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Abstract
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point results for non-self multivalued maps and common fixed point theorems for
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results in the fixed point theory.
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1 Introduction
One of the most useful generalizations of the Banach contraction principle in the setting

of metric spaces is known as Caristi’s fixed point theorem. In the past decades, Caristi’s

fixed point theorem has been generalized and extended in several directions (see, [1,2]

and references therein). Applying this classical result, Massa [3], Yi and Zhao [4], Zhang

[5], and Zhong et al. [6] and others proved fixed point theorems for non-self multivalued

contraction maps in the setting of Banach spaces. There are spaces which are not norm-

able (for example, see [7]). So there is natural and essential to study existence of fixed

points in the setting of locally convex spaces. In fact, study of known fixed points results

of Banach spaces to the case of locally convex spaces is neither trivial and nor easy.

However, several interesting fixed point results for single valued and multivalued con-

traction and nonexpansive maps in the setting of locally convex spaces appeared in the

literature, for example; see [8-15] and references there in.

In [16], Fang has introduced a notion of F-type topological spaces and generalized

the Caristi’s fixed point theorem to such topological spaces. Recently, Cammaroto et

al. [17] observed that each Hausdorff locally convex topological vector space is an F-

type topological space.

In [18], Chen and Li introduced the class of Banach operator pairs, as a new class of

noncommuting maps and it has been further studied by Hussain [19,20], Hussain et al.

[21], Khan and Akbar [22,23], and Pathak and Hussain [24].

In this article, applying Caristi’s fixed point results and following the techniques in

[5,6], we prove some fixed point theorems for non-self multivalued contraction maps

in the setup of locally convex spaces (see, Section 2). Consequently, Our results either

improve or extend a number of known fixed point results including the corresponding

results due to Massa [3], Yi and Zhao [4], Zhang [5], and Zhong et al. [6]. Section 3
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contains some general common fixed point theorems for Caristi type maps. Applying

our theorems we derive some results on the existence of common fixed points for a

Banach operator pair from the set of best approximations. Our results of Section 3

extend and unify the study of Al-Thagafi [25], Chen and Li [18], Hussain and Khan

[11], Jungck and Sessa [26], Khan and Akbar [23], Pathak and Hussain [24] and many

others.

2 Fixed points for non-self multivalued maps
In this section, E denotes a complete Hausdorff locally convex topological vector space,

P is the family of continuous seminorms generating the topology of E, and K(E) is the

family of nonempty compact subsets of E. For each p ∈ P and A, B Î K(E), define

Dp(A,B) = max
{
sup
a∈A

dp(a,B), sup
b∈B

dp(b,A)
}
,

where dp(x, A) = inf{p(x - y) : y Î A} for any x Î E. It is known that Dp is a metric

on K(E) even though p is a seminorm, see [9,12]. Let T : M ⊂ E ® K(E) be a multiva-

lued map. We recall the following notions: (a) T is called P-contraction if for each

p ∈ P there exists a constant kp, 0 ≤ kp < 1, such that Dp(T(x),T(y)) ≤ kpp(x - y), for all

x, y Î M. (b) A point x Î M is called a fixed point of T if and only if x Î T(x). (c) We

say T satisfy the boundary condition (a) if for all x Î M and all

y ∈ T(x), (x, y] ∩ M �=� 0, where (x, y] = {(1 - l)x + ly : 0 <l ≤ 1}. (d) T is called weakly

inward if for each x ∈ M,T(x) ⊂ IM(x), where IM(x) = {z : z = x + l(y - x), y Î M, l ≥

1} is known as the inward set.

Now, we state the Caristi’s fixed point result in the setting of Hausdorff locally con-

vex topological vector space, see [17,16].

Theorem 2.1 Let f : E ® E be any arbitrary map. Suppose there exists a lower semi-

continuous function � : E ® [0, +∞) such that for each x Î E and for each p ∈ P,
p(x − f (x)) ≤ ϕ(x) − ϕ(f (x)).

