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Abstract

The objective of this article is to show a refinement of Sándor-Tóth’s inequality
related to the arithmetic functions which use unitary divisors. A new estimate of the
average order of the arithmetic function given by Sándor-Tóth’s inequality is
suggested.
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1 Introduction
The inequalities are important in many applications. Some attractive recent theoretical

results related to inequalities include Jensen type inequalities [1], the general varia-

tional inequality problem [2], delay integral inequalities [3], inequalities that involve

higher-order partial derivatives [4] or harmonic quasiconformal mappings [5]. We

focus on inequalities that employ arithmetic functions based on the divisors of positive

integers.

Among the divisors of a positive integer identifying a particular type of divisors,

namely, the unitary divisors. But, first we present a brief history of this.

In [6], Vaidyanathaswamy introduced the notion of block-factor in the following way:

a divisor d of n is a block-factor when
(
d,

n

d

)
= 1, so the greatest common divisor of d

and
n

d
is 1. Later Cohen gave in [7] another terminology for block-factor which is cur-

rently referred to as unitary divisor.

For example, 4 is a unitary divisor of 12, because

(
4,

12
4

)
= (4, 3) = 1, but 2 is not a

unitary divisor of 12, because

(
2,

12
2

)
= (2, 6) = 2 �= 1.

We observe that for a prime power pa, the unitary divisors are 1 and pa.

Let τ*(n) denotes the number of unitary divisors of n, which is, in fact the number of

the square free of n. Let σ ∗
k (n) denotes the sum of kth powers of the unitary divisors

of n.

If n =
r∏
i=1

paii is the prime factorization of n >1, where pi are distinct primes and ai ≥ 1

for all i = 1, ..., r, then
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σ ∗
k (n) =

r∏
i=1

(
pkaii + 1

)
(1)

and

τ ∗(n) = 2r , (2)

where r is the number of distinct prime factors of n.

We note by g(n) the largest divisor of n, which is squarefree, thus

γ (n) = p1p2 · · · pr , (3)

and g(1) = 1, by convention.

In [8,9], Sándor and Tóth proved the inequality

nk + 1
2

≥ σ ∗
k (n)

τ ∗(n)
≥

√
nk, (4)

for any n ≥ 1 and k ≥ 0.

This article aims two goals, a theoretical goal and an application goal. First, a refine-

ment of this inequality is offered to fulfil the theoretical goal. Second, the Matlab

mathematical software is used to analyze the behavior of the difference

�k(n) =
σ ∗
k (n)

τ ∗(n)
−

√
nk (5)

in the case k = 1 and to fulfil the application goal.

Our new theoretical results are presented in the following section as a new inequality

expressed as an improvement of (4). An application in terms of the Matlab-based sol-

ving of (5) is included as well. The conclusions are highlighted in Section 3.

2 Main results
Lemma 2.1. For any n ≥ 1 and k ≥ 0, the following inequality holds:

σ ∗
k (n)

τ ∗(n)
≥

[
n

γ (n)

]k

. (6)

Proof. For n = 1, we obtain
σ ∗
k (1)

τ ∗(1)
= 1 =

[
1

γ (1)

]k

.

For n >1 the canonical form of n is n =
r∏
i=1

paii .

Using the inequality

pk(a+1) + pk ≥ 2pka,

which is true, for any prime number p for any a ≥ 0 and k ≥ 0.

Therefore, we derive the result

r∏
i=1

(
pk(ai+1)i + pki

)
≥ 2r

r∏
i=1

pkaii ,

which implies the inequality

γ k(n)σ ∗
k (n) ≥ τ ∗(n) · nk.
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Consequently, the relation (6) is true.

□
We will find next, an expression of n for which the Sándor-Tóth inequality can be

refined.

Theorem 2.2. For any n =
r∏
i=1

paii with ai ≥ 2 for all i = 1,..., n, the following inequality

holds:

σ ∗
k (n)

τ ∗(n)
≥

[
n

γ (n)

]k

≥
√
nk, (7)

where k ≥ 1.

Proof. We first prove that

n
γ (n)

≥ √
n, (8)

for n =
∏
p|n

pa, with a ≥ 2.

Since pa-1 ≥ pa/2, for any prime number p and for any a ≥ 2, it follows that

∏
p|n

pa−1 ≥
√∏

p|n
pa,

which is equivalent to

n

γ (n)
≥ √

n.

The combination of Lemma 2.1 and of the inequality (8) results finally in the

inequality (7).

□
Remark 2.1. (a) If n is squarefree, then the relation

σ ∗
k (n)

τ ∗(n)
≥

√
nk ≥

[
n

γ (n)

]k

, (9)

is true for any n ≥ 1 and k ≥ 0.

