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1 Introduction
Suppose that ak > , p > , then we obtain the following Hardy inequality:

(
p

p – 

)p ∞∑
n=

apn >
∞∑
n=

(

n

n∑
k=

ak

)p

. (.)

Hardy’s inequality plays an important role in the field of analysis; see [–]. In recent
decades, some generalizations and strengthening ofHardy’s inequality have been obtained
in [–]. We list some previous results as follows.

Copson’s inequality [, ] Suppose that an >  (n = , ,  . . .). If p > , then

∞∑
n=

( ∞∑
k=n

ak
k

)p

< pp
∞∑
n=

anp. (.)

If  < p < , then

∞∑
n=

( ∞∑
k=n

ak
k

)p

> pp
∞∑
n=

apn. (.)

And in [] and [], the authors pay much attention to the generalization of Copson’s in-
equality.

In this paper, inequalities (.) and (.) were strengthened by using a new method.

2 Relational lemmas and definitions
In this section, some relational lemmas and definitions will be introduced.

Theorem A [, Th. .] Suppose that a,b ∈ R, a < b, c ∈ [a,b], and f : [a,b]n → R has
continuous partial derivatives, and

Di =
{
(x,x, . . . ,xn–, c)

∣∣ min
≤k≤n–

{xk} ≥ c,xi = min
≤k≤n–

{xk} �= c
}
, i = , , . . . ,n – .

© 2012 Xu; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2012/1/305
mailto:xq32153215@yahoo.com.cn
http://creativecommons.org/licenses/by/2.0


Xu Journal of Inequalities and Applications 2012, 2012:305 Page 2 of 11
http://www.journalofinequalitiesandapplications.com/content/2012/1/305

If ∂f (x)
∂xi

>  holds for all x ∈Di (i = , , . . . ,n – ), then

f (y, y, . . . , yn–, c) ≥ f (c, c, . . . , c, c),

where yi ∈ [c,b] (i = , , . . . ,n – ).

Theorem B [, Cor. .] Suppose that a,b ∈ R, a < b, and f : [a,b]n → R has continuous
partial derivatives and

Di =
{
(x,x, . . . ,xn)

∣∣a≤ min
≤k≤n

{xk} < xi = max
≤k≤n

{xk} ≤ b
}
, i = , , . . . ,n.

If ∂f (x)
∂xi

>  holds for all x ∈Di, where i = , , . . . ,n, then

f (x,x, . . . ,xn) ≥ f (xmin,xmin, . . . ,xmin),

where xi ∈ [a,b] (i = , , . . . ,n), xmin =min≤k≤n{xk}.

Definition  [] Let G ⊆R
n be a convex set, φ :H →R be a continuous function. If

φ
(
αx + ( – α)y

) ≤ (≥)αφ(x) + ( – α)φ(y)

holds for all x, y ∈G, α ∈ [, ], then the function ϕ is convex (concave).

Lemma  (Hermite-Hadamard’s inequality) Let φ : [a,b]→R be a convex (concave) func-
tion. Then

φ

(
a + b


)
≤ (≥)


b – a

∫ b

a
φ(x)dx≤ (≥)

φ(a) + φ(b)


, (.)

and the equality holds if and only if φ is linear.

Lemma  Suppose that p > .
() If p≥ , or  < p ≤ 

 , then

pp ≥ p; (.)

() If 
 < p < , then

p > pp; (.)

() If 
 < p < , then

pp + (p – )p > . (.)

Proof Set f : p ∈ (, +∞)→ p lnp + ln – p ln. Then we have

f′(p) = lnp +  – ln = ln

(
ep


)
.
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Obviously, f is monotone decreasing for p ∈ (, e ), f is monotone increasing for p ∈
( e , +∞), and f() = , f(  ) = – 

 ln + ln – 
 ln = , then (.) and (.) hold. Let

f : p ∈ (, ) → p lnp – p ln – ln( – p).

We get

f ′
(p) =


 – p

[
( – p) lnp + ( – p)( – ln) + 

] Def.=


 – p
h(p),

h′(p) = – lnp +

p
–  + ln

and

h′′(p) = –

p
–


p

< .

