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Abstract

Iterative algorithms have been extensively studied over the class of nonexpansive
mappings in Hilbert spaces. Recall that nonexpansive mappings belong to quasi-
nonexpansive mappings. The aim of this article is expanding the general
approximation method proposed by Marino and Xu to quasi-nonexpansive
mappings in Hilbert spaces.
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1. Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉, and induced norm || · ||. A

mapping T: H ® H is called nonexpansive if ||Tx - Ty|| ≤ ||x - y|| for all x, y Î H.

The set of the fixed points of T is denoted by Fix(T): = {x Î H: Tx = x}.

Iterative theory and methods for nonlinear mappings and variational inequalities

have recently been applied to solve convex minimization problems, zero point pro-

blems and many others; see, e.g., [1-9] and references therein.

The viscosity approximation method was first introduced by Moudafi [10]. Starting

with an arbitrary initial x0 Î H, define a sequence {xn} generated by:

xn+1 =
εn

1 + εn
f (xn) +

1
1 + εn

Txn, ∀n ≥ 0, (1:1)

where f is a contraction with a coefficient a Î [0,1) on H, i.e., ||f(x) - f(y)|| ≤ a||x -

y|| for all x, y Î H, and {εn} is a sequence in (0,1) satisfying the following given

conditions:

(1) limn®∞ εn = 0;

(2)
∑∞

n=0 εn = ∞;

(3) limn→∞( 1
εn

− 1
εn+1

) = 0 .

It is proved that the sequence {xn} generated by (1.1) converges strongly to the

unique solution x* Î C(C: = Fix(T)) of the variational inequality:

〈(I − f )x∗, x − x∗〉 ≥ 0, ∀x ∈ Fix(T).

In [1], Xu proved that the sequence {xn} defined by the below process started with an

arbitrary initial x0 Î H:
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xn+1 = αnb + (I − αnA)Txn, ∀n ≥ 0, (1:2)

converges strongly to the unique solution of the minimization problem (1.3) pro-

vided the the sequence {an} satisfies certain conditions:

min
x∈C

1
2

〈Ax, x〉 − 〈x, b〉, (1:3)

where C is the set of fixed points set of T on H and b is a given point in H.

In [2], Marino and Xu combined the iterative method (1.2) with the viscosity approx-

imation method (1.1) and considered the following general iterative method:

xn+1 = αnγ f (xn) + (I − αnA)Txn, ∀n ≥ 0. (1:4)

It is proved that if the sequence {an} satisfies appropriate conditions, the sequence

{xn} generated by (1.4) converges strongly to the unique solution of the variational

inequality:

〈(γ f − A)x̃, x − x̃〉 ≤ 0, ∀x ∈ C, (1:5)

or equivalently x̃ = PFix(T)(I − A + γ f )x̃, where C is the fixed point set of a nonexpan-

sive mapping T.

In [11], Maingé considered the viscosity approximation method (1.1), and expanded

the strong convergence to quasi-nonexpansive mappings in Hilbert space. Motivated

by Marino and Xu [2] and Maingé [11], we consider the following iterative process:{
x0 = x ∈ H arbitrarily chosen,
xn+1 = αnγ f (xn) + (I − αnA)Tωxn, ∀n ≥ 0,

(1:6)

where Tω = (1 - ω)I + ωT, and T is a quasi-nonexpansive mapping. Under some

appropriate conditions on ω and {an}, we obtain strong convergence over the class of

quasi-nonexpansive mappings in Hilbert spaces. Our result is more general than

Maingé’s [11] conclusion, and also extends the iterative method (1.4) to quasi-nonex-

pansive mappings.

2. Preliminaries
Throughout this article, we write xn ⇀ x to indicate that the sequence {xn} converges

weakly to x. xn ® x implies that the sequence {xn} converges strongly to x. The follow-

ing lemmas are useful for our article.