(b) The inequality (7) can be expressed in terms of

σ ∗
k (n

2)

τ ∗(n)
≥

[
n2

γ (n)

]k

≥ nk, (10)

for any n ≥ 1 and k ≥ 0.

Lemma 2.3. For any n ≥ 1 and xi ≥ yi > 1, for all i = 1,..., n, we have

n∏
i=1

(xiyi + 1) ≥ 2n−1

(
n∏
i=1

xi +
n∏
i=1

yi

)
. (11)

Proof. The mathematical induction is applied to prove this lemma. For n = 1, we

obtain

x1y1 + 1 ≥ x1 + y1,

which is true because it is equivalent to the inequality (x1 - 1)(y1 - 1) ≥ 0.
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We consider that the inequality (11) is true for n and we will prove that it is also

true for n + 1, thus:

n+1∏
i=1

(xiyi + 1) = (xn+1yn+1 + 1)
n∏
i=1

(xiyi + 1) ≥

≥ 2n−1(xn+1yn+1 + 1)

(
n∏
i=1

xi +
n∏
i=1

yi

)
.

(12)

Let us consider
n∏
i=1

xi = x and
n∏
i=1

yi = y, with x ≥ y. We will prove that

(xn+1yn+1 + 1)(x + y) ≥ 2(xn+1x + yn+1y), (13)

which is equivalent to the inequality

(xn+1x − y)(yn+1 − 1) + (yn+1y − x)(xn+1 − 1) ≥ 0. (14)

But xn+1 - 1 ≥ yn+1 - 1 ≥ 0, which means that the inequality (14) becomes, by minori-

zation,

(yn+1 − 1)(xn+1x − y + yn+1y − x) =

(yn+1 − 1)[x(xn+1 − 1) + y(yn+1 − 1)] ≥ 0,

which is true.

The combination of the inequalities (12) and (13) leads to the result.

n+1∏
i=1

(xiyi + 1) ≥ 2n
(

n+1∏
i=1

xi +
n+1∏
i=1

yi

)
.

According to the principle of mathematical induction, the inequality (11) is true.

□
Another improvement of Sándor-Tóth’s inequality is presented as follows in terms of

Theorem 2.4.

Theorem 2.4. For any n ≥ 1 and k ≥ 1 there the following inequality holds:

nk + 1
2

≥ σ ∗
k (n)

τ ∗(n)
≥ 1

2

[
nk√
γ (n)

+
√

γ (n)

]
≥

√
nk. (15)

Proof. The mathematical induction is also applied to prove this theorem. For n = 1,

we have the equality in relation (15). If n = pa11 . . . parr > 1, then, from Lemma 2.3, we

have

σ ∗
k (n)

τ ∗(n)
=

r∏
i=1

(
paiki + 1

2

)
=

1
2r

r∏
i=1

(
p
aik− 1

2
i · p

1
2
i + 1

)
≥

≥ 1
2

(
r∏
i=1

p
aik−1

2
i +

r∏
i=1

p
1
2
i

)
=
1
2

[
nk√
γ (n)

+
√

γ (n)

]
.

In fact, the inequality

1
2

[
nk√
γ (n)

+
√

γ (n)

]
≥

√
nk.
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is immediate because the arithmetic mean is greater than the geometric mean.

Let d be a divisor of n, then

(nk − dk)
(
1 − 1

dk

)
≥ 0,

so

nk + 1 ≥ dk +
(n
d

)k
.

The calculation of the sum for all divisors of n results in the relation

(nk + 1)τ ∗(n) ≥ 2σ ∗
k (n),

which is equivalent to the inequality

nk + 1
2

≥ σ ∗
k (n)

τ ∗(n)
.

Therefore the proof is complete.

□
Corollary 2.5. For any n ≥ 1, the inequality

nk + 1
2

≥ σ ∗
k (n)

τ ∗(n)
≥ 1

2

[
nk

γ (n)
+ γ (n)

]
≥

√
nk, (16)

holds for any k ≥ 2.

Proof. Applying Theorem 2.4, we obtain

nk + 1
2

≥ σ ∗
k (n)

τ ∗(n)
≥ 1

2

[
nk√
γ (n)

+
√

γ (n)

]
. (17)

We apply the next inequality

nk√
γ (n)

+
√

γ (n) ≥ nk

γ (n)
+ γ (n), (18)

which is equivalent to(√
γ (n) − 1

) (
nk − γ (n)

√
γ (n)

)
≥ 0,

and this is true for any n ≥ 1 and k ≥ 2.

Since the arithmetic mean is greater than the geometric mean, it follows that

1
2

[
nk

γ (n)
+ γ (n)

]
≥

√
nk. (19)

Combining relations (17), (18), and (19), we derive the inequality (16).