Then f has a fixed point.

Another generalization of the Caristi’s fixed point result is the following which is a

variant of Lemma 1.2 [6].

Theorem 2.2 Let �: E ® [0, +∞) be a bounded below lower semicontinuous function

and h : [0, +∞) ® [0, +∞) be a continuous nondecreasing function such that
+∞∫
0

dr
1+h(r) = + ∞. Let f : E ® E be a map such that for any given x0 Î E and for all x Î

E,

p(x − f (x))
1 + h(p(x0 − x))

≤ ϕ(x) − ϕ(f (x)).

Then f has a fixed point.

Applying Theorem 2.1, first we prove the following fixed point result.

Theorem 2.3. Let M be a nonempty closed subset of E and T : M ® K(E) be a

P-contraction map satisfying the boundary condition (a). Then T has a fixed point.

Proof. Let p ∈ P be arbitrary and fixed. For each x Î M, choose y Î T(x) such that p

(x-y) = dp(x, T(x)). Set zxp as a farthest point from x in [x, y] ∩ M, that is;

Latif et al. Journal of Inequalities and Applications 2012, 2012:40
http://www.journalofinequalitiesandapplications.com/content/2012/1/40

Page 2 of 12



p(x − zxp) = max
{
p(x − w) : w ∈ [x, y] ∩ M

}
.

Then we have

p(x − y) = p(x − zxp) + p(zxp − y).

Since T is a compact valued P-contraction map, then for kp,0 ≤ kp < 1, we have

dp
(
zxp,T(zxp)

) ≤ p(zxp − y) + dp
(
y,T(zxp)

)
≤ p(zxp − y) +Dp(T(x),T(zxp))

≤ p(zxp − y) + kpp(x − zxp)

= p(x − y) − p(x − zxp) + kpp(x − zxp)

= dp(x,T(x)) − (1 − kp)p(x − zxp).

Thus,

p(x − zxp) ≤ (1 − kp)−1 {
dp(x,T(x)) − dp(zxp,T(zxp))

}
.

Define a self map f on M by fp(x) = zxp, x Î M, and define a nonnegative real valued

function �p by �p(x) = (1 - kp)
-1 dp(x,T(x)), x Î M. Then we have

p(x − fp(x)) ≤ ϕp(x) − ϕp(fp(x)).

Since M is a closed subset of a complete space, so it is complete and hence by Theo-

rem 2.1, f has a fixed point u Î M. Note that fpu = u = zup. Since, zup is the farthest

point from u in [u, y] ∩ M and u = zup, so it follows that

dp(u,T(u))) = p(u − y) = 0,

and hence u Î T(u).

Remark 2.4. Theorem 2.3 extends the fixed point result of Massa [[3], Theorem 2]

to Hausdorff locally convex spaces.

Another application of Theorem 2.1, is the following fixed point result.

Theorem 2.5. Let M be a closed subset of E and T : M ® K(E) be a P-contraction
map such that for all x Î M,

{z ∈ T(x) : p(x − z) = dp(x,T(x))} ∩ I M(x) �=� 0.

Then T has a fixed point.

Proof. Suppose that T has no fixed point. Then, dp(x, T(x)) > 0 for all x Î M.

Choose q Î (0,1) such that kp = k <
1 − q
1 + q

, where k Î (0, 1). Since T is a compact

valued map, there exists z ∈ T(x) ∩ IM(x) such that

dp(x,T(x)) = p(x − z) > 0.

Then, there is some t Î (0,1] such that

t−1dp((1 − t)x + tz,M) < qp(x − z).

Put w = (1 - t)x + tz. Then there exists some y Î M, such that

p(w − y) < q tp(x − z) = qp((1 − t)x + tz − x) = qp(w − x).
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Since

p(y − x) − p(w − x) ≤ p(w − y) < qp(w − x),

it follows that

p(y − x) < (1 + q)p(w − x),

and thus

(a − 1)p(w − x) <
q − 1
q + 1

p(x − y).