The following identities are valid in a Hilbert space H: for each x,y Î H, t Î [0, 1]

(i) ||x + y||2 ≤ ||x||2 + 2〈y, x + y〉;

(ii) ||(1 - t)x + ty||2 = (1 - t)||x||2 + t||y||2 - (1 - t) t||x - y||2;

(iii) 〈x, y〉 = −1
2

∥∥x − y
∥∥2 + 1

2
‖x‖2 + 1

2

∥∥y∥∥2.
Lemma 2.1. [2]Let H be a Hilbert space H. Given x Î H, C is a closed convex subset

of H, f : H ® H is a contraction with coefficient 0 <a < 1, and A is a strongly positive

linear bounded operator with coefficient γ̄. Then for 0 < γ < γ̄ /α,

〈x − y, (A − γ f )x − (A − γ f )y〉 ≥ (γ̄ − γ α)
∥∥x − y

∥∥2, ∀x, y ∈ H.

That is, A - g f is strongly monotone with coefficient γ̄ − γ α.
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Lemma 2.2. [2]Assume A is a strongly positive linear bounded operator on a Hilbert

space H with coefficient γ̄ > 0and 0 <r ≤ ||A||-1. Then ‖I − ρA‖ ≤ 1 − ργ̄.

Lemma 2.3. [11]Let Tω: = (1 - ω)I + ωT, with T being a quasi-nonexpansive map-

ping on H, Fix(T) �=� 0, and ω Î (0, 1]. Then the following statements are reached:

(a1) Fix(T) = Fix(Tω);

(a2) Tω is quasi-nonexpansive;

(a3) ||Tωx - q||2 ≤ ||x - q||2 - ω(1 - ω)||Tx - x||2 for all x Î H and q Î Fix(T);

(a4) 〈x − Tωx, x − q〉 ≥ ω
2 ‖x − Tx‖2for all x Î H and q Î Fix(T).

Remark 2.4. (a4) was revised by Wongchan and Saejung [12] (Proposition 2).

Lemma 2.5. [13]Let {Γn} be a sequence of real numbers that does not decrease at infi-

nity, in the sense that there exist a subsequence {�nj}j≥0of {Γn} which satisfies
�nj < �nj+1for all j ≥ 0. Also consider the sequence of integers {τ (n)}n≥n0defined by

τ (n) = max{k ≤ n|�k < �k+1}.

Then {τ (n)}n≥n0is a nondecreasing sequence verifying limn®∞ τ(n) = ∞ and for all n ≥

n0, it holds that Γτ(n) < Γτ(n)+1 and we have

�n ≤ �τ(n)+1.

Recall the metric projection PK form a Hilbert space H to a closed convex subset K

of H is defined: for each x Î H, there exists a unique element PKx Î K such that

‖x − PKx‖ := inf{∥∥x − y
∥∥ : y ∈ K}.

Lemma 2.6. Let K be a closed convex subset of H. Given x Î H, and z Î K, z = PKx,

if and only if there holds the inequality:

〈x − z, y − z〉 ≤ 0, ∀y ∈ K.

Lemma 2.7. If x* is the solution of the variational inequality (1.5) with demi-closed-

ness of T and {yn} Î H is a bounded sequence such that ||Tyn - yn|| ® 0, then

lim inf
n→∞ 〈(A − γ f )x∗, yn − x∗〉 ≥ 0. (2:1)

Proof. We assume that there exists a subsequence {ynj} of {yn} such that ynj ⇀ ỹ.

From the given conditions ||Tyn - yn|| ® 0 and T: H ® H demi-closed, we have that

any weak cluster point of {yn} belongs to the fixed point set Fix(T). Hence, we con-

clude that ỹ ∈ Fix(T), and also have that

lim inf
n→∞ 〈(A − γ f )x∗, yn − x∗〉 = lim

j→∞
〈(A − γ f )x∗, ynj − x∗〉.

Recalling the (1.5), we immediately obtain

lim inf
n→∞ 〈(A − γ f )x∗, yn − x∗〉 = 〈(A − γ f )x∗, ỹ − x∗〉 ≥ 0.