Then h is concave for p ∈ (, ). Because h(  ) >  and limp→– h(p) > , then h(p) >  and
f ′
(p) >  hold for p ∈ [  , ). From f(  ) = , we have f(p) >  for p ∈ (  , ). Inequality (.)
is proved. �

Lemma 
() If p > , then the equation

pp( – x)
(


– x

)p–

=  (.)

has only a positive root for x ∈ (,  ).
() If 

 < p < , then the equation

pp( + x) =
(


+ x

)–p

(.)

has only a positive root for x ∈ (,  ).

Proof
() Let g : x ∈ [,  ] → pp( – x)(  – x)p– – . Then g is monotone decreasing.

According to inequality (.), we have

g() = pp
(



)p–

–  =
(



)p–[
pp – p–

]
> 

and g(  ) = –. So, equation (.) has only a positive root for x ∈ (,  ).
() Let g : x ∈ [,  ] → pp( + x) – (  + x)–p. Thus,

g ′
(x) = pp – ( – p)

(


+ x

)–p

>
(


+ x

)–p[ 
p

· pp – ( – p)
]
.
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By inequality (.), g is monotone increasing. According to inequality (.), we get

lim
x→+

g(x) = pp –


–p
< 

and

lim
x→(/)+

g(x) =


pp –  ≥ 


·
(



) 

–  > .

Therefore, equation (.) has only a positive root for x ∈ (,  ).
�

Lemma  If p > , m > , m ∈ N and c ∈ (,  ) is the only one positive root of equation
(.), then

m∑
n=

[ ∞∑
k=n



(k – c)+

p

]p–

< pp(m – c)

p (.)

and

m∑
n=

[ m∑
k=n


(k – c)+/p

]p

< pp
m∑
n=

np

(n – c)p+
. (.)

Proof () Ifm = , by Lemma , we get

m∑
n=

[ ∞∑
k=n


(k – c)+/p

]p–

=

[ ∞∑
k=


(k – c)+/p

]p–

<
[∫ ∞





(x – c)+/p

dx
]p–

= pp–
(


– c

)–(p–)/p

.

Ifm ≥ , by Lemma , we get

m∑
n=

[ ∞∑
k=n


(k – c)+/p

]p–

<
m∑
n=

[∫ ∞

n– 



(x – c)+/p

]p–

= pp–
m∑
n=

(
n –



– c

)–(p–)/p

= pp–
[(



– c

)–(p–)/p

+
m∑
n=

(
n –



– c

)–(p–)/p
]

< pp–
[(



– c

)–(p–)/p

+
∫ m+ 






(
x –



– c

)–(p–)/p

dx
]

= pp–
[(



– c

)–(p–)/p

+ p(m – c)/p – p( – c)/p
]
.
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So,

m∑
n=

[ ∞∑
k=n


(k – c)+/p

]p–

< pp–
[(



– c

)–(p–)/p

+ p(m – c)/p – p( – c)/p
]

(.)

holds for every m >  andm ∈ N. Since inequalities (.), (.) and

(


– c

)–(p–)/p

= p( – c)/p, (.)

inequality (.) holds.
()

m∑
n=

[ m∑
k=n


(k – c)+/p

]p

= p
m∑
n=

∫ ∑m
k=n


(k–c)+/p


xp– dx

= p
m∑
n=

[∫ 
(m–c)+/p


xp– dx +

∫ 
(m–c)+/p

+ 
(m–c–)+/p


(m–c)+/p

xp– dx + · · ·

+
∫ ∑m

k=n


(k–c)+/p∑m
k=n+


(k–c)+/p

xp– dx
]

< p
m∑
n=

[


(m – c)+/p
·
(


(m – c)+/p

)p–

+


(m – c – )+/p

·
(


(m – c)+/p

+


(m – c – )+/p

)p–

+ · · · + 
(n – c)+/p

( m∑
k=n


(k – c)+/p

)p–]

= p

[
m

(m – c)+/p
·
(


(m – c)+/p

)p–

+
m – 

(m – c – )+/p

(


(m – c)+/p

+


(m – c – )+/p

)p–

+ · · · + 
( – c)+/p

( m∑
k=


k+/p

)p–]

= p
m∑
n=

m∑
k=n


(k – c)+/p

( m∑
i=k


(i – c)+/p

)p–

= p
m∑
n=

n
(n – c)+/p

( m∑
k=n


(k – c)+/p

)p–

.