Note that

p(w − x) + p(w − z) = p(x − z).

Since T is a compact valued P-contraction, we can choose u Î T(x) and v Î T(y)

such that p(w - u) = dp(w,T(x)) and

p(u − v) ≤ Dp(T(x),T(y)) ≤ kp(x − y).

Now,

dp(y,T(y)) ≤ p(y − v)

≤ p(y − w) + p(w − u) + p(u − v)

< qp(w − x) + dp(w,T(x)) + kp(x − y)

< qp(w − x) + p(w − z) + kp(x − y)

< qp(w − x) + p(x − z) − tp(x − z) + kp(x − y)

< qp(w − x) + p(x − z) − p(w − x) + kp(x − y)

< (q − 1)p(w − x) + p(x − z) + kp(x − y)

<
q − 1
q + 1

p(x − y) + p(x − z) + kp(x − y)

< dp(x,T(x)) −
(
1 − q
1 + q

− k
)
p(x − y),

and thus we have

dp(y,T(y)) < dp(x,T(x)) − cp(x − y),

where c =
1 − q
1 + q

− k. Hence,

p(x − y) <
dp(x,T(x))

c
− dp(y,T(y))

c
.

Define f : M ® M by f(x) = y and define the � : M ® ℝ by ϕ(x) =
dp(x,T(x))

c
.

Clearly,

p(x − f (x)) < ϕ(x) − ϕ(f (x)).

By Theorem 2.1, f has a fixed point x0 Î M. Thus, f(x0) = x0. On the other hand, we

have

0 = p(x0 − f (x0)) < ϕ(x0) − ϕ(f (x0)) = ϕ(x0) − ϕ(x0) = 0,
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which is impossible. Hence, T has a fixed point.

Corollary 2.6. Let M be a closed subset of E and let T : M ® K(E) be a weakly

inward P-contraction map. Then T has a fixed point.

Remark 2.7. (a) Theorem 2.5 extends the fixed point result of Zhang [[5], Theorem

3.3].

(b) It is worth to mention that in general, the contraction and weakly inward condi-

tions of Theorem 2.5 can not be replaced with somewhat weaker conditions, namely,

nonexpansive and T(x) ∩ IM(x) �=� 0, even in the setting of Banach spaces, see [5].

(c) Corollary 2.6 contains the fixed point result of Yi and Zhao [[4], Theorem 2.1].

Now, using Theorem 2.2 and a contractive condition basically due to [5], we prove

the following fixed point result in the setting of Hausdorff locally convex topological

vector spaces. Let h : [0, +∞) ® [0, +∞) be a continuous nondecreasing function satis-

fying

+∞∫
0

dr
1+h(r) = + ∞.

Theorem 2.8. Let M be a closed subset of E and Let T : M ® K(E) be a weakly

inward map, x0 Î M, a given point and s Î (0,1] a constant. If for each x, y Î M,

Dp(T(x),T(y)) ≤
(
1 − σ

1 + h(p(x0 − x))

)
p(x − y).

Then T has a fixed point.

Proof. Suppose that T has no fixed point. Then, dp(x, T(x)) > 0 for all x Î M.

Choose c, 0 <c <s and q(x) =
σ − c

2(1 + h(p(x0 − x)))
, then 0 <q(x) < 1. Since T is a com-

pact valued map, there exists z Î T(x) such that

dp(x,T(x)) = p(x − z) > 0.

Since T is weakly inward, there exist y Î M and l ≥ 1 such that z = x + l(y - x).

Then,

p(z − (x + λ(y − x))) < q(x)p(x − z).

