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Abstract
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function through the real function techniques, a half-discrete inequality with a best
constant factor is established. In addition, the operator expressions, equivalent forms,
reverse inequalities and some particular cases are given.
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1. Introduction
One hundred years ago, Hilbert proved the following classic inequality [1]

∑
n

∑
m

ambn
m + n

≤ π

(∑
n

a2n

)1/2(∑
n

b2n

)1/2

. (1:1)

During the past century, ever since the advent the inequality (1.1), numerous related

results have been obtained. The inequality (1.1) may be classified into several types

(discrete and integral etc.), being the following integral form:

If f, g are real functions such that 0 <
∫∞
0 f 2(x) dx < ∞, 0 <

∫∞
0 g2(x) dx < ∞, then

we have [1]

∞∫
0

∞∫
0

f (x)g(y)
x + y

dxdy < π

⎧⎨⎩
∞∫
0

f 2(x)dx

∞∫
0

g2(x)dx

⎫⎬⎭
1
2
, (1:2)

where the constant factor π is the best possible. Inequality (1.2) had been generalized

by Hardy-Riesz in 1925 as [1]:

If p > 1,
1
p
+
1
q
= 1, f , g ≥ 0 such that 0 <

∫∞
0 f p(x)dx,

∫∞
0 gq(x)dx < ∞, then

∞∫
0

∞∫
0

f (x)g(y)
x + y

dxdy <
π

sin
(

π

p

)
⎧⎨⎩

∞∫
0

f p(x)dx

⎫⎬⎭
1/p⎧⎨⎩

∞∫
0

gq(x)dx

⎫⎬⎭
1/q

, (1:3)
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where the constant factor

π

sin
(

π

p

)
is the best possible. Inequality (1.3) is named as

Hardy-Hilbert’s integral inequality, which is of great importance in analysis and its

applications [2-4]. Its generalization can be seen in [5-11].

Until now, we only studied the related inequalities with pure discrete or integral

inequalities, but half-discrete inequality is very rare in the literature [12-14]. Now we

attempt investigation for it, lots of related results will appear in the coming future.

The main purpose of this article is to establish a half-discrete inequality with the

mixed homogeneous kernel of real number degree. For example: If

0 <
∫∞
0 xp(1−λ1)−1f p(x)dx < ∞, 0 <

∑∞
n=1 n

q(1−λ2)−1aqn < ∞, then

∞∑
n=1

an

∞∫
0

f (x)
(max{x,n})α dx

<
α

λ1λ2

⎧⎨⎩
∞∫
0

xp(1−λ1)−1f p(x)dx

⎫⎬⎭
1/p{ ∞∑

n=1

nq(1−λ2)−1aqn

}1/q

,

(1:4)

where a = l1 + l2, 0 <l1 <a and the constant factor
α

λ1λ2
is the best possible. Mean-

while, the extended inequality, operator expressions, reverse inequality, and equivalent

forms are given. We hope this work will expand our understanding of inequality and

the scope of the study.

2. Lemmas
LEMMA 2.1. Let a, b Î ℝ and l1 + l2 = a - b, -b <l1 <a, l2 ≤ 1 - b,

kλ1 :=
1

α − λ1
+

1
β + λ1

define the weight function and the weight coefficient as follows

ω(n) := nλ2

∞∫
0

(min{x,n})β
(max{x,n})α · xλ1−1dx,n ