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Abstract

In this paper, we introduce the notions of g-homomorphism and g-derivation of a
ternary semigroup and investigate g-homomorphism and g-derivations on ternary
semigroup associated with the following functional in-equality |f([xyz]) - f(x) - f(y) - f
(z)| ≤ �(x, y, z) and |f([xxx]) - 3f(x)| ≤ �(x, x, x), respectively.
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1 Introduction and preliminaries
Ternary algebraic operations were considered in the 19th century by several mathema-

ticians such as Cayley [1] who introduced the notion of “cubic matrix” which in turn

was generalized by Kapranov, Gelfand and Zelevinskii et al. [2]. The simplest example

of such non-trivial ternary operation is given by the following composition rule:

{a, b, c}ijk =
∑

1≤l,m,n≤N

anilbljmcmkn (i, j, k = 1, 2, . . . . . . ,N).

Ternary structures and their generalization, the so-called n-ary structures, raise cer-

tain hopes in view of their possible applications in physics. Some significant physical

applications are described in [3,4].

In 1940, Ulam [5] gave a talk before the Mathematics Club of the University of Wis-

consin in which he discussed a number of unsolved problems. Among these was the

following question concerning the stability of homo-morphisms:

We are given a group G and a metric group G’ with metric r(·, ·). Given � > 0, does

there exist a δ > 0 such that if f : G ® G’ satisfies r(f(xy), f(x)f(y)) <δ for all x, y Î G,

then a homomorphism h : G ® G exists with r(f(x), h(x)) <� for all x Î G?

As mentioned above, when this problem has a solution, we say that the homomorph-

isms from G1 to G2 are stable. In 1941, Hyers [6] gave a partial solution of Ulams pro-

blem for the case of approximate additive mappings under the assumption that G1 and

G2 are Banach spaces. In 1978, Rassias [7] generalized the theorem of Hyers by consid-

ering the stability problem with unbounded Cauchy differences. This phenomenon of

stability that was introduced by Rassias [7] is called the Hyers-Ulam-Rassias stability.

In 1992, a generalization of Rassias theorem was obtained by Găvruta [8].
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During the last decades several stability problems of functional equations have been

investigated be many mathematicians. A large list of references concerning the stability

of functional equations can be found in [9-15].

In this article, using a sequence of Hyers type, we prove the generalized Hyers-

Ulam-Rassias stability of ternary g-homomorphisms and ternary g-derivations on com-

mutative ternary semigroups.

In the first section, which have preliminary character, we review some basic defini-

tions and properties related to ternary groups and semigroups (cf. also Rusakov [16]).

Definition 1.1. A nonempty set G with one ternary operation [ ]: G × G × G ® G is

called a ternary groupoid and denoted by (G, [ ]).

We say that (G, [ ]) is a ternary semigroup if the operation [ ] is associative, i.e., if

[[xyz]uv] = [x[yzu]v] = [xy[zuv]]

hold for all x, y, z, u, v Î G (see [17]). We shall write x3 instead of [xxx].

Definition 1.2. A ternary semigroup (G, [ ]) is a ternary group if for all a, b, c Î G,

there are x, y, z Î G such that

[xab] = [ayb] = [abz] = c.

One can prove (post [18]) that elements x, y, z are uniquely determined. Moreover,

according to the suggestion of post [18] one can prove (cf, Dudek et al. [19]) that in

the above definition, under the assumption of the associativity, it suffices only to pos-

tulate the existence of a solution of [ayb] = c, or equivalently, of [xab] = [abz] = c.

In a ternary group, the equation [xxz] = x has a unique solution which is denoted by

z = x̄ and called the skew element to x (cf. Dörnte [20]). As a consequence of results

obtained in [20] we have the following theorem:

Theorem 1.3. In any ternary group (G, [ ]) for all x, y, z Î G, the following identities

take place:

[xxx̄] = [xx̄x] = [x̄xx] = x,

[yxx̄] = [yx̄x] = [xx̄y] = [x̄xy] = y,

[xyz] = [z̄ȳx̄],

x = x.

Other properties of skew elements are described in [21,22].

Definition 1.4. A ternary groupoid (G, [ ]) is called s-commutative, if

[x1x2x3] = [xσ1xσ2xσ3 ] (1)

holds for all x1, x2, x3 Î G and all s Î S3. If (1) holds for all s Î S3, then (G, [ ]) is a

commutative groupoid. If (1) holds only for s = (13), i.e., if [x1x2x3] = [x3x2x1], then (G,

[ ]) is called semicommutative.

