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Abstract

In this article we discuss some new generalized nonlinear Gronwall-Bellman-Type
integral inequalities with two variables, which include a non-constant term outside
the integrals. We use our result to deal with the estimate on the solutions of partial
differential equations with the initial and boundary conditions.
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1 Introduction
Various generalizations of Gronwall inequality [1,2] are fundamental tools in the study

of existence, uniqueness, boundedness, stability and other qualitative properties of solu-

tions of differential equations, integral equations, and differential-integral equations.

There are a lot of articles investigating its generalizations such as [3-23]. Recently, Pach-

patte [19] provided the explicit estimations of following integral inequalities:

up(t) ≤ c + p
n∑
i=1

αi(t)∫

αi(t0)

[ai(s)up(s) + bi(s)u(s)]ds,

up(t) ≤ c + p
n∑
i=1

αi(t)∫

αi(t0)

[ai(s)u(s)w(u(s)) + bi(s)u(s)]ds,

and

up(x, y) ≤ c + p
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[ai(s, t)up(s, t) + bi(s, t)u(s, t)]dtds,

up(x, y) ≤ c + p
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[ai(s, t)u(s, t)w(u(s, t)) + bi(s, t)u(s, t)]dtds,

Wang Journal of Inequalities and Applications 2012, 2012:31
http://www.journalofinequalitiesandapplications.com/content/2012/1/31

© 2012 Wang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:wang4896@126.com
mailto:wang4896@126.com
http://creativecommons.org/licenses/by/2.0


where c is a constant. Cheung [7] investigated the inequality

up(x, y) ≤ a +
p

p − q

b1(x)∫

b1(x0)

c1(y)∫

c1(y0)

g1(s, t)uq(s, t)dtds

+
p

p − q

b2(x)∫

b2(x0)

c2(y)∫

c2(y0)

g2(s, t)uq(s, t)ψ(u(s, t))dtds.

Agarwal et al. [3] obtained the explicit bounds to the solutions of the following

retarded integral inequalities:

ϕ(u(t)) ≤ c +
n∑
i=1

αi(t)∫

αi(t0)

uq(s)[fi(s)ϕ(u(s)) + gi(s)]ds,

ϕ(u(t)) ≤ c +
n∑
i=1

αi(t)∫

αi(t0)

uq(s)[fi(s)ϕ1(u(s)) + gi(s)ϕ2(log(u(s)))]ds,

ϕ(u(t)) ≤ c +
n∑
i=1

αi(t)∫

αi(t0)

uq(s)[fi(s)L(s, u(s)) + gi(s)u(s)]ds,

where c is a constant. Chen et al. [6] discussed the following inequalities:

ψ(u(x, y)) ≤ c +

γ (x)∫

γ (x0)

δ(y)∫

δ(y0)

f (s, t)ϕ(u(s, t))dtds,

ψ(u(x, y)) ≤ c +

α(x)∫

α(x0)

β(y)∫

β(y0)

g(s, t)u(u, s)dtds

+

γ (x)∫

γ (x0)

δ(y)∫

δ(y0)

f (s, t)u(s, t)ϕ(u(s, t))dtds,

ψ(u(x, y)) ≤ c +

α(x)∫

α(x0)

β(y)∫

β(y0)

g(s, t)w(u(s, t))dtds

+

γ (x)∫

γ (x0)

δ(y)∫

δ(y0)

f (s, t)w(u(s, t))ϕ(u(s, t))dtds,

where c is a constant.

In this article, motivated mainly by the works of Agarwal et al. [3] and Chen et al. [6],

Cheung [7], Pachpatte [19], we discuss more general forms of following integral inequalities:

ψ(u(x, y)) ≤ a(x, y) + b(x, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

w(u(s, t))[fi(s, t)ϕ(u(s, t))

+ gi(s, t)]dtds,

(1:1)
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ψ(u(x, y)) ≤ a(x, y) + b(x, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

w(u(s, t))[fi(s, t)ϕ1(u(s, t))

+ gi(s, t)ϕ2(log(u(s, t)))]dtds,

(1:2)

ψ(u(x, y)) ≤ a(x, y) + b(x, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

w(u(s, t))[fi(s, t)L(s, t, u(s, t))

+ gi(s, t)u(s, t)]dtds,

(1:3)

for (x, y) Î [x0, x1) × [y0, y1), where a(x, y), b(x, y) are nonnegative and nondecreas-

ing functions in each variable. In inequalities (1.1)-(1.3), we generalized the constant c

in [1,5] to the function a(x,y), the function u(x) in [1] to the u(x,y) with two variables.