□
Remark 2.2. The inequality (15) is an improvement of Sándor-Tóth’s inequality, and

we obtain the relation
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(√
nk − 1

)2

2
≥ �k(n) ≥

[√
nk − √

γ (n)
]2

2
√

γ (n)
≥ 0, (20)

for every n ≥ 1 and k ≥ 1.

Using the Matlab mathematical software we represent as follows the functions

f (n) =
(
√
n − 1)2

2
, Δ1(n) and g(n) =

[
√
n − √

γ (n)]
2

2
√

γ (n)
in the same Cartesian coordinate

system for n ≤ 10, 000, when Δ1(n) is a positive integer number (see Figure 1).

Theorem 2.6. For any n ≥ 1 and k ≥ 1, the inequality

�k(n) =
σ ∗
k (n)

τ ∗(n)
−

√
nk ≤ τ (n)

τ ∗(n)

[
σk(n)
τ (n)

−
√
nk

]
, (21)

holds, where sk(n) is the sum of kth powers of the divisors of n and τ(n) is the number

of divisors of n.

Proof. Using the identity of Dinghas [10], we prove the Radó inequality [11]

n(An − Gn) ≥ (n − 1)(An−1 − Gn−1), (22)

where Ak is the arithmetic mean and Gk is the geometric mean of k numbers of a1,

a2,..., an (k ≤ n).

Figure 1 Variations of functions f, Δ1 and g versus n. The symbols ○, +, □ are used to represent the
functions f, Δ1 and g, respectively.
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Therefore, from the inequality (22), for n ≥ m, we derive the result

n(An − Gn) ≥ m(Am − Gm). (23)

We consider that d∗
1, d

∗
2, . . . , d

∗
s are the unitary divisors of n, and d1, d2,..., ds, ds+1,...,

dt(t ≥ s) are all divisors of n, where di = d∗
i (i = 1, s). It follows, from the inequality (23),

that

t

⎛
⎜⎜⎜⎝

t∑
i=1

dki

t
−

(
t∏

i=1

dki

)1/t

⎞
⎟⎟⎟⎠ ≥ s

⎛
⎜⎜⎝

s∑
i=1

d∗k
i

s
−

(
s∏

i=1

d∗k
i

)1/s

⎞
⎟⎟⎠

so

τ (n)
(

σk(n)
τ (n)

−
√
nk

)
≥ τ ∗(n)

(
σ ∗
k (n)

τ ∗(n)
−

√
nk

)
,

because

(
t∏

i=1
di

)1/t

=
(

s∏
i=1

d∗
i

)1/s

=
√
n.

Consequently, the inequality (21) is proved.

□
Theorem 2.7. For n ≥ 1 and k ≥ 0, there is the inequality

1
2nτ ∗(n)

[
σ ∗
2k(n) −

(
σ ∗
k (n)

τ ∗(n)

)2
]

≤ σ ∗
k (n)

τ ∗(n)
−

√
nk ≤

1
2τ ∗(n)

[
σ ∗
2k(n) −

(
σ ∗
k (n)

τ ∗(n)

)2
]
.

(24)

Proof. Cartwright and Field proposed in [12] the inequality

Let 0 < m = min{x1, x2,..., xn} and let M = max{x1, x2,..., xn}.

Then

1
2M

n∑
i=1

αi

(
xi −

n∑
k=1

αkxk

)2

≤
n∑
i=1

αixi −
n∏
i=1

xαi
i ≤

≤ 1
2m

n∑
i=1

αi

(
xi −

n∑
k=1

αkxk

)2

,

(25)

where
∑n

i=1 αi = 1.

If d1, d2,..., ds are the unitary divisors of n, we take αi =
1
s
and xi = dki in inequality (25).

Therefore, we have m = 1, M = n and s = τ*(n), and the inequality (25) becomes:

1
2ns

s∑
i=1

(
dki − σ ∗

k (n)

τ ∗(n)

)2

≤ σ ∗
k (n)

τ ∗(n)
−

√
nk ≤

≤ 1
2s

s∑
i=1

(
dki − σ ∗

k (n)

τ ∗(n)

)2

.
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Conducting simple calculations and accounting for

(
s∏

i=1

dki

)1/s

=

(
s∏

i=1

di

) k
S

= (n
S
2 )

k
s = n

k
2 ,

we observe that this inequality is equivalent to the inequality (24).