Let q >  and /p + /q = . Using Hölder’s inequality, we have

m∑
n=

[ m∑
k=n


(k – c)+/p

]p

< p

[ m∑
n=

(
n

(n – c)+/p

)p
]/p

·
[ m∑

n=

( m∑
k=n


(k – c)+/p

)(p–)q]/q

= p

[ m∑
n=

np

(n – c)p+

]/p

·
[ m∑

n=

( m∑
k=n


(k – c)+/p

)p]/q

.
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Since

[ m∑
n=

( m∑
k=n


(k – c)+/p

)p]/p

< p

[ m∑
n=

np

(n – c)p+

]/p

,

inequality (.) holds. �

Lemma  If 
 < p < ,m > ,m ∈N and d ∈ (,  ) is the only one positive root of equation

(.), then

m∑
n=

[ m∑
k=n


(k + d)+/p

]p

> pp
m∑
n=

np

(n + d)p+
. (.)

Proof

m∑
n=

[ m∑
k=n


(k + d)+/p

]p

= p
m∑
n=

∫ ∑m
k=n


(k+d)+/p


xp– dx

= p
m∑
n=

[∫ 
(m+d)+/p


xp– dx +

∫ ∑m
k=m–


(k+d)+/p


(m+d)+/p

xp– dx +
∫ ∑m

k=m–


(k+d)+/p∑m
k=m–


(k+d)+/p

xp– dx + · · ·

+
∫ ∑m

k=n


(k+d)+/p∑m
k=n+


(k+d)+/p

xp– dx
]

> p
m∑
n=

[


(m + d)+/p

(


(m + d)+/p

)–(–p)

+


(m –  + d)+/p

( m∑
k=m–


(k + d)+/p

)–(–p)

+ · · ·

+


(n + d)+/p

( m∑
k=n


(k + d)+/p

)–(–p)]

= p
m∑
n=

n
(n + d)+/p

( m∑
k=n


(k + d)+/p

)–(–p)

. (.)

By Hölder’s inequality, we have

m∑
n=

[(
n

(n + d)+/p

( m∑
k=n


(k + d)+/p

)–(–p))p

·
( m∑

k=n


(k + d)+/p

)p(–p)]

<

[ m∑
n=

(
n

(n + d)+/p

( m∑
k=n


(k + d)+/p

)–(–p))]p

·
[ m∑

n=

( m∑
k=n


(k + d)+/p

)p]–p

.
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And by using inequality (.), we obtain

m∑
n=

n
(n + d)+/p

( m∑
k=n


(k + d)+/p

)–(–p)

·
[ m∑

n=

( m∑
k=n


(k + d)+/p

)p] –p
p

>

{ m∑
n=

[(
n

(n + d)+/p

( m∑
k=n


(k + d)+/p

)–(–p))p

·
( m∑

k=n


(k + d)+/p

)p(–p)]}/p

=

{ m∑
n=

[
np

(n + d)p+

( m∑
k=n


(k + d)+/p

)–(–p)p

·
( m∑

k=n


(k + d)+/p

)p(–p)]}/p

=

( m∑
n=

np

(n + d)p+

)/p

. (.)

From inequality (.) and inequality (.), we get

m∑
n=

( m∑
k=n


(k + d)+/p

)p

> p
[
∑m

n=
np

(n+d)p+ ]
/p

{∑m
n= [

∑m
k=n


(k+d)+/p ]

p} –p
p

and

{ m∑
n=

[ m∑
k=n


(k + d)+/p

]p}/p

> p

[ m∑
n=

np

(n + d)p+

]/p

.

Then inequality (.) holds. �

3 Strengthened Copson’s inequality (p > 1)
Theorem  Assume that p > , m > , m ∈ N, an >  (n = , , . . . ,m), c ∈ (,  ) is the only
one positive root of equation (.) and Bm =min≤n≤m{(n – c)/pan}. Then

pp
m∑
n=

apn –
m∑
n=

( m∑
k=n

ak
k – c

)p

≥ Bp
m

[
pp

m∑
n=


n – c

–
m∑
n=

( m∑
k=n


(k – c)+/p

)p]
. (.)