2 Main result
Throughout this article, x0, x1, y0, y1 Î ℝ are given numbers. I := [x0,x1), J := [y0,y1),

Δ:= [x0,x1) × [y0,y1), ℝ+ := [0,∞). Consider (1.1)-(1.3), and suppose that

(H1) ψ Î C(ℝ+, ℝ+) is a strictly increasing function with ψ(0) = 0 and ψ(t) ® ∞ as

t ® ∞;

(H2) a, b: Δ ® (0, ∞) are nondecreasing in each variable;

(H3) w, j, j1, j2 Î C(ℝ+,ℝ+) are nondecreasing with w(0) > 0, j(r) > 0, j1(r) > 0 and

j2(r) > 0 for r > 0;

(H4) ai Î C1(I,I) and bi Î C1(J,J) are nondecreasing such that ai(x) ≤ x, ai(x0) = x0, bi
(y) ≤ y and bi(y0) = y0, i = 1, 2,..., n;

(H5) fi, gi Î C(Δ,ℝ+), i = 1,2,...,n.

Theorem 1. Suppose that (H1-H5) hold and u(x,y) is a nonnegative and continuous

function on Δ satisfying (1.1). Then we have

u(x, y) ≤ ψ−1(W−1(�−1(B(x, y)))), (2:1)

for all (x,y) Î [x0,X1) × [y0,Y1), where

W(r) :=

r∫

1

ds

w(ψ−1(s))
, r > 0, W(0) := lim

r→0+
W(r), (2:2)

�(r) :=

r∫

1

ds

ϕ(ψ−1(W−1(s)))
, r > 0, �(0) := lim

r→0+
�(r), (2:3)

B(x, y) := �(A(x, y)) + b(x, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)dtds, (2:4)

A(x, y) := W(a(x, y)) + b(x, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

gi(s, t)dtds, (2:5)
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ψ-1, W-1 and F-1 denote the inverse function of ψ, W and F, respectively, and (X1,Y1)

Î Δ is arbitrarily given on the boundary of the planar region

R := {(x, y) ∈ 	 : B(x, y) ∈ Dom(�−1),�−1(B(x, y)) ∈ Dom(W−1)}. (2:6)

Proof. From assumption H2 and the inequality (1.1), we have

ψ(u(x, y)) ≤ a(X, y) + b(X, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

w(u(s, t))[fi(s, t)ϕ(u(s, t)) + gi(s, t)]dtds, (2:7)

for all (x,y) Î [x0,X] × [y0,y1), where x0 ≤ X ≤ X1 is chosen arbitrarily. Define a func-

tion h(x, y) by the right-hand side of (2.7). Clearly, h(x, y) is a positive and nondecreas-

ing function in each variable, h(x0,y) = a(X,y) > 0. Then, (2.7) is equivalent to

u(x, y) ≤ ψ−1(η(x, y)), (2:8)

for all (x,y) Î [x0,X] × [y0,y1). By the fact that ai(x) ≤ x for x Î [x0,x1), bi(y) ≤ y for y

Î [y0,y1),i = 1,2,...,n, and the monotonicity of w,ψ-1,h, we have for all (x,y) Î [x0,X] ×

[y0,y1),

ηx(x, y) = b(X, y)
n∑
i=1

α′
i(x)

βi(y)∫

βi(y0)

w(u(αi(x), t))[fi(αi(x), t)ϕ(u(αi(x), t)) + gi(αi(x), t)]dt

≤ w(ψ−1(η(x, y)))b(X, y)
n∑
i=1

α′
i(x)

βi(y)∫

βi(y0)

[fi(αi(x), t)ϕ(ψ−1(η(αi(x), t)))]

+ gi(αi(x), t)]dt.