Definition 1.5. An element e Î G is called a middle identity or a middle neutral ele-

ment of (G, [ ]), if for all x Î G we have

[exe] = x.

An element e Î G satisfying the identity

[eex] = x
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is called a left identity or a left neutral element of (G, [ ]). Similarly, we define a right

identity. An element which is a left, middle, and right identity is called a ternary iden-

tity (or simply identity).

A mapping f : (G, [ ]) ® (G, [ ]) is called a ternary homomorphism if

f ([xyz]) = [f (x)f (y)f (z)]

for all x, y, z Î G.

A mapping f : (G, [ ]) ® (G, [ ]) is called a ternary Jordan homomorphism if

f ([xxx]) = [f (x)f (x)f (x)]

for all x Î G.

In Section 2, we define ternary g-homomorphism on ternary semigroup and investi-

gate their relations.

2 Ternary g-homomorphisms on ternary semigroups
Definition 2.1. Let G be a ternary semigroup. Then the maping H : G ® G is called a

ternary g-homomorphism if there exists a function g : G ® [0, ∞) such that

γ (H([xyz])) = γ ([H(x)H(y)H(z)]) = γ (H(x)) + γ (H(y)) + γ (H(z))

for all x, y, z Î G.

Theorem 2.2. Let G be a ternary semigroup and � : G × G × G ® [0, ∞) be a func-

tion such that

ϕ̃(x, y, z) :=
1
3

∞∑
n=0

3−nϕ(x3
n
, y3

n
, z3

n
) < ∞.

Suppose that H : G ® G and f : G ® [0, ∞) are functions such that
∣∣f ([xyz]) − f (x) − f (y) − f (z)

∣∣ ≤ ϕ(x, y, z) (2)

∣∣f (H([xyz])) − f ([H(x)H(y)H(z)])
∣∣ ≤ ϕ(x, y, z) (3)

for all x, y, z Î G. Then there exists a unique function g : G ® [0, ∞) such that
∣∣f (x) − γ (x)

∣∣ ≤ ϕ̃(x, x, x)

and g(x3) = 3g(x). If G is commutative and H is a ternary Jordan homomorphism,

then mapping H : G ® G is a ternary g-homomorphism.

Proof. Putting y = z = x in inequality (2), we get
∣∣f (x3) − 3f (x)

∣∣ ≤ ϕ(x, x, x).

By induction, one can show that

∣∣3−nf (x3
n
) − f (x)

∣∣ ≤ 1
3

n−1∑
k=0

3−kϕ
(
x3

k
, x3

k
, x3

k
)
, (4)

for all x Î G and for all positive integer n, and

∣∣3−nf (33
n
) − 3−mf (x3

m
)
∣∣ ≤ 1

3

n−1∑
k=m

3−kϕ
(
x3

k
, x3

k
, x3

k
)
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for all x Î G and for all nonnegative integers m, n with m <n. Hence, {3−nf (x3
n
)} is a

Cauchy sequence in [0, ∞). Due to the completeness of [0, ∞) we conclude that this

sequence is convergent. Now, let

γ (x) = limn→∞3−nf (x3
n
), x ∈ G.

Hence

γ (x3) = limn→∞3−nf
(
x3

n+1
)
= 3limn→∞3−(n+1)f

(
x3

n+1
)
= 3γ (x)

for all x Î G. If n ® ∞ in inequality (4), we obtain
∣∣f (x) − γ (x)

∣∣ ≤ ϕ̃(x, x, x).

Next, assume that G is commutative and H : G ® G is a ternary Jordan homo-

morphism. Replace x by x3
n, y by y3

n and z by z3
n in inequalities (2) and (3) and divide

both sides by 3n to obtain the following:
∣∣∣3−nf ([xyz]3

n
) − 3−nf (x3

n
) − 3−nf (y3

n
) − 3−nf (z3

n
)
∣∣∣ ≤ 3−nϕ(x3

n
, y3

n
, z3

n
),

and
∣∣∣3−nf ((H[xyz])3

n
) − 3−nf ([H(x)H(y)H(z)]3

n
)
∣∣∣ ≤ 3−nϕ(x3

n
, y3

n
, z3

n
).

If n tends to infinity. Then

γ (H[xyz]) = γ ([H(x)H(y)H(z)]) = γ (H(x)) + γ (H(y)) + γ (H(z)),

for all x, y, z Î G. If g’ is another mapping with the required properties, then

∣∣γ (x) − γ ′(x)
∣∣ = 1

3n
∣∣3nγ (x) − 3nγ ′(x)

∣∣

=
1
3n

∣∣γ (x3n) − γ ′(x3
n
)
∣∣

≤ 1
3n

(
∣∣γ (x3n) − f (x3

n
)
∣∣ + ∣∣f (x3n) − γ ′(x3

n
)
∣∣)

≤ 2
3n

ϕ̃(x3
n
, x3

n
, x3

n
).