This completes the proof.

3. Main results
Let H be a real Hilbert space, let A be a bounded linear operator on H, and let T be a

quasi-nonexpansive mapping on H, and f is a contraction with coefficient a; that is ||f
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(x) - f(y)|| ≤ a||x - y|| for all x, y Î H. Assume the set Fix(T) of fixed points of T is

nonempty and we note that Fix(T) is closed and convex (see [14] for more general

results).

Throughout this article, we assume that A is strongly positive; that is, there exist a

constant γ̄ > 0 such that 〈Ax, x〉 ≥ γ̄ ‖x‖2, for all x Î H. Let 0 < γ < γ̄ /α.

Theorem 3.1. Starting with an arbitrary chosen x0 Î H, let the sequence {xn} be gen-

erated by

xn+1 = αnγ f (xn) + (I − αnA)Tωxn, (3:1)

where the sequence {an} ⊂ (0,1) satisfies limn®∞ an = 0, and
∑∞

n=0 αn = ∞. Also

ω ∈ (0, 12), Tω: = (1 - ω)I + ωT with two conditions on T:

(C1) ||Tx - q|| ≤ ||x - q|| for any x Î H, and q Î Fix(T); this means that T is a

quasi-nonexpansive mapping;

(C2) T is demiclosed on H; that is: if {yk} Î H, yk ⇀ z, and (I - T)yk ® 0, then z Î
Fix(T).

Then {xn} converges strongly to the x* Î Fix(T) which is the unique solution of the

VIP:

〈(γ f − A)x∗, x − x∗〉 ≤ 0, ∀x ∈ Fix(T). (3:2)

Remark 3.2. Equivalently, from the VIP (3.2), we have

x∗ = PFix(T) ◦ (I − A + γ f )x∗. (3:3)

Proof. First we show that {xn} is bounded.

Take any p Î Fix(T), from Lemma 2.3 (a3), we have∥∥xn+1 − p
∥∥ =

∥∥αnγ f (xn) + (I − αnA)Tωxn − p
∥∥

=
∥∥αnγ (f (xn) − f (p)) + αn(γ f (p) − Ap) + (I − αnA)(Tωxn − p)

∥∥
≤ αnγ α

∥∥f (xn) − f (p)
∥∥ + αn

∥∥γ f (p) − Ap
∥∥ + (1 − αnγ̄ )

∥∥xn − p
∥∥

≤ (1 − αn(γ̄ − γ α))
∥∥xn − p

∥∥ + αn
∥∥γ f (p) − Ap

∥∥ .
(3:4)

By induction

∥∥xn − p
∥∥ ≤ max

{∥∥x0 − p
∥∥ ,

∥∥γ f (p) − Ap
∥∥

γ̄ − γ α

}
, ∀n ≥ 0.

Hence {xn} is bounded, so are the {f(xn)} and {A(xn)}.

Let x* = PFix(T) o(I - A + gf)x* From (3.1), we have

xn+1 − xn + αn(Axn − γ f (xn)) = (I − αnA)(Tωxn − xn). (3:5)

Since x* Î Fix(T), from (a4), and together with (3.5), we obtain

〈xn+1 − xn + αn(Axn − γ f (xn)), xn − x∗〉
= 〈(I − αnA)(Tωxn − xn), xn − x∗〉
= (1 − αn)〈Tωxn − xn, xn − x∗〉 + αn〈(I − A)(Tωxn − xn), xn − x∗〉
≤ −ω

2
(1 − αn)‖xn − Txn‖2 + ωαn〈(I − A)(T − I)xn, xn − x∗〉,
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it follows from the previous inequality that

−〈xn − xn+1, xn − x∗〉 ≤ −αn〈(A − γ f )xn, xn − x∗〉 − ω

2
(1 − αn)‖xn − Txn‖2

+ ωαn〈(I − A)(T − I)xn, xn − x∗〉.
(3:6)

