥Lr′
with 1/p = (k + 1)/r’ - a/n.
Theorem 1.2.

Assume that (I), (II) and (III) hold, if �(x, �y) ∈ L∞(Rn) × Lr
(
Snk−1

)
for r’ < min{p1,

..., pk+1}, r > nk
nk−α

and 0 <a <kn, then
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∥∥I�α,A (
f1, ..., fk+1

)∥∥
Lq ≤ C

k+1∏
i=1

∥∥fi∥∥Lpi
with 1/q = 1/p1 + ...... + 1/pk+1 - a/n.
Remark 1.3.

As far as we know, our results are also new even in the case that if we replace �(x, �y)
by �0(�y) ∈ Lr

(
Snk−1

)
.

Remark 1.4.

Obviously, our results improved the main results in [2,4,7].

2. Proof of Theorem 1.1
In this section, we will give the proof of Theorem 1.1. First we introduce some defini-

tions and lemmas that will be used throughout this article.

Denote

MA,s
(
f1, ..., fk+1

)
(x) =

∫
2−s≤|(y1,...,yk)|≤2−s+1

�
(
x, �y) f1 (

�1
(
y1, ..., yk, x

))
...

fk+1
(
�k+1

(
y1, ..., yk, x

))
d�y,

thus we have the following conclusion.

Lemma 2.1.

Let �(x, �y) be as in Theorem 1.1 and assume (I), (II) and (III) hold, then

∥∥M�
A,s

(
f1, ..., fk+1

)∥∥
L

r′
k+1

≤ C‖�‖L∞(Rn)×Lr(Snk−1)2
−nks

k+1∏
i=1

∥∥fi∥∥Lr′ .
Proof. By Hölder’s inequality, we have

M�
A,s

(
f1, ..., fk+1

)
(x) ≤ C

⎛
⎜⎝ ∫
2−s≤|(y1,...,yk)|≤2−s+1

∣∣�(x, �y)∣∣rd�y
⎞
⎟⎠

1/r

×

⎛
⎜⎝ ∫
2−s≤|(y1,...,yk)|≤2−s+1

∣∣f1 (
�1

(
y1, ..., yk, x

)) · · · fk+1
(
�k+1

(
y1, ..., yk, x

))∣∣r′d�y
⎞
⎟⎠

1/r′

≤ C2
−nks
r ‖�‖L∞(Rn)×Lr(Snk−1)

×

⎛
⎜⎝ ∫
2−s≤|(y1,...,yk)|≤2−s+1

∣∣f1 (
�1

(
y1, ..., yk, x

)) · · · fk+1
(
�k+1

(
y1, ..., yk, x

))∣∣r′d�y
⎞
⎟⎠

1/r′

Then by the estimate in page 8 of [2], we have

∥∥M�
A,s

(
f1, ..., fk+1

)∥∥
L

r′
k+1

≤ C2
−nks
r ‖�‖L∞(Rn)×Lr(Snk−1)

×

⎛
⎜⎜⎜⎝

∫
Rn

∣∣∣∣∣∣∣
∫

2−s≤|(y1,...,yk)|≤2−s+1

∣∣f1 (
�1

(
y1, ..., yk, x

)) · · · fk+1
(
�k+1

(
y1, ..., yk, x

))∣∣r′dy
∣∣∣∣∣∣∣

1
k+1

dx

⎞
⎟⎟⎟⎠

k+1
r′

≤ C‖�‖L∞(Rn)×Lr(Snk−1)2
−nks
r′

k+1∏
i=1

∥∥fi∥∥Lr′
≤ C‖�‖L∞(Rn)×Lr(Snk−1)2

−kns
k+1∏
i=1

∥∥fi∥∥Lr′ .
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So far, the proof of Lemma 2.1 has been finished.

Lemma 2.2.

Under the same conditions as in Theorem 1.1, for

Iα,�
(�f

)
(x) =

∫
Rnk

�(x, �y)∣∣(y1, ..., yk)∣∣kn−α
f1(x − y1) · · · fk(x − yk)d�y,

with �(x, �y) ∈ L∞(Rn) × Lr
(
Snk−1

)
for 1 < r′ < kn

α
and 0 <a <kn.