Set t =
1
λ
and w = (1 - t)x + tz. Note that

p(w − y) =
1
λ
p((λ − 1)x + z − λy) = tp(z − (x + λ(y − x))),

thus we get

p(w − y) < tq(x)p(x − z),

p(w − x) = tp(x − z), and p(w − z) = (1 − t)p(x − z).

Also, we have

p(x − y) < p(w − x) + tq(x)p(x − z) = (1 + q(x))p(w − x),

and thus

(q(x) − 1)p(w − x) <
q(x) − 1
q(x) + 1

p(x − y),
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because 0 <q(x) < 1. Since T is a compact valued map, we can choose u Î T(x) and v

Î T(y) such that p(w-u) = dp(w,T(x)) and

p(u − v) ≤ Dp(T(x),T(y)).

Now, using the above facts and the definition of T, we have

dp(y,T(y)) ≤ p(y − v)

≤ p(y − w) + p(w − u) + p(u − v)

< q(x)p(w − x) + p(w − z) +Dp(T(x),T(y))

<

(
q(x) − 1
q(x) + 1

+ 1
)
p(x − y) + p(x − z) − σ

1 + h(p(x0 − x))p(x0 − x))
p(x − y)

< 2
(

σ − c

2(1 + h(p(x0 − x)))

)
p(x − y) + p(x − z) − σ

1 + h(p(x0 − x))
p(x − y)

< dp(x,T(x)) − c

1 + h(p(x0 − x))
p(x − y),

and hence,

p(x − y)
1 + h(p(x0 − x))

<
dp(x,T(x))

c
− dp(y,T(y))

c
.

For any x Î M, define f(x) = y and ϕ(x) =
dp(x,T(x))

c
. Then, f is a selfmap of M and

� is a nonnegative real valued continuous function on M. Also, note that

p(x − f (x))
1 + h(p(x0 − x))

≤ ϕ(x) − ϕ(f (x)).

Applying Theorem 2.2, f has a fixed point. But, due to the fact

p(z − (x + λ(y − x))) < q(x)p(x − z)

it follows that f has no fixed point. This is a contradiction and hence T has a fixed

point.

Remark 2.9. a) Theorem 2.8 extends the fixed point result of [[6], Theorem 2.5] to

the setting of Hausdorff locally convex spaces.

b) Theorem 2.8 is not true for multivalued nonexpansive maps, even in the setting of

Banach spaces, see [6].

3 Banach operator pair and Caristi type maps
In this section, (E, τ) will be a Hausdorff locally convex topological vector space. A

family {pa : a Î I} of seminorms defined on E is said to be an associated family of

seminorms for τ if the family {gU : g > 0}, where U =
⋂n

i=1
Uαi and

Uαi = (x : pαi(x) < 1}, forms a base of neighborhoods of zero for τ. A family {pa : a Î
I} of seminorms defined on E is called an augmented associated family for τ if {pa : a
Î I} is an associated family with property that the seminorm max{pa, pb} Î {pa : a Î
I} for any a, b Î I. The associated and augmented associated families of seminorms

will be denoted by A(τ) and A*(τ), respectively. It is well-known that given a locally

convex space (E,τ), there always exists a family {pa : a Î I} of seminorms defined on E

such that {pa : a Î I} = A*(τ) (see [27,28]).
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The following construction will be crucial. Suppose that M is a τ-bounded subset of

E. For this set M we can select a number la > 0 for each a Î I such that M ⊂ laUa

where Ua = {x : pa(x) ≤ 1}. Clearly B = ∩ala∩a is τ-bounded, τ-closed, absolutely con-

vex and contains M. The linear span EB of B in E is
⋃∞

n=1 nB. The Minkowski func-

tional of B is a norm ‖ ⋅ ‖B on EB. Thus (EB, ‖⋅‖B) is a normed space with B as its

closed unit ball and supa pa(x/la) = ‖x‖B for each x Î EB (for details see [27-30]).

In [31], Ciric introduced the following generalization of continuity for selfmaps.