From (iii), we obviously have

〈xn − xn+1, xn − x∗〉 = −1
2

∥∥xn+1 − x∗∥∥2 + 1
2

∥∥xn − x∗∥∥2 + 1
2

‖xn+1 − xn‖2. (3:7)

Set �n :=
1
2

‖xn − x∗‖2, and combine with (3.6), it follows that

�n+1 − �n − 1
2

‖xn+1 − xn‖2 ≤ −αn〈(A − γ f )xn, xn − x∗〉 − ω

2
(1 − αn)‖xn − Txn‖2

+ ωαn〈(I − A)(T − I)xn, xn − x∗〉.
(3:8)

Now, we calculate ||xn+1 - xn||.

From the given condition: Tω: = (1 - ω)I + ωT, it is easy to deduce that ||Tωxn - xn||

= ω||xn - Txn||. Thus, it follows from (3.5) that

‖xn+1 − xn‖2 =
∥∥αn(γ f (xn) − Axn) + (I − αnA)(Tωxn − xn)

∥∥2
≤ 2α2

n

∥∥γ f (xn) − Axn
∥∥2 + 2(1 − αnγ̄ )2‖Tωxn − xn‖2

≤ 2α2
n

∥∥γ f (xn) − Axn
∥∥2 + 2(1 − αnγ̄ )‖Tωxn − xn‖2

≤ 2α2
n

∥∥γ f (xn) − Axn
∥∥2 + 2ω2(1 − αnγ̄ )‖Txn − xn‖2.

(3:9)

Then from (3.8) and (3.9), we have

�n+1 − �n +
[ω

2
(1 − αn) − ω2(1 − αnγ̄ )

]
‖xn − Txn‖2

≤ αn

[
αn

∥∥γ f (xn) − Axn
∥∥2 − 〈(A − γ f )xn, xn − x∗〉

+ω〈(I − A)(T − I)xn, xn − x∗〉] .
(3:10)

Finally, we prove xn ® x*. To this end, we consider two cases.

Case 1: Suppose that there exists n0 such that {�n}n≥n0 is nonincreasing, it is equal to

Γ n+1 ≤ Γn for all n ≥ n0. It follows that limn®∞ Γn exists, so we conclude that

lim
n→∞(�n+1 − �n) = 0. (3:11)

It follows from (3.10), (3.11) and the fact that limn®∞ an = 0, we have limn®∞ ||xn
-Txn|| = 0. Again, from (3.10), we have

−αn[αn
∥∥γ f (xn) − Axn

∥∥2 − 〈(A − γ f )xn, xn − x∗〉 + ω〈(I − A)(T − I)xn, xn − x∗〉]
≤ �n − �n+1.

(3:12)

Then, by
∑∞

n=0 αn = ∞, we conclude that

lim inf
n→∞ −[αn

∥∥(γ f − A)xn
∥∥2 −〈(A−γ f )xn, xn − x∗〉+ω〈(I−A)(T− I)xn, xn − x∗〉] ≤ 0. (3:13)

Since {f(xn)} and {xn} are both bounded, as well as an ® 0, and limn®∞ ||xn - Txn|| =

0, it follows from (3.13) that

lim inf
n→∞ 〈(A − γ f )xn, xn − x∗〉 ≤ 0. (3:14)
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From Lemma 2.1, it is obvious that

〈(A − γ f )xn, xn − x∗〉 ≥ 〈(A − γ f )x∗, xn − x∗〉 + 2(γ̄ − γ α)�n. (3:15)

Thus, from (3.14), (3.15) and the fact that limn®∞ Γn exists, we immediately obtain

lim inf
n→∞ [〈(A − γ f )x∗, xn − x∗〉 + 2(γ̄ − γ α)�n]

= 2(γ̄ − γ α) lim
n→∞ �n + lim inf

n→∞ 〈(A − γ f )x∗, xn − x∗〉 ≤ 0,
(3:16)

or equivalently

2(γ̄ − γ α) lim
n→∞ �n ≤ − lim inf

n→∞ 〈(A − γ f )x∗, xn − x∗〉. (3:17)

Finally, by Lemma 2.7, we have

2(γ̄ − γ α) lim
n→∞ �n ≤ 0, (3:18)

so we conclude that limn®∞ Γn = 0, which equivalently means that {xn} converges

strongly to x*.

