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1 Introduction
There are many applications with well-known Hardy’s inequality in analytics, which refers
to the following: let ax >0 (k=1,2,...), p > 1, then
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In recent decades, there have also been many results due to the extension and refinement
of this inequality (¢f. [1-5]), especially the monograph [6], which summarized part of the
research done before 2005. In research on the coefficient of (1.1), the following conclusion

in the case p = 2 was drawn in [6]:
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In [7], by using the method of weight-coefficient, the following inequality is proved with
peli2l:
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In the following section, let p > 1 and

p-1-202, 1<p<,
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We shall strengthen Hardy’s inequality to
()5 i(li )
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2 Relevant lemmas

Some characters of a convex function will be cited in this section.

Definition 2.1 L C R is an interval, and f : I — R is continuous. If

f(x;y) S(Z)f(x) ;f(y)

holds for all x,y € I, then f is called a convex (concave) function.

The sufficient and necessary condition for a second-order differential function f to be
convex (concave) function is that f”(x) > (<)0 always holds for any x € I. The famous
Hadamard inequality is as follows. Let f be a convex (concave) function on [a, b], then the
equality

f(b;“) = )—/f(x)dx<(>)f() +/@ 2.1)

holds if and only if f is a linear function.
Lemma 2.1 Let p > 1, and Z, is defined in the first section, then 0 < Z,, < %

Proof The proof includes two parts.
1
Part 1: When 1 < p <2, if we can obtain f(p):=277 -1+ }7 > 0, then we can get Z, > 0
obviously. Since

1 1 1 . .
f’(p)zﬁz*z‘o 2= = 7 (In2-27) <0,

f(p) is monotone decreasing on (1,2], then f(p) > f(2) = % -5>0.

Meanwhile, Z, < % is equivalent to
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The above two inequalities obviously hold with 1 < p < % If % <p<2,thenp-2+ ]% is

1 o .
increasing about p, 27 and —p are decreasing in relation to p. Then
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Part 2: When p > 2, then it should be proved that (’%)’”12% <1and (1%1)1"’12177 >

1
2

1
are respectively equivalent to 2 < (1 + p%l)P and (1+ ﬁ)p < 2*7 1 Since 1+ [ﬁ)P is strictly

decreasing for p € (2, +00), then it is proved that
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The proof of Lemma 2.1 is completed.

and

Lemma 2.2
(i) Letx>1,p>2,then

2-p -2
(1 - prll’_l) ] - p—prl%_l > 1.
p-1

1_ 2 3, .
(i) Letp>1,thenf:x€[l,+00) —> xP 2 pX? disa convex function.

Proof (i) The proposition is equivalent to

-2 1_ 14,222
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Bernoulli’s inequality refers to the following: (1 + £)* <1+ «t (¢ > -1, 0 < « < 1) holds if

t=0.1ft=— px_H}’ o= ‘;;j, then formula (2.2) holds.
(ii)

O
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- % [Bp - D' r —22,(3p - 2)]
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. % [Bp-1)-22,(3p - 2)].

According to Lemma 2.1,

e
)= % [Bp-1)-(3p—-2)]>0,

so, f is a convex function. The proof of Lemma 2.2 is completed.

(2.2)
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Lemma 2.3 Let n be a positive natural number, p > 1.
(i) If1<p <2, then

n

3 L fl<ﬁ%_ﬂgi). (2.3)

1
o (k=3 P

(i) Ifp>2,then
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Proof (i) If n =1, inequality (2.3) is proved easily. Assume that when #n = m > 1, the fol-

lowing equality holds for n = m + 1:
m+1 1 1 7z 1
SL(}’}’ll_I;— pl>+ 1 1
p (m + E)P

7 m+1
=L[(m+1)l_%— P :|—/ XPdx+

117
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Because 4 is a convex function on [m, m + 1], then according to Hadamard’s inequality
of a convex function, formula (2.3) also holds if # = m1 + 1.

(ii) If n = 1, inequality (2.4) is proved easily. Assume that when n = m > 1, the inequality
holds. For n =m + 1,
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Thus, the inequality (2.4) also holds if n = m + 1. O

Lemma 2.4 Let i be any positive natural number and p > 1, then

oo

1 2 1 ?13_1 7 1 1%_2
Z(n_m?’ —an_3+17) <L i- = Y i - .
- p-1 2 2 2

n=i

Proof Leti=1,2,...and

Then

According to the conclusion of Lemma 2.2 and Hadamard’s inequality of a convex
function, the sequence {f(i)}; is a strictly decreasing sequence. It is also known that

lim;_, 400 f (i) = 0, then £(i) > 0 always holds. The proof of Lemma 2.4 is completed. O
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3 A new strengthened version of Hardy’s inequality
Theorem 3.1 Leta;>0,n>1,neN,p>1,and

p'_]>_ 95?3257 ]»<I7552’
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1- (B2, p2,
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then
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Proof Letr = 1%, then % + }17 = 1. According to Holder’s inequality,
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If 1 < p <2, according to formula (2.3) and Bernoulli’s inequality,
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If p > 2, by using formula (2.4), we obtain
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Therefore, for any p > 1, the following inequality holds:

- (2 s K2~ 7, k73
Zkk_ p-1 Z( P =7,k
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By Lemma 2.4, we get

ad Y N Z, 1\
Y= (5) ((3)" -%(-3)" ) 3)

So, from inequalities (3.2) and (3.3), the following result can be obtained:

(1 N VS NP Z, 0 1\ 1\%
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The proof of Theorem 3.1 is completed. O
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