Passing to the limit as n ® ∞ we get g(x) = g’(x), x Î G. So g is unique. Therefore,

the mapping H : G ® G is a unique ternary g-homomorphism.

Theorem 2.3. Let G be a commutative ternary semigroup and � : G × G × G ® [0,

∞) be a function such that

ϕ̃(x, y, z) :=
1
3

∞∑
n=0

3−nϕ(x3
n
, y3

n
, z3

n
) < ∞.

Suppose that H : G ® G and f : G ® [0, ∞) are functions satisfying (2) and (3). If

there exists a mapping T : G ® G such that T is a ternary Jordan homomorphism and
∣∣f (H([xyz])) − f ([H(x)H(y)T(z)])

∣∣ ≤ ϕ(x, y, z) (5)

for all x, y, z Î G, then the mapping T : G ® G is a ternary g-homomorphism.
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Proof. By Theorem 2.2, there exists a unique mapping g : G ® [0, ∞) such that

γ (x) = limn→∞3−nf (x3
n
), x ∈ G,

and H : G ® G is a ternary g-homomorphism. It follows from (5) that

∣∣γ ([H(x)H(y)H(z)]) − γ ([H(x)H(y)T(z)])
∣∣

=
∣∣γ (H[xyz]) − γ ([H(x)H(y)T(z)])

∣∣

= limn→∞
1
3n

∣∣∣f ((H[xyz])3
n
) − f ([H(x)H(y)T(z)]3

n
)
∣∣∣

≤ limn→∞
1
3n

ϕ(x3
n
, y3

n
, z3

n
) = 0

for all x, y, z Î G. So, g([H(x)H(y)H(z)]) = g([H(x)H(y)T(z)]) for all x, y, z Î G. By (2),

g is ternary additive. Hence, g(H(x)) = g(T(x)) for all x Î G. Thus,

γ (T[xyz]) = γ (H[xyz]) = γ (H(x)) + γ (H(y)) + γ (H(z))

= γ (T(x)) + γ (T(y)) + γ (T(z)) = γ ([T(x)T(y)T(z)])

for all x, y, z Î G. Therefore T is a ternary g-homomorphism.

Corollary 2.4. Let G be a ternary group with identity element e and � : G5 ® [0, ∞)

be a function such that

ϕ̃(x, y, u.v.w) :=
1
3

∞∑
n=0

3−nϕ(x3
n
, y3

n
, u3

n
, v3

n
,w3n) < ∞.

Suppose that H : G ® G and f : G ® [0, ∞) are functions such that f(e) = 0, H(e) = e

and
∣∣f ([xyH([uvw])]) − f (x) − f (y) − f ([H(u)H(v)H(w)])

∣∣ (6)

≤ ϕ(x, y,H(u), v,w) (7)

for all x, y, u, v, w Î G. Then there exists a unique function g : G ® [0, ∞) such that

∣∣f (x) − γ (x)
∣∣ ≤ ϕ̃(x, x, x, e, e)

and g(x3) = 3g(x). If G is commutative and H is a ternary Jordan homomorphism,

then the mapping H : G ® G is a ternary g-homomorphism.

Proof. Letting v = w = e in (6), we get
∣∣f ([xyH(u)]) − f (x) − f (y) − f (H(u))

∣∣ ≤ ϕ(x, y,H(u), e, e)

and by putting x = y = e in (6) we get
∣∣f ([H([uvw])]) − f ([H(u)H(v)H(w)])

∣∣ ≤ ϕ(e, e,H(u), v,w).

The rest of the proof are similar to the proof of Theorem 2.2.

In next section, firstly we define ternary g-derivation on ternary semigroup and

investigate ternary g-derivations on ternary semigroups with the following functional

inequality |f([xxx]) - 3f(x)| ≤ �(x, x, x).
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3 Ternary g-derivations on ternary semigroups
Definition 3.1. Let G be a ternary semigroup. Then the map D : G ® G is called a

ternary g-derivation if there exists a function g : G ® [0, ∞) such that

γ (D([xyz])) = γ ([D(x)yz]) + γ ([xD(y)z]) + γ ([xyD(z)])

for all x, y, z Î G.

Theorem 3.2. Let G be a ternary semigroup and � : G × G × G ® [0, ∞) be a func-

tion such that

ϕ̃(x, y, z) :=
1
3

∞∑
n=0

3−nϕ(x3
n
, y3

n
, z3

n
) < ∞.