Case 2: Assume that there exists a subsequence{�nj}j≥0 of {Γn}n≥0 such that
�nj < �nj+1 for all j Î N. In this case, it follows from Lemma 2.5 that there exists a

subsequence {Γτ(n)} of {Γn} such that Γτ(n)+1 > Γτ(n), and {τ(n)} is defined as in Lemma

2.5.

Invoking the (3.10) again, it follows that

�τ(n)+1 − �τ(n) +
[ω

2
(1 − ατ(n)) − ω2(1 − ατ(n)γ̄ )

] ∥∥xτ(n) − Txτ(n)
∥∥2

≤ ατ(n)[ατ(n)
∥∥γ f (xτ(n)) − Axτ(n)

∥∥2 − 〈(A − γ f )xτ(n), xτ(n) − x∗〉
+ω〈(I − A)(T − I)xτ(n), xτ(n) − x∗〉].

Recalling the fact that Γτ(n)+1 > Γτ(n), we have[ω

2
(1 − ατ(n)) − ω2(1 − ατ(n)γ̄ )

] ∥∥xτ(n) − Txτ(n)
∥∥2

≤ ατ(n)[ατ(n)
∥∥γ f (xτ(n)) − Axτ(n)

∥∥2 − 〈(A − γ f )xτ(n), xτ(n) − x∗〉
+ω〈(I − A)(T − I)xτ(n), xτ(n) − x∗〉].

(3:19)

From the preceding results, we get the boundedness of {xn} and an ® 0, which

obviously lead to

lim
n→∞

∥∥xτ(n) − Txτ(n)
∥∥ = 0. (3:20)

Hence, combining (3.19) with (3.20), we immediately deduce that

〈(A − γ f )xτ(n), xτ(n) − x∗〉 ≤ ατ(n)
∥∥γ f (xτ(n)) − Axτ(n)

∥∥2
+ ω〈(I − A)(T − I)xτ(n), xτ(n) − x∗〉. (3:21)

Again, (3.15) and (3.21) yield

〈(A − γ f )x∗, xτ(n) − x∗〉 + 2(γ̄ − γ α)�τ(n) ≤ ατ(n)
∥∥γ f (xτ(n)) − Axτ(n)

∥∥2
+ ω〈(I − A)(T − I)xτ(n), xτ(n) − x∗〉. (3:22)
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Recall that limn®∞ a τ(n) = 0 and (3.20), we immediately have

2(γ̄ − γ α) lim sup
n→∞

�τ(n) ≤ − lim inf
n→∞ 〈(A − γ f )x∗, xτ(n) − x∗〉 (3:23)

By Lemma 2.7, we have

lim inf
n→∞ 〈(A − γ f )x∗, xτ(n) − x∗〉 ≥ 0. (3:24)

Consider (3.23) again, we conclude that

lim sup
n→∞

�τ(n) = 0, (3:25)

which means that limn®∞ Γτ(n) = 0. By Lemma 2.5, it follows that Γ n ≤ Γτ(n), thus,

we get limn®∞ Γn = 0, which is equivalent to xn ® x*.

Corollary 3.3. [11]Let the sequence {xn} be generated by

xn+1 = αnf (xn) + (1 − αn)Tωxn, (3:26)

where the sequence {an} ⊂ (0,1) satisfies limn®∞ an = 0, and
∑∞

n=0 αn = ∞. Also

ω ∈ (0, 12), and Tω: = (1 - ω)I + ωT with two conditions on T:

(C1) ||Tx - q|| ≤ ||x - q|| for any x Î H, and q Î Fix(T); this means that T is a

quasi-nonexpansive mapping;

(C2) T is demiclosed on H; that is: if{yk} Î H, yk ⇀ z, and (I - T)yk ® 0, z Î Fix(T).