Let 1/s = 1/r1 + ...... 1/rk -a/n > 0 with 1 ≤ ri ≤ ∞, then,

(i) if each ri >r’, then there exists a constant C such that

∥∥∥Iα,� (�f
)∥∥∥

Ls
≤ C

k∏
i=1

∥∥fi∥∥Lri ,

(ii) if ri = r’ for some i, then there exists a constant C such that

∥∥∥Iα,� (�f
)∥∥∥

Ls,∞
≤ C

k∏
i=1

∥∥fi∥∥Lri .
Proof. In [8], Lemma 2.2 was proved in the case �

(
x, �y) = �0

(�y) ∈ Lr
(
Snk−1

)
. When

consider the case if the multiple kernel function is a multiple variable kernel, by the

similar argument as in [3,8], we can prove Lemma 2.2. Here we state the main steps to

prove Lemma 2.2 for the completeness of this article.

First, we introduce the multilinear fractional maximal function Mα

(�f
)
(x) and mul-

tilinear fractional maximal function with a multiple variable kernel M�,α

(�f
)
(x),

respectively.

Mα

(�f
)
(x) = sup

r>0

1
rkn−α

∫
|�y|<r

k∏
i=1

∣∣fi(x − yi)
∣∣ d�y.

M�,α

(�f
)
(x) = sup

r>0

1
rkn−α

∫
|�y|<r

�(x, �y)
k∏
i=1

∣∣fi(x − yi)
∣∣ d�y.

By Hölder’s inequality, we can easily get the boundedness of Mα

(�f
)
(x) on product

Lp spaces and the following fact is also obvious by a simple computation,

M�,α

(�f
)
(x) ≤ C‖�‖L∞(Rn)×Lr(Snk−1)

[
Mαs′

(∣∣f1∣∣s′ , ∣∣f2∣∣s′ , ..., ∣∣fk∣∣s′) (x)
]1/s′

which implies the boundedness of M�,α

(�f
)
(x) on product Lp spaces.

Then by a classical augment as in [3,8], we have the following point estimate for∣∣∣Iα,� (�f
)
(x)

∣∣∣ ≤ C
[
M�,α+ε

(�f
)
(x)

] 1
2
[
M�,α−ε

(�f
)
(x)

] 1
2 ,,

Zhang et al. Journal of Inequalities and Applications 2012, 2012:42
http://www.journalofinequalitiesandapplications.com/content/2012/1/42

Page 5 of 9



∣∣∣Iα,� (�f
)
(x)

∣∣∣ ≤ C
[
M�,α+ε

(�f
)
(x)

] 1
2
[
M�,α−ε

(�f
)
(x)

] 1
2 , (2:1)

So, by inequality (2.1) and the boundedness of M�,α

(�f
)
(x) on product Lp spaces, we

get Lemma 2.2 easily.

To finish the proof of Theorem 1.1, we define

F�
A,s

(
f1, ..., fk+1

)
(x) =

∫
2−s≤|(y1,...,yk)|≤2−s+1

�(x, �y)∣∣(y1, ..., yk)∣∣nk f1
(
�1

(
y1, ..., yk, x

)) · · ·

fk+1
(
�k+1

(
y1, ..., yk, x

))
d�y.

Then, we have

I�α,A
(
f1, ..., fk+1

)
(x) ≤ H(x) + G(x)

with H(x) =
∑
s≥s0

2−sαF�
A,s(x) and

G(x) =
∫

|(y1,...,yk)|≥2−s0

�(x, �y)∣∣(y1, ..., yk)∣∣nk−α

f1
(
�1

(
y1, ..., yk, x

)) · · · fk+1
(
�k+1

(
y1, ..., yk, x

))
d�y.

For r > kn
kn−α

, we have

G(x) =
∫

|(y1,...,yk)|≥2−s0

�(x, �y)∣∣(y1, ..., yk)∣∣nk−α
f1

(
�1

(
y1, ..., yk, x

)) · · · fk+1
(
�k+1

(
y1, ..., yk, x

))
d�y

≤ C

⎛
⎜⎝ ∫
|(y1,...,yk)|≥2−s0

∣∣�(x, �y)∣∣r∣∣(y1, ..., yk)∣∣(nk−α)r
d�y

⎞
⎟⎠

1/r

×
⎛
⎝∫
Rnk

∣∣f1 (
�1

(
y1, ..., yk, x

)) · · · fk+1
(
�k+1

(
y1, ..., yk, x

))∣∣r′d�y
⎞
⎠

1/r′

≤ 2
s0

[
(kn−α)− kn

r

]⎛
⎝∫
Rnk

∣∣f1 (
�1

(
y1, ..., yk, x

)) · · · fk+1
(
�k+1

(
y1, ..., yk, x

))∣∣r′d�y
⎞
⎠

1/r′

Now using the linear change of variables as in page 14 of [2], that is for each 1 ≤ j ≤

k + 1, we define fj
(
�j

(
y1, ..., yk, x

))
= f ′

j

(
A−1
k+1,j�j(x)