(2:9)

From (2.9), we get

ηx(x, y)
w(ψ−1(η(x, y)))

≤ b(X, y)
n∑
i=1

α′
i(x)

βi(y)∫

βi(y0)

[fi(αi(x), t)ϕ(ψ−1(η(αi(x), t)))

+ gi(αi(x), t)]dt,

(2:10)

for all (x,y) Î [x0,X] × [y0,y1). Integrating (2.10) from x0 to x, by the definition of W

in (2.2), we get for all (x,y) Î [x0,X] × [y0,y1),

W(η(x, y)) ≤ W(η(x0, y)) + b(X, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)ϕ(ψ−1(η(s, t))) + gi(s, t)

]
dtds

= W(a(X, y)) + b(X, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)ϕ(ψ−1(η(s, t))) + gi(s, t)

]
dtds

≤ W(a(X, y)) + b(X, y)
n∑
i=1

αi(X)∫

αi(x0)

βi(y)∫

βi(y0)

gi(s, t)dtds

+ b(X,Y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)ϕ(ψ−1(η(s, t)))dtds

= c(X, y) + b(X, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)ϕ(ψ−1(η(s, t)))dtds,

(2:11)
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where

c(X, y) = W(a(X, y)) + b(X, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

gi(s, t)dtds. (2:12)

Now, define a function Γ(x,y) by the right-hand side of (2.11). Clearly, Γ(x,y) is a

positive and nondecreasing function in each variable, Γ(x0,y) = c(X, y) > 0. then, (2.11)

is equivalent to

η(x, y) ≤ W−1(�(x, y)), (2:13)

for all (x,y) Î [x0,X] × [y0,Y1), where Y1 is defined in (2.6). By the fact that ai(x) ≤ x

for x Î [x0,x1), bi(y) ≤ y for y Î [y0,y1), i = 1, 2,...,n, and the monotonicity of j, ψ-1, W-

1, Γ, we have for all (x,y) Î [x0,X] × [y0,Y1),

�x(x, y) = b(X, y)
n∑
i=1

αi
′(x)

βi(y)∫

βi(y0)

fi(αi(x), t)ϕ(ψ−1(η(αi(x), t)))dt

≤ b(X, y)ϕ(ψ−1(W−1(�(x, y))))
n∑
i=1

αi
′(x)

βi(y)∫

βi(y0)

fi(αi(x), t)dt.

(2:14)

From (2.14), we have for all (x,y) Î [x0,X] × [y0,Y1),

�x(x, y)
ϕ(ψ−1(W−1(�(x, y))))

≤ b(X, y)
n∑
i=1

αi
′(x)

βi(y)∫

βi(y0)

fi(αi(x), t)dt. (2:15)

Integrating (2.15) from x0 to x, by the definition of F in (2.3), we get

�(�(x, y)) ≤ �(�(x0y)) + b(X, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)dtds

= �(c(X,Y)) + b(X, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)dtds,

(2:16)

for all (x,y) Î [x0,X] × [y0,Y1). From (2.12) and (2.16), we find

�(x, y) ≤ �−1

⎛
⎜⎝�(c(X, y)) + b(X, y)

n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)dtds

⎞
⎟⎠

= �−1

⎛
⎜⎝�

⎛
⎜⎝W(a(X, y)) + b(X, y)

n∑
i=1

αi(X)∫

αi(x0)

βi(y)∫

βi(y0)

gi(s, t)dtds

⎞
⎟⎠

+b(X, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)dtds

⎞
⎟⎠ ,

(2:17)
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for all (x, y) Î [x0, X] × [y0, Y1). From (2.8), (2.13), and (2.17), we get

u(x, y) ≤ ψ−1(η(x, y)) ≤ ψ−1(W−1(�(x, y)))

≤ ψ−1 (
W−1 (

�−1 (�

⎛
⎜⎝W(a(X, y)) + b(X, y)

n∑
i=1

αi(X)∫

αi(x0)

βi(y)∫

βi(y0)

gi(s, t)dtds

⎞
⎟⎠

+b(X, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)dtds

⎞
⎟⎠

⎞
⎟⎠

⎞
⎟⎠ ,

(2:18)

for all (x, y) Î [x0,X] × [y0,Y1). Let x = X, from (2.18), we observe that

u(X, y) ≤ ψ−1 (
W−1 (

�−1 (�

⎛
⎜⎝W(a(X, y)) + b(X, y)

n∑
i=1

αi(X)∫

αi(x0)

βi(y)∫

βi(y0)

gi(s, t)dtds|

⎞
⎟⎠

+b(X, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)dtds

⎞
⎟⎠

⎞
⎟⎠

⎞
⎟⎠ ,

(2:19)

for all (X, y) Î [x0, X1) × [y0, Y1), where X1 is defined by (2.6). Since X Î [x0, X1) is

arbitrary, from (2.19), we get the required estimations

u(x, y) ≤ ψ−1 (
W−1 (

�−1 (�

⎛
⎜⎝W(a(x, y)) + b(x, y)

n∑
i=1

αi(X)∫

αi(x0)

βi(y)∫

βi(y0)

gi(s, t)dtds

⎞
⎟⎠

+b(x, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)dtds

⎞
⎟⎠

⎞
⎟⎠

⎞
⎟⎠ ,

for all (x,y) Î [x0,X1) × [y0,Y1). Theorem 1 is proved.