Then {xn} converges strongly to the x* Î Fix(T) which is the unique solution of the VIP

(3.27):

〈(I − f )x∗, x − x∗〉 ≥ 0, ∀x ∈ Fix(T). (3:27)

Acknowledgements
M. Tian was supported by the Fundamental Research Funds for the Central Universities (No. ZXH2011C002).

Authors’ contributions
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 1 September 2011 Accepted: 20 February 2012 Published: 20 February 2012

References
1. Xu, HK: An iterative approach to quadratic optimizaton. J Optim Theory Appl. 116, 659–678 (2003). doi:10.1023/

A:1023073621589
2. Marino, G, Xu, HK: An general iterative method for nonexpansive mapping in Hilbert space. J Math Anal Appl. 318,

43–52 (2006). doi:10.1016/j.jmaa.2005.05.028
3. Topics in Nonlinear Analysis and Optimization. World Education, Delhi (2011)
4. Khan, AR, Yao, JC: Convergence of composite iterative schemes for zeros ofm-accretive operators in Banach spaces. In:

Ceng LC, Ansari QH (eds.) Nonlinear Anal Theory Methods Appl. 70, 1830–1840 (2009). doi:10.1016/j.na.2008.02.083
5. Khan, AR, Yao, JC: Viscosity Approximation Methods for Strongly Positive and Monotone Operators. In: Ceng LC, Ansari

QH (eds.) Fixed Point Theory. 10, 35–71 (2009)
6. Yao, Y, Shahzad, N: New methods with perturbations for nonexpansive mappings in Hilbert spaces. Fixed Point Theory

and Applications. 2011, 79 (2011). doi:10.1186/1687-1812-2011-79
7. Yao, Y, Shahzad, N: Strong convergence of a proximal point algorithm with general errors. Optim Lett
8. Yao, Y, Liou, YC, Chen, CP: Algorithms construction for nonexpansive mappings and inverse-strongly monotone

mappings. Taiwanese J Math. 15, 1979–1998 (2011)
9. Yao, Y, Liou, YC, Chen, CP: A unified implicit algorithm for solving the triple-hierarchical constrained optimization

problem. Math Comput Model. 55(3-4):1506–1515 (2012). doi:10.1016/j.mcm.2011.10.041

Tian and Jin Journal of Inequalities and Applications 2012, 2012:38
http://www.journalofinequalitiesandapplications.com/content/2012/1/38

Page 7 of 8



10. Moudafi, A: Viscosity approximation methods for fixed-points problems. J Math Anal Appl. 241, 46–55 (2000).
doi:10.1006/jmaa.1999.6615

11. Maingé, PE: The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces. Com-put Math
Appl. 59(1):74–79 (2009)

12. Wongchan, K, Saejung, S: On the strong convergence of viscosity approximation process of quasi-nonexpansive
mappings in Hilbert spaces. J Abstr Appl Anal 2011 (2011). Article ID 385843, 9

13. Maingé, PE: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex
minimization. Set-Valued Anal. 16(7-8):899–912 (2008). doi:10.1007/s11228-008-0102-z

14. Itoh, S, Takahashi, W: The common fixed point theory of singlevalued mappings and multivalued mappings. Pacific J
Math. 79(2):493–508 (2008)

doi:10.1186/1029-242X-2012-38
Cite this article as: Tian and Jin: A general iterative method for quasi-nonexpansive mappings in Hilbert space.
Journal of Inequalities and Applications 2012 2012:38.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Tian and Jin Journal of Inequalities and Applications 2012, 2012:38
http://www.journalofinequalitiesandapplications.com/content/2012/1/38

Page 8 of 8

http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1. Introduction
	2. Preliminaries
	3. Main results
	Acknowledgements
	Authors' contributions
	Competing interests
	References