Definition 3.1. A mapping T of a topological space X into itself is said to be orbi-

tally continuous if x0, x Î X such that limn→∞Tin(x) = x0, then limn→∞T(Tin(x)) = Tx0.

(We shall say T is orbitally continuous at x0 (o.c.) if x0 is such a point.)

Jungck [32] generalized the above definition as follows.

Definition 3.2. A mapping T of a topological space X into itself is said to be almost

orbitally continuous (a.o.c.) at x0 Î X if whenever limn→∞Tin(x) = x0 for some x Î X

and subsequence {Tin(x)} of {Tn(x)}, there exists a subsequence {Tjn(x)} of {Tn(x)} such

that limn→∞Tjn(x) = Tx0. (If T is a.o.c. at all x Î M ⊂ X, we say T is (a.o.c.) on M; if

M = X, T is a.o.c.)

In [32], Jungck proved the following generalization of Caristi’s Theorem (see, Theo-

rem 1.2 [33]) which will be needed in the sequel.

Theorem 3.3. Let (X, d) be a complete metric space and S, T be two a.o.c. mappings

of X into itself. Suppose that there are a finite number of functions {ji : 1 ≤ i ≤ n0} of

X into [0, ∞) such that

d(Sx,Ty) ≤ kd(x, y) +
∑n0

i=1
[φi(x) − φi(Sx) + φi(y) − φi(Ty)]

for all x, y Î X and some k Î [0,1). Then S and T have a common fixed point x0 Î
X. Further, if x Î X, then Sn x ® x0 and Tnx ® x0 as n ® ∞.

The pair (T, f) of selfmaps of M is called a Banach operator pair, if the set F(f) is T-

invariant, namely T(F(f)) ⊆ F(f). Obviously, commuting pair (T, f) is a Banach operator

pair but converse is not true, in general; see [18,24]. A mapping T : M ® E is called

demiclosed at 0 if {xa} converges weakly to x and {Txa} converges to 0, then we have

Tx = 0.

The aim of this section is to extend the above mentioned result of Jungck to locally

convex spaces and establish general common fixed point theorems for Caristi type

maps in the setting of a locally convex space. We apply our theorems to derive some

results on the existence of common fixed points for a Banach operator pair from the

set of best approximations. Our results extend and unify the study of Al-Thagafi [25],

Chen and Li [18], Hussain and Khan [11], Jungck and Sessa [26], Khan and Akbar

[23], and Pathak and Hussain [24] and many others.

We observe in the following example that the almost orbital continuity of a selfmap

T on a metric space depends on the choice of the metric. Here, ω = N ∪ {0} and N is

the set of positive integers.

Example 3.4. Let X = {0}⋃ {
1
2n

: n ∈ ω

}
and T(0) = 1,T

(
1
2n

)
=

1
2n+1

for n Î ω.

Then T is not (a.o.c.) under usual metric on X([32], Example 4.2) but T is continuous,

and therefore (a.o.c.) under the discrete metric on X.

Latif et al. Journal of Inequalities and Applications 2012, 2012:40
http://www.journalofinequalitiesandapplications.com/content/2012/1/40

Page 7 of 12



Next, we establish a positive result in this direction in the context of linear topolo-

gies utilizing Minkowski functional.

Lemma 3.5. Let T be (a.o.c.) selfmap of a τ-bounded subset M of a Hausdorff locally

convex space (E, τ). Then T is (a.o.c.) on M with respect to ‖ ⋅ ‖B.
Proof. By hypothesis, there exists a subsequence {Tjn(x)} of {Tn(x)} such that

limn→∞pα(Tjn(x) − Tx0) = 0 for each pa Î A*(τ) for some x Î X, whenever

limn→∞pα(Tin(x) − x0) = 0 for each pa Î A*(τ) for some x Î X and subsequence

{Tin(x)} of {Tn(x)}. Taking supremum on both sides, we get

sup
α

lim
n→∞ pα

(
Tjn(x) − Tx0

λα

)
= sup

α

(
0
λα

)

whenever

sup
α

lim
n→∞ pα

(
Tin(x) − x0

λα

)
= sup

α

(
0
λα

)
.