)
= f ′

j

(
x −

k∑
i=1

A′
ijxi

)
= f ′

j (x − yj)

with A′
ij = −A−1

k+1,jAij and yj =
k∑
i=1

A′
ijxi we have

‖G‖Lr′ ≤ 2
s0

[
(kn−α)− kn

r

]
k+1∏
i=1

∥∥fi∥∥Lr′
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For the estimate of H(x), first by Lemma 2.1, we have

∥∥F�
A,s

(
f1, ..., fk+1

)∥∥
L

r′
k+1

≤ C‖�‖L∞(Rn)×Lr(Snk−1)

k+1∏
i=1

∥∥fi∥∥Lr′ .
So when r′

k+1 ≤ 1, we get

‖H‖
r′
k+1

L
r′
k+1

≤ C
∑
s≥s0

2− r′
k+1 sα

∥∥F�
A,s

∥∥ r′
k+1

L
r′
k+1

≤ C2− r′
k+1 s0α

m∏
i=1

∥∥fi∥∥ r′
k+1
Lr′

When r′
k+1 > 1, we can easily get

‖H‖
L

r′
k+1

≤ C
∑
s≥s0

2−sα
∥∥F�

A,s

∥∥
L

r′
k+1

≤ C2−s0α
m∏
i=1

∥∥fi∥∥Lr′ .
Combine the estimate above can we easily get

‖H‖
L

r′
k+1

≤ 2−s0α
k+1∏
i=1

∥∥fi∥∥Lr′ .
By the above estimates, we have∣∣{I�α,A (

f1, ..., fk+1
)
(x) > λ

}∣∣
≤

∣∣∣∣
{
x ∈ Rn : H(x) >

λ

2

}∣∣∣∣ +
∣∣∣∣
{
x ∈ Rn : G(x) >

λ

2

}∣∣∣∣

≤ ‖G‖r′
Lr′

λr′ +

‖H‖
r′
k+1

L
r′
k+1

λ
r′
k+1

≤ 2
s0

(
kn−α− kn

r

)
r′

λr′

k+1∏
i=1

∥∥fi∥∥r′

Lr′ +
2−s0α

r′
k+1

λ
r′
k+1

k+1∏
i=1

∥∥fi∥∥ r′
k+1
Lr′ .

Now we may assume that
∥∥fi∥∥Lr′ = 1 for i = 1,..., k +1, and choose s0 =

k
k+1 log2λ
kn
r′ − αk

k+1

,, we

get

∣∣{x ∈ Rn : I�α,A
(
f1, ..., fk+1

)
(x) > λ

}∣∣ ≤ C
λp

,

with 1/p =
k + 1
r′

− α

n
.

So far, the proof of Theorem 1.1 has been finished.

3. Proof of Theorem 1.2
For any p1 that is larger than and sufficiently close to r’, by the proof of Theorem 1.1,

we get
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∥∥I�α,A (
f1, ..., fk+1

)∥∥
Lq1,∞ ≤ C

∥∥f1∥∥Lp1 · · · ∥∥fk∥∥Lp1 ∥∥fk+1∥∥Lp1
with 1/q1 = (k + 1)/p1 - a/n. On the other hand, by Lemma 2.2 and the same linear

change of variables as in Section 2, we have∥∥I�α,A (
f1, ..., fk+1

)∥∥
Lq2 ≤ C

∥∥f1∥∥Lp1 · · · ∥∥fk∥∥Lp1

∥∥fk+1∥∥L∞

with 1/q2 = k/p1 - a/n.
Then by interpolation, we have∥∥I�α,A (

f1, ..., fk+1
)∥∥

Lq3,∞ ≤ C
∥∥f1∥∥Lp1 · · · ∥∥fk∥∥Lp1 ∥∥fk+1∥∥Lpk+1

with 1/q3 = k/p1 + 1/pk+1 - a/n and p1 ≤ pk+1.