Proof Set bn = (n – c)/pan (n = , , . . . ,m). Then inequality (.) is equivalent to

pp
m∑
n=

bpn
n – c

–
m∑
n=

[ m∑
k=n

bk
(k – c)+/p

]p

≥ Bp
m

[
pp

m∑
n=


n – c

–
m∑
n=

( m∑
k=n


(k – c)+/p

)p]
, (.)

where Bm =min≤n≤N {bn}. Let

f : b = (b,b, . . . ,bm) ∈ [, +∞)m → pp
m∑
n=

bpn
n – c

–
m∑
n=

( m∑
k=n

bk
(k – c)+/p

)p
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and

Di =
{
(b,b, . . . ,bn)| ≤ min

≤n≤m
{bn} < bi = max

≤n≤m
{bn}

}
.

If (b,b, . . . ,bn) ∈Di, then

∂f
∂bi

= pp
pbp–i
i – c

–
p

(i – c)+/p

i∑
n=

( m∑
k=n

bk
(k – c)+/p

)p–

>
pbp–i

(i – c)+

p

[
pp(i – c)/p –

i∑
n=

( m∑
k=n


(k – c)+/p

)p–]

>
pbp–i

(i – c)+

p

[
pp(i – c)/p –

i∑
n=

( ∞∑
k=n


(k – c)+/p

)p–]
.

By inequality (.), we know ∂f
∂bi

> . By Theorem B, inequality (.) holds, the proof is
completed. �

Corollary  If p > ,m > ,m ∈N, an >  (n = , , . . . ,m), c ∈ (,  ) is the only one positive
root of equation (.), and Bm =min≤n≤m{(n – c)/pan}, then

pp
m∑
n=

apn –
m∑
n=

( m∑
k=n

ak
k – c

)p

> –ppBp
m

m∑
n=

np – (n – c)p

(n – c)p+
. (.)

Proof By (.) and (.), we can obtain

pp
m∑
n=

apn –
m∑
n=

( m∑
k=n

ak
k – c

)p

> ppBp
m

[ m∑
n=


n – c

–
m∑
n=

np

(n – c)p+

]

= –ppBp
m

m∑
n=

np – (n – c)p

(n – c)p+
. �

Corollary  If p > , an >  (n = , , . . .),
∑∞

n= a
p
n < +∞ and c ∈ (,  ) is the only one posi-

tive root of equation (.), then

∞∑
n=

( ∞∑
k=n

ak
k – c

)p

≤ pp
∞∑
n=

apn. (.)

Proof Because of
∑∞

n= a
p
n < +∞, the infimum of {(n – c)/pan}∞n= is zero. Then there exists

a sequence {mi|mi ∈N} such that {(mi – c)/pami}∞i= decrease to zero. Since (.), we have

pp
mi∑
n=

apn –
mi∑
n=

( mi∑
k=n

ak
k – c

)p

> –pp
[
(mi – c)/pami

]p mi∑
n=

np – (n – c)p+

(n – c)p+
. (.)

Let i → +∞ in inequality (.), we havemi → +∞ and

lim
i→+∞

[
(mi – c)/pami

]p mi∑
n=

np – (n – c)p+

(n – c)p+
= .
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Then by (.), we can obtain

pp
mi∑
n=

apn –
mi∑
n=

( mi∑
k=n

ak
k – c

)p

≥ .

Therefore, inequality (.) holds. �

Remark Obviously, inequality (.) strengthens inequality (.).

4 Strengthened Copson’s inequality (1/2 < p < 1)
Theorem  If 

 < p < , m > , m ∈ N, an >  (n = , , . . . ,m), d ∈ (,  ) is the only one
positive root of equation (.) and Bm =min≤n≤m{(n + d)/pan}. Then

m∑
n=

( m∑
k=n

ak
k + d

)p

– pp
m∑
n=

apn ≥ Bp
m

[ m∑
n=

( m∑
k=n


(k + d)+/p

)p

– pp
m∑
n=


n + d

]
. (.)