This implies that

lim
n→∞ sup

α

pα

(
Tjn(x) − Tx0

λα

)
= 0

whenever

lim
n→∞ sup

α

pα

(
Tin(x) − x0

λα

)
= 0.

Hence there exists a subsequence {Tjn(x)} of {Tn(x)} such that

limn→∞
∥∥Tjn(x) − Tx0

∥∥
B = 0, whenever limn→∞

∥∥Tin(x) − x0
∥∥
B = 0 for some x Î X and

subsequence {Tin(x)} of {Tn(x)} as desired.

An application of Lemma 3.5 provides the following general Caristi’s Theorem in the

setting of locally convex space.

Theorem 3.6. Let M be a nonempty τ-bounded, τ-sequentially complete subset of a

Hausdorff locally convex space (E, τ) and S, T be two almost orbitally continuous map-

pings of M into itself. Suppose that there are a finite number of functions {ji: 1 ≤ i ≤

n0} of M into [0, ∞) such that

pα(Sx − Ty) ≤ kpα(x − y) +
∑n0

i=1
[φi(x) − φi(Sx) + φi(Ty)] (3:1)

for all x, y Î X, pa Î A*(τ) and some k Î [0,1). Then S and T have a common fixed

point x0 Î X. Further, if x Î X, then Snx ® x0 and Tn x ® x0 as n ® ∞.

Proof. Since the norm topology on EB has a base of neighborhoods of 0 consisting of

τ-closed sets and M is τ-sequentially complete, therefore M is ‖ ⋅ ‖B- sequentially com-

plete in (EB, ‖ ⋅ ‖B) (see, [11,29,30]). By Lemma 3.5, S, T are ‖ ⋅ ‖B- almost orbitally

continuous mappings of M. From (4.1) we obtain for any x, y Î M,

sup
α

pα

(
Sx − Ty

λα

)
≤ k sup

α

pα

(
x − y
λα

)
+

∑n0

i=1
[φi(x) − φi(Sx) + φi(y) − φi(Ty)].
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Thus,

∥∥Sx − Ty
∥∥
B ≤ k

∥∥x − y
∥∥
B +

∑n0

i=1
[φi(x) − φi(Sx) + φi(y) − φi(Ty)].

A comparison of our hypothesis with that of Theorem 3.3 tells that we can apply it

to M as a subset of (EB, ‖⋅‖B) to conclude that there exists a point z in M such that Tz

= Sz = z and if x Î M, then Snx ® z and Tnx ® z as n ® ∞.

Lemma 3.7. Let M be a nonempty τ-bounded subset of Hausdorff locally convex

space (E, τ), S, T and f be self-maps of M and S, T be (a.o.c). Suppose that there are a

finite number of functions {ji : 1 ≤ i ≤ n0} of M into [0, ∞) such that

pα(Sx − Ty) ≤ kpα(fx − fy) +
∑n0

i=1
[φi(x) − φi(Sx) + φi(fy) − φi(Ty)] (3:2)

for all x, y Î X, pa Î A*(τ) and some k Î [0,1). If F(f) is nonempty and τ-sequentially

complete and τ - cl(T(F(f))) ⊆ F(f) and τ - cl(S(F(f))) ⊆ F(f). Then,

M ∩ F(S) ∩ F(T) ∩ F(f ) �=� 0.
Proof. Note that for all x, y Î F(f), we have,

pα(Sx − Ty) ≤ kpα(fx − fy) +
∑n0

i=1
[φi(fx) − φi(Sx) + φi(fy) − φi(Ty)]

= kpα(x − y) +
∑n0

i=1
[φi(x) − φi(Sx) + φi(y) − φi(Ty)]