Again, by Lemma 2.2 and the same linear change of variables as in Section 2, we

have ∥∥I�α,A (
f1, ..., fk+1

)∥∥
Lq4 ≤ C

∥∥f1∥∥Lp1 · · · ∥∥fk−1
∥∥
Lp1

∥∥fk∥∥L∞
∥∥fk+1∥∥Lpk+1

with 1/q4 = (k - 1)/p1 + 1/pk+1 - a/n
Then by interpolation, we have,∥∥I�α,A (

f1, ..., fk+1
)∥∥

Lq5,∞ ≤ C
∥∥f1∥∥Lp1 · · · ∥∥fk−1

∥∥
Lp1

∥∥fk∥∥Lpk ∥∥fk+1∥∥Lpk+1
with 1/q5 = (k- 1)/p1 + 1/pk + 1/pk+1 - a/n and p1 ≤ min{pk, pk+1}.

Again using the above methods can we easily get

∥∥I�α,A (
f1, ..., fk+1

)∥∥
Lq,∞ ≤ C

k+1∏
i=1

∥∥fi∥∥Lpi

for any p1 ≤ min{p2,... ,pk+1} with 1/q = 1/p1 + · · · 1/pk+1 - a/n.
Similarly, for any pi(1 ≤ i ≤ k + 1) that is larger than and sufficiently close to r’, we

can also get

∥∥I�α,A (
f1, ..., fk+1

)∥∥
Lq∞ ≤ C

k+1∏
i=1

∥∥fi∥∥Lpi ,
for any pi ≤ min{p1,..., pi-1, pi+1,...pk+1} with 1/q = 1/p1+· · · 1/pk+1 -a/n.
Now, we obtain Theorem 1.2 by multilinear interpolation from [2,9].

Acknowledgements
Xiao Yu was partially supported by the NSFC under grant \# 10871173 and NFS of Jiangxi Province under grant
\#2010GZC185 and \#20114BAB211007.

Author details
1Department of Mathematics, Shangrao Normal University, Shangrao, 334001, P.R. China 2Department of Mathematics,
Zhejiang International Studies University, Hangzhou, 310012, P.R. China

Authors’ contributions
HZ discovered the problem of this paper and participated in the proof of Theorem 1.1. JR contributed a lot in the
revised version of this manuscript and pointed out several mistakes of this paper. XY participated in the proof of
Theorem 1.2 and checked the proof of the whole paper carefully. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 10 July 2011 Accepted: 24 February 2012 Published: 24 February 2012

Zhang et al. Journal of Inequalities and Applications 2012, 2012:42
http://www.journalofinequalitiesandapplications.com/content/2012/1/42

Page 8 of 9



References
1. Grafakos, L: On multilinear fractional integrals. Studia Math. 102(1):49–56 (1992)
2. Kenig, CE, Stein, EM: Multilinear estimates and fractional integration. Math Res Lett. 6, 1–15 (1999)
3. Ding, Y, Lu, SZ: The Lp1 × · · · × Lpk boundedness for some multilinear operators. J Math Anal Appl.

203(1):166–186 (1996). doi:10.1006/jmaa.1996.0373
4. Ding, Y, Lin, CC: Rough bilinear fractional integrals. Math Nachr. 246-247, 47–52 (2002). doi:10.1002/1522-2616(200212)

246:13.0.CO;2-7
5. Calderön, AP, Zygmund, A: On a problem of Mihlin. Trans Am Math Soc. 78, 209–224 (1955)
6. Chen, JC, Ding, Y, Fan, DS: On a Hyper Hilbert Transform. Chinese Annals Math Ser B. 24, 475–484 (2003). doi:10.1142/

S0252959903000475
7. Chen, JC, Fan, DS: Rough Bilinear Fractional Integrals with Variable Kernels. Frontier Math China. 5(3):369–378 (2010).

doi:10.1007/s11464-010-0061-1
8. Shi, YL: Related Estimates for Some Multilinear Operators and Commutators. Master’s Thesis. Ningbo University, P.R.

China (2009)
9. Janson, S: On interpolation of multilinear operators. In Springer Lecture Notes in Math, vol. 1302, pp. 290–302.Springer-

Verlag, Berlin-New York (1988). doi:10.1007/BFb0078880

doi:10.1186/1029-242X-2012-42
Cite this article as: Zhang et al.: Boundedness of (k + 1)-linear fractional integral with a multiple variable kernel.
Journal of Inequalities and Applications 2012 2012:42.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Zhang et al. Journal of Inequalities and Applications 2012, 2012:42
http://www.journalofinequalitiesandapplications.com/content/2012/1/42

Page 9 of 9

http://www.ncbi.nlm.nih.gov/pubmed/22399808?dopt=Abstract
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1. Introduction
	2. Proof of Theorem 1.1
	3. Proof of Theorem 1.2
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