Proof Let bn = (n + d)/pan (n = , , . . . ,m). Then inequality (.) is equivalent to

m∑
n=

( m∑
k=n

bk
(k + d)+/p

)p

– pp
m∑
n=

bpn
n + d

≥ Bp
m

[
pp

m∑
n=


n
–

m∑
n=

( m∑
k=n


k+/p

)p]
, (.)

where Bm =min≤n≤m{bn}. Set

f : b ∈ (, +∞)m →
m∑
n=

( m∑
k=n

bk
(k + d)+/p

)p

– pp
m∑
n=

bpn
n + d

and Di = {(b,b, . . . ,bn)| ≤ min≤n≤m{bn} < bi =max≤n≤m{bn}}. If (b,b, . . . ,bn) ∈ Di,
then

∂f
∂bi

=
p

(i + d)+/p
i∑

n=

( m∑
k=n

bk
(k + d)+/p

)p–

– pp+
bp–i
i + d

=
pbp–i

(i + d)+/p

[ i∑
n=

( m∑
k=n

bk
(k + d)+/pbi

)–(–p)

– pp(i + d)/p
]

>
pbp–i

(i + d)+/p

[ i∑
n=

( m∑
k=n


(k + d)+/p

)–(–p)

– pp(i + d)/p
]

>
pbp–i

(i + d)+/p

[ i∑
n=

( ∞∑
k=n


(k + d)+/p

)–(–p)

– pp(i + d)/p
]
.

By Lemma , we have

∂f
∂bi

>
pbp–i

(i + d)+/p

[ i∑
n=

(∫ ∞

n– 



(x + d)+/p

dx
)–(–p)

– pp(i + d)/p
]

=
pbp–i

(i + d)+/p

[
p–(–p)

i∑
n=

(
n –



+ d

)(–p)/p

– pp(i + d)/p
]
.
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As i = , by the definition of d, we have

∂f
∂b

>
pbp–

( + d)+/p

[
p–(–p)

(


+ d

)(–p)/p

– pp( + d)/p
]
= .

As  ≤ i ≤ m, because 
 < p < ,  < p–

p ≤  and g : x ∈ (, +∞) → x(–p)/p is concave, we
have

∂f
∂bi

>
pbp–i

(i + d)+/p

[
p–(–p)

((


+ d

)(–p)/p

+
i∑

n=

(
n –



+ d

)(–p)/p
)
– pp(i + d)/p

]

>
pbp–i

(i + d)+/p

[
p–(–p)

((


+ d

)(–p)/p

+
∫ i+ 






(
x –



+ d

)(–p)/p

dx
)
– pp(i + d)/p

]

=
pbp–i

(i + d)+/p

[
p–(–p)

((


+ d

)(–p)/p

+ p(i + d)/p – p( + d)/p
)
– pp(i + d)/p

]

=
pbp–i

(i + d)+/p
[
p–(–p) · p(i + d)/p – pp(i + d)/p

]
= .

Thus, for every Di, ∂f
∂bi

> . By Theorem B, inequality (.) holds. �

Corollary  If 
 < p < , m > , m ∈ N, an >  (n = , , . . . ,m), d ∈ (,  ) is the only one

positive root of equation (.) and Bm =min≤n≤m{(n + d)/pan}. Then
m∑
n=

( m∑
k=n

ak
k + d

)p

– pp
m∑
n=

apn ≥ ppBp
m

m∑
n=

np – (n + d)p

(n + d)p+
. (.)

Proof From Theorem  and Lemma , we have

m∑
n=

( m∑
k=n

ak
k + d

)p

– pp
m∑
n=

apn ≥ Bp
m

[
pp

m∑
n=

np

(n + d)p+
– pp

m∑
n=


n + d

]
.

Then inequality (.) holds. �

Corollary  If 
 < p < , an >  (n = , , . . .), d ∈ (,  ) is the only one positive root of equa-

tion (.) and series
∑∞

n= (
∑∞

k=n
ak
k+d )

p < +∞. Then

∞∑
n=

( ∞∑
k=n

ak
k + d

)p

≥ pp
∞∑
n=

apn. (.)

Proof According to inequality (.), we obtain

m∑
n=

( m∑
k=n

ak
k + d

)p

+ ppBp
m

m∑
n=

(n + d)p – np

(n + d)p+
≥ pp

m∑
n=

apn.

The following proof is the same as the relevant proof for Corollary , omitted here. �
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Remark For 
 < p < , there is no doubt that inequality (.) strengthens inequality (.).
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