Remark that Theorem 1 generalizes Theorem 2.1 in [3].

Theorem 2. Suppose that (H1-H5) hold and u(x,y) is a nonnegative and continuous

function on Δ satisfying (1.2). Then

(i) if j1(u) ≥ j2(log(u)), we have

u(x, y) ≤ ψ−1 [
W−1 (

ψ−1
1

(
D1(x, y)

))]
, (2:20)

for all (x,y) Î [x0,X2) × [y0,Y2),

(ii) if j1(u) <j2(log(u)), we have

u(x, y) ≤ ψ−1 [
W−1 (

�−1
2 (D2(x, y))

)]
, (2:21)

for all (x,y) Î [x0,X3) × [y0,Y3), where W is defined by (2.2) in Theorem 1,

Dj(x, y) := �j(W(a(x, y))) + b(x, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t) + gi(s, t)

]
dtds,

�j(r) :=

r∫

1

ds
ϕj(ψ−1(W−1(s)))

, �j(0) := lim
r→0+

�j(r),

(2:22)
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j = 1, 2, ψ-1, W-1, �−1
1 and �−1

2 denote the inverse function of ψ, W, Ψ1 and Ψ2,

respectively, (X2,Y2) is arbitrarily given on the boundary of the planar region

R1 :=
{
(x, y) ∈ 	 : D1(x, y) ∈ Dom

(
�−1

1

)
,�−1

1 (D1(x, y)) ∈ Dom(W−1)
}
, (2:23)

and (X3,Y3) is arbitrarily given on the boundary of the planar region

R2 :=
{
(x, y) ∈ 	 : D2(x, y) ∈ Dom

(
�−1

2

)
,�−1

2 (D2(x, y)) ∈ Dom(W−1)
}
. (2:24)

Proof. From the inequality (1.2), we have

ψ(u(x, y)) ≤ a(X, y) + b(X, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

w(u(s, t))
[
fi(s, t)ϕ1(u(s, t))

+ gi(s, t)ϕ2(log(u(s, t)))
]
dtds,

(2:25)

for all (x,y) Î [x0,X] × [y0,y1), where x0 ≤ X ≤ X2 is chosen arbitrarily. Let Ξ(x,y)

denote the right-hand side of (2.25), which is a positive and nondecreasing function in

each variable, Ξ(x0,y) = a(X,y). Then, (2.25) is equivalent to u(x,y) ≤ ψ-1(Ξ(x,y)). By the

fact that ai(x) ≤ x for x Î [x0, x1), bi(y) ≤ y for y Î [y0, y1), i = 1, 2,..., n, and the mono-

tonicity of w,ψ-1,Ξ, we have for all (x,y) Î [x0,X] × [y0,y1),


x(x, y) = b(X, y)
n∑
i=1

αi
′(x)

βi(y)∫

βi(y0)

w(u(αi(s), t))
[
fi(αi(x), t) ϕ1(u(αi(x), t))

+gi(αi(x), t)ϕ2(log(u(αi(x), t)))
]
dt

≤ b(X, y)w(ψ−1(
(x, y)))
n∑
i=1

αi
′(x)

βi(y)∫

βi(y0)

[
fi(αi(x), t)ϕ1(ψ−1(
(αi(x), t)))

+gi(αi(x), t)ϕ2(log(ψ−1(
(αi(x), t))))
]
dt,

(2:26)

for all (x,y) Î [x0,X] × [y0,y1). From (2.26), we have


x(x, y)
w(ψ−1(
(x, y)))

≤ b(X, y)
n∑
i=1

αi
′(x)

βi(y)∫

βi(y0)

[
fi(αi(x), t)ϕ1(ψ−1(
(αi(x), t)))

+gi(αi(x), t)ϕ2(log(ψ−1(
(αi(x), t))))
]
dt,

(2:27)

for all (x,y) Î [x0,X] × [y0,y1). Integrating (2.27) from x0 to x, by the definition of W

in (2.2), we get

W(
(x, y)) ≤ W(
(x0, y)) + b(X, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)ϕ1(ψ−1(
(s, t)))

+gi(s, t)ϕ2(log(ψ−1(
(s, t))))
]
dtds

= W(a(X, y)) + b(X, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t) ϕ1(ψ−1(
(s, t)))

+gi(s, t)ϕ2(log(ψ−1(
(s, t))))
]
dtds,

(2:28)
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for all (x,y) Î [x0,X] × [y0,y1).