Suppose that f : G ® [0, ∞) is a function such that
∣∣f (x3) − 3f (x)

∣∣ ≤ ϕ(x, x, x) (8)

∣∣f (D([xyz])) − f ([D(x)yz]) − f ([xD(y)z]) − f ([xyD(z)])
∣∣ ≤ ϕ(x, y, z) (9)

for all x, y, z Î G and mapping D : G ® G. Then there exists a unique function g : G
® [0, ∞) such that

∣∣f (x) − γ (x)
∣∣ ≤ ϕ̃(x, x, x)

and g (x3) = 3g(x). If G is commutative and D is a ternary Jordan homomorphism,

then mapping D : G ® G is a ternary g-derivation.
Proof. By induction in (8), one can show that

∣∣3−nf (x3
n
) − f (x)

∣∣ ≤ 1
3

n−1∑
k=0

3−kϕ
(
x3

k
, x3

k
, x3

k
)
, (10)

for all x Î G and for all positive integer n, and

∣∣3−nf (33
n
) − 3−mf (x3

m
)
∣∣ ≤ 1

3

n−1∑
k=m

3−kϕ
(
x3

k
, x3

k
, x3

k
)

for all x Î G and for all nonnegative integers m, n with m <n. Hence, {3−nf (x3
n
)} is a

Cauchy sequence in [0, ∞). Due to the completeness of [0, ∞) we conclude that this

sequence is convergent. Set now

γ (x) = limn→∞3−nf (x3
n
), x ∈ G.

Hence

γ (x3) = limn→∞3−nf
(
x3

n+1
)
= 3limn→∞3−(n+1)f

(
x3

n+1
)
= 3γ (x)

for all x Î G. If n ® ∞ in inequality (10), we obtain
∣∣f (x) − γ (x)

∣∣ ≤ ϕ̃(x, x, x).

Next, assume that G is commutative and D : G ® G is a ternary Jordan homo-

morphism. Replace x by x3
n, y by y3

n and z by z3
n in inequality (9) and divide both

sides by 3n, we have
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∣∣∣3−nf (D([xyz])3
n
) − 3−nf ([D(x)yz]3

n
)

−3−nf ([xD(y)z]3
n
) − 3−nf ([xyD(z)]3

n
)
∣∣∣

≤ 3−nϕ(x3
n
, y3

n
, z3

n
).

If n tends to infinity. Then

γ (D([xyz])) = γ ([D(x)yz]) + γ ([xD(y)z]) + γ ([xyD(z)])

for all x, y, z Î G. If g’ is another mapping with the required properties, then

∣∣γ (x) − γ ′(x)
∣∣ = 1

3n
∣∣3nγ (x) − 3nγ ′(x)

∣∣

=
1
3n

∣∣γ (x3n) − γ ′(x3
n
)
∣∣

≤ 1
3n

(
∣∣γ (x3n) − f (x3

n
)
∣∣ + ∣∣f (x3n) − γ ′(x3

n
)
∣∣)

≤ 2
3n

ϕ̃(x3
n
, x3

n
, x3

n
).

Passing to the limit as n ® ∞ we get g(x) = g’(x), x Î G. This proves the uniqueness

of g. Thus, the mapping D : G ® G is a unique ternary g-derivation.
Corollary 3.3. Let G be a ternary semigroup, and � > 0. Suppose that f : G ® [0, ∞)

is a function such that
∣∣f (x3) − 3f (x)

∣∣ ≤ ε,

∣∣f (D([xyz])) − f ([D(x)yz]) − f ([xD(y)z]) − f ([xyD(z)])
∣∣ ≤ ε

for all x, y, z Î G and mapping D : G ® G. Then there exists a unique function g : G
® [0, ∞) such that

∣∣f (x) − γ (x)
∣∣ ≤ 1

2
ε

and g(x3) = 3g(x). If G is commutative and D is a ternary Jordan homomorphism,

then mapping D : G ® G is a ternary g-derivation.
Theorem 3.4. Let G be a commutative ternary semigroup and � : G × G × G ® [0,

∞) be a function such that

ϕ̃(x, y, z) :=
1
3

∞∑
n=0

3−nϕ(x3
n
, y3

n
, z3

n
) < ∞.

Suppose that D : G ® G is a ternary Jordan homomorphism and f : G ® [0, ∞) is a

function such that

f (x3
n
) = 3nf (x)

∣∣f (D([xyz])) − f ([D(x)yz]) − f ([xD(y)z]) − f ([xyD(z)])
∣∣ ≤ ϕ(x, y, z) (11)

for all x, y, z Î G and for all positive integer n. Then the mapping D : G ® G is a

ternary f-derivation.
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Proof. Since G is commutative and D : G ® G is ternary Jordan homomorphism.