Hence S, T satisfy (3.1) on F(f) and τ - cl(T(F(f))) ⊆ F(f), and τ - cl(S(F(f))) ⊆ F(f). By

Theorem 3.6, S, T have a fixed point z in F(f) and consequently F(S) ∩ F(T) ∩ F(f ) �= � 0.
Corollary 3.8. Let M be a nonempty τ-bounded subset of Hausdorff locally convex

space (E, τ), S, T, and f be self-maps of M and S, T be (a.o.c). Suppose that there are a

finite number of functions {ji : 1 ≤ i ≤ n0} of M into [0, ∞) such that

pα(Tx − Ty) ≤ kpα(fx − fy) +
∑n0

i=1
[φi(fx) − φi(Tx) + φi(fy) − φi(Ty)] (3:3)

for all x, y Î X, paÎ A*(τ) and some k Î [0,1). If F(f) is nonempty τ-sequentially

complete and (T, f) is a Banach operator pair. Then, M ∩ F(S) ∩ F(T) ∩ F(f ) �=� 0.
The following result generalizes [[18], Theorems 3.2, 3.3] and improves [[25], Theo-

rem 2.2], and [[26], Theorem 6]. Notice that [q, Tx] = {(1 - k) q + kT x : k Î [0,1]}.

Theorem 3.9. Let M be a nonempty τ-bounded subset of Hausdorff locally convex

[resp., complete] space (E, τ) and T, f be self-maps of M. Suppose that T is continuous,

F(f) is q-starshaped, τ-closed [resp., τ-weakly closed], τ - cl(T(F(f))) ⊆ F(f) [resp., τ - wcl

(T(F(f))) ⊆ F(f)], M is τ-compact [resp., M is weakly τ-compact, I-T is demiclosed at 0,

where I stands for identity map]. Assume that there are a finite number of functions

{ji: 1 ≤ i ≤ n0} of M into [0, ∞) such that

pα(Tx − Ty) ≤ pα(fx − fy) +
1
k

∑n0

i=1
[φi(fx) − φi(qx) + φi(fy) − φi(qy)], (3:4)

for all x, y Î M, qx Î [q, Tx], qy Î [q, Ty] and k Î (0,1). Then M ∩ F(T) ∩ F(f ) �= � 0.
Proof. Define Tn : F(f) ® F(f) by Tnx = (1 - kn)q + knTx for all x Î F(f) and a fixed

sequence of real numbers kn(0 <kn < 1) converging to 1. Since F(f) is q-starshaped and

τ - cl(T(F(f))) ⊆ F(f) [resp., τ - wcl(T(F(f))) ⊆ F(f)], so τ - cl(Tn(F(f))) ⊆ F(f)] [resp., τ -

wcl(Tn(F(f))) ⊆ F(f)] for each n ≥ 1.
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Also by (3.3),

pα(Tnx − Tny) = knpα(Tx − Ty)

≤ kn

(
pα(fx − fy) +

1
kn

∑n0

i=1
[φi(fx) − φi(Tnx) + φi(fy) − φi(Tny)]

)
,

≤ knpα(fx − fy) +
∑n0

i=1
[φi(fx) − φi(Tnx) + φi(fy) − φi(Tny)],

for each x, y Î F(f) and some 0 <kn < 1.

If M is τ-compact so is τ-sequentially complete. By Lemma 3.7, for each n ≥ 1, there

exists xn Î F(f) such that xn = fxn = Tnxn. The compactness of τ - cl(M) implies that

there exists a subsequence {Txm} of {Txn} such that Txm ® z Î cl(M) as m ® ∞.

Since {Txm} is a sequence in T(F(f)) and τ - cl(T(F(f))) ⊆ F(f), therefore z Î F(f).

Further, xm = Tmxm = (1 - km)q + kmTxm ® z. By the continuity of T, we obtain Tz =

z. Thus, M ∩ F(T) ∩ F(f ) �=� 0 proves the first case.