When j1(u) ≥ j2(log(u)), from the inequality (2.28), we have

W(
(x, y)) ≤ W(a(X, y)) + b(X, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)

+gi(s, t)
]
ϕ1(ψ−1(
(s, t)))dtds,

(2:29)

for all (x,y) Î [x0,X] × [y0,y1). Now, define a function Θ(x,y) by the right-hand side of

(2.29). Clearly, Θ(x,y) is a positive and nondecreasing function in each variable, Θ(x0,y)

= W(a(X,y)) > 0. Then, (2.29) is equivalent to


(x, y) ≤ W−1(�(x, y)), ∀(x, y) ∈ [x0,X] × [
y0,Y2

)
, (2:30)

where Y2 is defined by (2.23). Differentiating Θ(x,y) in x for any fixed y Î [y0,Y2), we

have

�x(x, y) = b(X, y)
n∑
i=1

αi
′(x)

βi(y)∫

βi(y0)

[
fi(αi(x), t) + gi(αi(x), t)

]
ϕ1(ψ−1(
(αi(x), t)))dt

≤ b(X, y)ϕ1(ψ−1(W−1(�(x, y))))
n∑
i=1

αi
′(x)

βi(y)∫

βi(y0)

[
fi(αi(x), t) + gi(αi(x), t)

]
dt,

(2:31)

for all (x,y) Î [x0,X] × [y0,Y2). From (2.31), we have

�x(x, y)
ϕ1(ψ−1(W−1(�(x, y))))

≤ b(X, y)
n∑
i=1

αi
′(x)

βi(y)∫

βi(y0)

[
fi(αi(x), t) + gi(αi(x), t)

]
dt, (2:32)

for all (x,y) Î [x0,X] × [y0,Y2). Integrating (2.32) from x0 to x, by the definition of Ψ1

in (2.22), we obtain

�1(�(x, y)) ≤ �1(�(x0, y)) + b(X, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t) + gi(s, t)

]
dtds

= �1
(
W(a(X, y))

)
+ b(X, y)

n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t) + gi(s, t)

]
dtds.

(2:33)

From (2.30) and (2.33), we conclude

u(x, y) ≤ ψ−1(
(x, y)) ≤ ψ−1(W−1(�(x, y))) ≤ ψ−1 [
W−1 (

�−1
1 (

�1(W(a(X, y))) + b(X, y)
n∑
i=1

αi(x)∫

αi(x)

βi(y)∫

βi(y0)

[
fi(s, t) + gi(s, t)

]
dtds

⎞
⎟⎠

⎞
⎟⎠

⎤
⎥⎦ ,

(2:34)

for all (x,y) Î [x0,X] × [y0,Y2). Let x = X, from (2.34), we get

u(X, y) ≤ ψ−1 [
W−1 (

�−1
1

(
�1(W(a(X, y)))

+b(X, y)
n∑
i=1

αi(X)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t) + gi(s, t)

]
dtds

⎞
⎟⎠

⎞
⎟⎠

⎤
⎥⎦ .

(2:35)
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Since X Î [x0,X2) is arbitrary, from the inequality (2.35), we obtain the required

inequality in (2.20).

When j1(u) ≤ j2(log(u)), from the inequality (2.28), we have

W(
(x, y)) ≤ W(a(X, y)) + b(X, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)

+gi(s, t)
]
ϕ2(log(ψ−1(
(s, t))))dtds,

≤ W(a(X, y)) + b(X, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)

+gi(s, t)
]
ϕ2(ψ−1(
(s, t)))dtds,

(2:36)

for all (x,y) Î [x0,X] × [y0,y1), where x0 ≤ X ≤ X3. Similarly to the above process from

(2.29) to (2.35), from (2.36), we obtain

u(X, y) ≤ ψ−1 [
W−1 (

�−1
2

(
�2(W(a(X, y)))

+b(X, y)
n∑
i=1

αi(X)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t) + gi(s, t)

]
dtds

⎞
⎟⎠

⎞
⎟⎠

⎤
⎥⎦ .