□
Remark 2.3. (a) The inequality (24) is another improvement of Sándor-Tóth’s

inequality. We also obtain the following result:

σ ∗
2k(n) −

(
σ ∗
k (n)

τ ∗(n)

)2

≤ 2nτ ∗(n)�k(n) ≤

≤ n

[
σ ∗
2k(n) −

(
σ ∗
k (n)

τ ∗(n)

)2
]
,

(26)

(b) Using the Matlab mathematical software we find the following characterization: if

n is the square of an odd integer, then Δk(n) is a positive integer. This fact proved rela-

tively easily taking into account that

σ ∗
k (n)

τ ∗(n)
=

∏
p|n

(
p2ka + 1

2

)

is a positive integer because p is odd prime number.

For example, if n Î {11025, 27225, 65029}, then Δ1(n) Î {1520, 3800, 9170}.

We find next an estimate of the average order of the function Δ1(n).

The average order of the function Δ1(n) is the sum

�(x) =
∑
n≤x

�1(n).

Theorem 2.8. For all x ≥ 1, we have

π2x 3
√
x2

40ζ (3)
− 2

3
x
√
x +O

(
x2/3log2/3x

)
≤ �(x) ≤

≤ π2x2

24ζ (3)
− 2

3
x
√
x +O

(
xlog2/3x

)
,

(27)

where ς is the Riemann zeta function, ς (3) is Apéry’s constant with ς (3) =

1.2020569032... and O is the symbol of Landau.

Proof. Sándor and Kovács offered recently [13] a result related to the function τ(n),

which is the number of divisors of n, namely,

τ (n) < 4 3
√
n,

for all n ≥ 1.

But, the number of divisors of n is greater than the number of unitary divisors of n,

so

2 ≤ τ ∗(n) < 4 3
√
n, (28)

for all n ≥ 2.
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Sitaramachandrarao and Surynarayana pointed out in [8] the following estimate of s*(n):

∑
n≤x

σ ∗(n) =
π2x2

12ζ (3)
+O

(
xlog2/3x

)
. (29)

Nathanson proved in [14] that if x and y are real numbers with y <[x], and f(t) if is a

nonnegative monotonic function on [y, x], then∣∣∣∣∣ ∑
y<n≤x

f (n) −
x∫
y
f (t)dt

∣∣∣∣∣ ≤ max{f (x), f (y)}.

For f (n) =
√
n, we find the average order of

√
n, thus∑

n≤x

√
n =

2
3
x
√
x +O

(√
x
)
. (30)

We will calculate the sum
∑

n≤x
σ ∗(n)

3
√
n

using the theorem of partial summation [14],

thus

∑
n≤x

f (n)g(n) = F(x)g(x) −
x∫

1

F(t)g′(t)dt, (31)

where f(n) and g(n) are two arithmetic functions, x ≥ 2, g(t) is continuously differen-

tiable on [1, x], and F(x) =
∑

n≤x f (n).

Therefore, for f(n) = s*(n), g(n) =
1
3
√
n
and F(x) =

π2x2

12ζ (3)
+O

(
xlog2/3x

)
(from (29)),

relation (31) results in

∑
n≤x

σ ∗(n)
3
√
n

=
(

π2x2

12ζ (3)
+O

(
xlog2/3x

))
1
3
√
x
+

+
1
3

x∫
1

[
π2t2

12ζ (3)
+O

(
tlog2/3t

)]
1
t4/3

dt =

=
π2x5/3

10ζ (3)
+O

(
x2/3log2/3x

)
+
1
3

x∫
1

o

(
1

t1/3log2/3t

)
dt

=
π2x5/3

10ζ (3)
+O

(
x2/3log2/3x

)
,

so

∑
n≤x

σ ∗(n)
3
√
n

=
π2x 3

√
x2

10ζ (3)
+O

(
x2/3log2/3x

)
. (32)

Since �1(n) =
σ ∗(n)
τ ∗(n)

− √
n, the application of (28) leads to

1
4

∑
n≤x

σ ∗(n)
3
√
n

−
∑
n≤x

√
n ≤

∑
n≤x

�1(x) ≤

≤ 1
2

∑
n≤x

σ ∗(n) −
∑
n≤x

√
n.

(33)
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Summing up, the relations (29), (30), (32), and (33) lead to the fulfilment of (27).

3 Conclusions
This article has proposed a refinement of Sándor-Tóth’s inequality, and two Matlab

applications are given. Theorem 2.8 offers an approximation of the average order of Δ

(x). Finding the average order of Δ(x) and the average order of

�k(x) =
∑
n≤x

�k(n).

are subjects of future research. Studying the ideas above, we can identify other

refinements of Sándor-Tóth’s inequality.

The future research will also focus the extension of the area of applications of our

new theoretical results. Such applications include solutions to optimal control pro-

blems [15], stability analysis [16,17], robotics [18], fuzzy logic [19,20], difference

inequalities [21] or differential equations [22], as far as positive integers are concerned.
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