By Lemma 3.7, for each n ≥ 1, there exists xn Î F(f) such that xn = fxn = Tnxn. More-

over, we have pa(xn-Txn) ® 0 as n ® ∞. The weak τ-compactness of M implies that

there is a subsequence {Txm} of {Txn} converging weakly to y Î M as m ® ∞. Since

{Txm} is a sequence in T(F(f)), therefore y Î τ - wcl(T(F(f))) ⊆ F(f). Also we have, xm -

Txm ® 0 as m ® ∞. If I - T is demiclosed at 0, then y = Ty. Thus,

M ∩ F(T) ∩ F(f ) �=� 0.
If

∑n0

i=1
[φi(fx) − φi(qx) + φi(fy) − φi(qy)] ≥ 0 in (3.4), then every f-nonexpansive

map T satisfies (3.4). Thus we obtain the following result.

Corollary 3.10. Let M be a nonempty τ-bounded subset of Hausdorff locally convex

[resp., complete] space (E, τ) and T, f be self-maps of M. Suppose that T is continuous,

F(f) is q-starshaped, τ-closed [resp, τ-weakly closed], τ - cl(T(F(f))) ⊆ F(f) [resp, τ - wcl

(T(F(f))) ⊆ F(f)], M is τ-compact [resp, M is weakly τ-compact, I - T is demiclosed at

0]. Assume that there are a finite number of functions {ji : 1 ≤ i ≤ n0} of M into [0,

∞) such that
∑n0

i=1
[φi(fx) − φi(qx) + φi(fy) − φi(qy)] ≥ 0 for all x, y Î M, qx Î [q,Tx],

qy Î [q, Ty]. If T is f-nonexpansive, then M ∩ F(T) ∩ F(f ) �= � 0.
Corollary 3.11. Let M be a nonempty τ-bounded subset of Hausdorff locally convex

[resp., complete] space (E, τ) and T, f be self-maps of M. Suppose that T is continuous,

F(f) is q-starshaped, and τ-closed [resp., τ-weakly closed], M is τ-compact [resp., M is

weakly τ-compact, I-T is demiclosed at 0], (T, f) is a Banach operator pair and satisfy

(3.4) for all x, y Î M. Then M ∩ F(T) ∩ F(f ) �=� 0.
We define PM(u) = {y ∈ M : pα(y − u) = dpα

(u,M), for all pα ∈ A∗(τ )} and denote by

�0 the class of closed convex subsets of E containing 0. For M ∈ �0, we define Mu = {x

Î M : pa(x) ≤ 2pa(u) for each pa Î A*(τ)}. It is clear that PM(u) ⊂ Mu ∈ �0.

The following result extends [[25], Theorem 4.1] and [[34], Theorem 2.14] and cor-

responding results in [24].

Theorem 3.12. Let f, T be self-maps of a a Hausdorff locally convex space E. If u Î
E and M ∈ �0 such that T(Mu) ⊆ M, τ - cl(T(Mu)) is compact and ‖Tx - u‖ ≤ ‖x - u‖

for all x Î Mu, then PM(u) is nonempty, closed and convex with T(PM(u)) ⊆ PM(u). If,

in addition, D ⊆ PM(u), D0 := D ∩ F(f) is q-starshaped, τ-closed, τ - cl(T(D0)) ⊆ D0, T is

continuous on D and (4.3) holds for all x,y Î D, then PM(u) ∩ F(T) ∩ F(f ) �= � 0.
Proof. Follows the lines of proof of Theorem 3.9 [8], so is omitted.
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Remark 3.13. It is worth to mention that our results are nontrivial generalizations of

the corresponding known fixed point results in the setting of Banach spaces because

there are plenty of spaces which are not normable (see, [[7], p. 113]). So it is natural

to consider fixed point and approximation results in the context of locally convex

spaces.
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