(2:37)

Since X Î [x0,X3) is arbitrary, where X3 is defined by (2.24), from the inequality

(2.37), we obtain the required inequality in (2.21).

Theorem 3. Suppose that (H1-H5) hold and that L,M ∈ C
(
R3
+,R+

)
satisfy

0 ≤ L(s, t, u) − L(s, t, v) ≤ M(s, t, v)(u − v), (2:38)

for s, t, u, v Î ℝ+ with u >v ≥ 0. If u(x,y) is a nonnegative and continuous function on

Δ satisfying (1.3), then we have

u(x, y) ≤ ψ−1 [
W−1 (

�−1
3

(
E

(
x, y

)))]
, (2:39)

for all (x,y) Î [x0,X4) × [y0,Y4), where W is defined by (2.2),

�3(r) :=

r∫

1

ds

ψ−1(W−1(s))
, r > 0, �3(0) := lim

r→0+
�3(r), (2:40)

E(x, y) := �3(F(x, y)) + b(x, y)
n∑
i=1

αi(x)∫

i=1

βi(y)∫

βi(y0)

[
fi(s, t)M(s, t, 0) + gi(s, t)

]
dtds,

F(x, y) := W(a(x, y)) + b(x, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)L(s, t, 0)dtds,

ψ-1,W-1 and �−1
3 denote the inverse function of ψ, W and Ψ3, respectively, and (X4,Y4)

Î Δ is arbitrarily given on the boundary of the planar region
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R := {(x, y) ∈ 	 : E(x, y) ∈ Dom(�−1
3 ),�−1

3 (E(x, y)) ∈ Dom(W−1)}. (2:41)

Proof. From the inequality (1.3), we have

ψ(u(x, y)) ≤ a(X, y) + b(X, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

w(u(s, t))
[
fi(s, t)L(s, t, u(s, t))

+gi(s, t)u(s, t)
]
dtds,

(2:42)

for all (x,y) Î [x0,X] × [y0,y1), where x0 ≤ X ≤ X4 is chosen arbitrarily. Let P(x,y)

denote the right-hand side of (2.42), which is a positive and nondecreasing function in

each variable, P(x0,y) = a(X,y). Similarly to the process in the proof of Theorem 2 from

(2.25) to (2.28), we obtain

W(P(x, y)) ≤ W(a(X, y)) + b(X, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)L(s, t,ψ−1(P(s, t)))

+gi(s, t)ψ−1(P(s, t))
]
dtds, ∀(x, y) ∈ [x0X] × [

y0, y1
)
.

(2:43)

From the inequality (2.38) and (2.43), we get

W(P(x, y)) ≤ W(a(X, y)) + b(X, y)
n∑
i=1

αi(X)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)L(s, t, 0)dtds

+ b(X, y)
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)M(s, t, 0) + gi(s, t)

]
ψ−1(P(s, t))dtds,

for all (x, y) Î [x0,X] × [y0,y1). Similarly to the process in the proof of Theorem 2

from (2.29) to (2.35), we obtain

u(X, y) ≤ ψ−1

⎡
⎢⎣W−1

⎛
⎜⎝�−1

3 (�3

⎛
⎜⎝W(a(X, y)) + b(X, y)

n∑
i=1

αi(X)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)L(s, t, 0)dtds

⎞
⎟⎠

+b(X, y)
n∑
i=1

αi(X)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)M(s, t, 0) + gi(s, t)

]
dtds

⎞
⎟⎠

⎞
⎟⎠

⎤
⎥⎦ ,

(2:44)

where Ψ3 is defined by (2.40). Since X Î [x0,X4) is arbitrary, where X4 is defined by

(2.41), from the inequality (2.44), we obtain the required inequality in (2.39).