Replace x by x3
n, y by y3

n and z by z3
n in inequality (11) and divide both sides by 3n to

obtain the following:
∣∣∣3−nf (D([xyz])3

n
) − 3−nf ([D(x)yz]3

n
)

−3−nf ([xD(y)z]3
n
) − 3−nf ([xyD(z)]3

n
)
∣∣∣

≤ 3−nϕ(x3
n
, y3

n
, z3

n
).

If n tends to infinity. Then

f (D([xyz])) = f ([D(x)yz]) + f ([xD(y)z]) + f ([xyD(z)])

for all x, y, z Î G. Thus, the mapping D : G ® G is a ternary f-derivation.

4 Ternary (g, h)-derivations on ternary semigroups
In this section, we introduce concept ternary (g, h)-derivations on ternary semigroups

and investigate ternary (g, h)-derivations on ternary semigroups with the following

functional inequality |f([xxx]) - 3f(x)| <�(x, x, x).

Definition 4.1. Let G be a ternary semigroup. Then the maping D : G ® G is called

ternary (g, h)-derivation if there exists mappings h : G ® G and g : G ® [0, ∞) such

that

γ (D([xyz])) = γ ([D(x)h(y)h(z)]) + γ ([h(x)D(y)h(z)]) + γ ([h(x)h(y)D(z)])

for all x, y, z Î G.

Theorem 4.2. Let G be a ternary semigroup, and let � : G × G × G ® [0, ∞) be a

function such that

ϕ̃(x, y, z) :=
1
3

∞∑
n=0

3−nϕ(x3
n
, y3

n
, z3

n
) < ∞.

Suppose that D, h : G ® G and f : G ® [0, ∞) are functions such that
∣∣f (x3) − 3f (x)

∣∣ ≤ ϕ(x, x, x) (12)

∣∣f (D([xyz])) − f ([D(x)h(y)h(z)]) − f ([h(x)D(y)h(z)]) (13)

−f ([h(x)h(y)D(z)])
∣∣ ≤ ϕ(x, y, z) (14)

for all x, y, z Î G. Then there exist a unique function g : G ® [0, ∞) such that
∣∣f (x) − γ (x)

∣∣ ≤ ϕ̃(x, x, x)

and g(x3) = 3g(x). If G is commutative and D, h are ternary homomorphisms, then

mapping D : G ® G is a ternary (g, h)-derivation.
Proof. By a similar method to the proof of Theorem 3.2 we obtain

γ (x) = limn→∞3−nf (x3
n
), x ∈ G.

Such that
∣∣f (x) − γ (x)

∣∣ ≤ ϕ̃(x, x, x)
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and

γ (x3) = 3γ (x)

for all x Î G.

Now suppose that G is commutative and D, h : G ® G are ternary homomorphism.

Replace x by x3
n, y by y3

n and z by z3
n in inequality (13) and divide both sides by 3n to

obtain the following:
∣∣∣3−nf (D([xyz])3

n
) − 3−nf ([D(x)h(y)h(z)]3

n
)

−3−nf ([h(x)D(y)h(z)]3
n
) − 3−nf ([h(x)h(y)D(z)]3

n
)
∣∣∣

≤ 3−nϕ(x3
n
, y3

n
, z3

n
).

Let n tend to infinity. Then

γ (D([xyz])) = γ ([D(x)h(y)h(z)]) + γ ([h(x)D(y)h(z)]) + γ ([h(x)h(y)D(z)])

for all x, y, z Î G.

If in Theorem 4.2 replace inequality 12 by equation f (x3
n
) = 3nf (x) to obtain the fol-

lowing Theorem.

Theorem 4.3. Let G be a commutative ternary semigroup and � : G × G × G ® [0,

∞) be a function such that

ϕ̃(x, y, z) :=
1
3

∞∑
n=0

3−nϕ(x3
n
, y3

n
, z3

n
) < ∞.

Suppose that D, h : G ® G are ternary Jordan homomorphism and f : G ® [0, ∞) is

a function such that

f (x3
n
) = 3nf (x)

∣∣f (D([xyz])) − f ([D(x)h(y)h(z)]) − f ([h(x)D(y)h(z)])

−f ([h(x)h(y)D(z)])
∣∣ ≤ ϕ(x, y, z)

for all x, y, z Î G and for all positive integer n. Then the mapping D : G ® G is a

ternary (f, h)-derivation.
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