3 Applications to BVP
In this section we use our result to study certain properties of solution of the following

boundary value problem (simply called BVP):
⎧⎨
⎩

∂2ψ(z(x, y))
∂x∂y

= F(x, y, z(α1(x),β1(y)), z(α2(x),β2(y)), ..., z(αn(x),βn(y))),

z(x, y0) = a1(x), z(x0, y) = a2(y), a1(x0) = a2(y0) = 0,
(3:1)

for x Î I,y Î J, where x0,y0,x1,y1 Î ℝ+ are constants, I := [x0,x1), J := [y0,y1), F Î C(I ×

J × ℝn,ℝ), ψ: ℝ ® ℝ is strictly increasing on ℝ+ with ψ(0) = 0, |ψ(r)| = ψ(|r|) > 0, for |
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r| > 0 and ψ(t) ® ∞ as t ® ∞; functions ai Î C1(I,I);bi Î C1(J,J),i = 1,2,...,n are nonde-

creasing such that ai(x) ≤ x, bi(y) ≤ y,ai(x0) = x0, bi(y0) = y0; |a1| Î C1(I,ℝ+), |a2| Î C1

(J,ℝ+) are both nondecreasing. Though this equation is similar to the equation dis-

cussed in Section 3 in [3], our results are more general than the results obtained in [3].

We first give an estimate for solutions of the BVP (3.1) so as to obtain a condition

for boundedness.

Corollary 1. Consider BVP (3.1) and suppose that F Î C(I × J × ℝn,ℝ) satisfies

∣∣F(x, y, u1, u2, ..., un)∣∣ ≤
n∑
i=1

w (|ui|)
[
fi(x, y)ϕ (|ui|) + gi(x, y)

]
, (x, y) ∈ I × J, (3:2)

where fi,gi Î C(I × J,ℝ+) and w,j Î C(ℝ+,ℝ+) are nondecreasing such that w(u) > 0,j
(u) > 0 for u > 0. Then all solutions z(x,y) of BVP (3.1) have the estimate

∣∣z(x, y)∣∣ ≤ ψ−1 (
W−1 (

�−1 (
B(x, y)

)))
, (3:3)

for all (x,y) Î [x0,X1) × [y0,Y1), where

B(x, y) := �(A(x, y)) +
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi
(
α−1
i (s),β−1

i (t)
)

αi
′ (α−1

i (s)
)
βi

′ (β−1
i (t)

)dtds,

A(x, y) := W
(
ψ

(∣∣a1(x)∣∣) + ψ
(∣∣a2(y)∣∣)) +

n∑
i=1

αi(x)∫

αi(x0)

β−1
i∫

βi(y0)

gi
(
α−1
i (s),β−1

i (t)
)

αi
′ (α−1

i (s)
)
βi

′ (β−1
i (t)

)dtds,

for all (x,y) Î [x0,X1) × [y0,Y1), where functions W, W-1, F, F-1 and real numbers X1,

Y1 are given as in Theorem 1.

Proof. The equivalent integral equation of BVP (3.1) is

ψ(z(x, y)) = ψ(a1(x)) + ψ(a2(y)) +

x∫
x0

y∫
y0

F
(
s, t, z(α1(s),β1(t)), z(α2(s),β2(t)) , ...,

z(αn(s),βn(t))
)
dtds.

(3:4)

By (3.2) and (3.4), we get that

ψ
(∣∣z(x, y)∣∣)
≤ ψ

(∣∣a1(x)∣∣) + ψ
(∣∣a2(y)∣∣)

+

x∫
x0

y∫
y0

∣∣F (
s, t, z(α1(s),β1(t)), z(α2(s),β2(t)), ..., z(α2(s),βn(t))

)∣∣ dtds

≤ ψ
(∣∣a1(x)∣∣) + ψ

(∣∣a2(y)∣∣)

+

x∫
x0

y∫
y0

n∑
i=1

w
(∣∣z(αi(s),βi(t))

∣∣) [
fi(s, t)ϕ

(∣∣z(αi(s),βi(t))
∣∣) + gi(s, t)

]
dtds

= ψ
(∣∣a1(x)∣∣) + ψ

(∣∣a2(y)∣∣) +
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

w
(∣∣z(s1, t1)∣∣) [

fi
(
α−1
i (s1),β

−1
i (t1)

)
ϕ

(∣∣z(s1, t1)∣∣) + gi
(
α−1
i (s1),β

−1
i (t1)

)]
αi

′ (α−1
i (s1)

)
βi

′ (β−1
i (t1)

) dt1ds1,

(3:5)
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where a change of variables s1 = ai (s), t1 = bi(t),i = 1,2,...,n are made. Clearly, the

inequality (3.5) is in the form of (1.1). Thus the estimate (3.3) of the solution z(x,y) in

this corollary is obtained immediately by our Theorem 1.

Our Corollary 1 actually gives a condition of boundedness for solutions. Concretely, if

ψ
(∣∣a1(x)∣∣) + ψ

(∣∣a2(y)∣∣) < ∞,

n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi
(
α−1
i (s),β−1

i (t)
)

αi
′ (α−1

i (s)
)
βi

′ (β−1
i (t)

)dtds < ∞,

n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

gi
(
α−1
i (s),β−1

i (t)
)

αi
′ (α−1

i (s)
)
βi

′ (β−1
i (t)

)dtds <∞,

on [x0,X1) × [y0,Y1), then every solution z(x,y) of BVP (3.1) is bounded on [x0,X1) ×

[y0,Y1).

Next, we discuss the uniqueness of solutions for BVP (3.1).

Corollary 2. Consider BVP (3.1) and suppose that F Î C(I × J × ℝn,ℝ) satisfies

∣∣F(x, y, u1, u2, . . . , un) − F(x, y, v1, v2, . . . , vn)
∣∣ ≤

n∑
i=1

fi(x, y)
∣∣ψ(ui) − ψ(vi)

∣∣, (3:6)

for all (x,y) Î I × J and ui, vi Î ℝ, i = 1, 2,..., n, where I = [x0, x1], J = [y0, y1] are two

finite intervals, and fi Î C(I × J,ℝ+),i = 1,2,...,n. Then BVP (3.1) has at most one solu-

tion on I × J.

Proof. Assume that both z(x,y) and z̃(x, y) are solutions of BVP (3.1). From the

equivalent integral Equations (3.4) and (3.6), we have
∣∣ψ(z(x, y)) − ψ(z̃(x, y))

∣∣

≤
x∫

x0

y∫
y0

∣∣F(s, t, z(α1(s),β1(t)), z(α2(s),β2(t)), . . . , z(αn(s),βn(t)))

−F(s, t, z̃(α1(s),β1(t)), z̃(α2(s),β2(t)), . . . , z̃(αn(s),βn(t)))
∣∣ dtds

≤
x∫

x0

y∫
y0

n∑
i=1

fi(s, t)
∣∣ψ(z(αi(s),βi(t))) − ψ(z̃(αi(s),βi(t)))

∣∣ dtds

≤ ε +

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

n∑
i=1

fi(α
−1
i (s1),β

−1
i (t1))

∣∣ψ(z(s1, t1)) − ψ(z̃(s1, t1))
∣∣

αi
′(α−1

i (s1))βi
′(β−1

i (t1))
dt1ds1,

(3:7)

for all (x,y) Î I × J, where changes of variables s1 = ai (s), t1 = bi(t) are made, ε > 0 is an

arbitrary small number. Clearly, the inequality (3.7) is in the form of (1.1). Suitably apply-

ing our Theorem 1 to (3.7), we get an estimate of the form (2.1) for all (x,y) Î I × J,

∣∣ψ(z(x, y)) − ψ(z̃(x, y))
∣∣ ≤ ε exp

⎛
⎜⎝

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

n∑
i=1

fi
(
α−1
i (s),β−1

i (t)
)

αi
′ (α−1

i (s)
)
βi

′ (β−1
i (t)

)dtds
⎞
⎟⎠ . (3:8)
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Letting ε ® 0+, since
∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

∑n

i=1

fi
(
α−1
i (s),β−1

i (t)
)

αi
′ (α−1

i (s)
)
βi

′ (β−1
i (t)

)dtds is finite on

finite intervals I and J, ψ is a strictly increasing function, from (3.8), we conclude that∣∣ψ(z(x, y)) − ψ(z̃(x, y))
∣∣ ≤ 0 , implying that z(x, y) = z̃(x, y) for all (x,y) Î I × J. The

uniqueness is proved.

Remark Suppose that F Î C(I × J × ℝn,ℝ) in BVP (3.1) satisfies

∣∣F(x, y, u1, u2, . . . , un)∣∣ ≤
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

w(u(s, t))
[
fi(s, t)ϕ1(u(s, t))

+gi(s, t)ϕ2(log(u(s, t)))
]
dtds.

By using Theorem 2, we can give an estimate for solutions of the BVP (3.1).

Suppose that F Î C(I × J × ℝn,ℝ) in BVP (3.1) satisfies

∣∣F(x, y, u1, u2, . . . , un)∣∣ ≤
n∑
i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

w(u(s, t))
[
fi(s, t)L(s, t, u(s, t))

+gi(s, t)u(s, t)
]
dtds.

By using Theorem 3, we can give an estimate for solutions of the BVP (3.1) too.
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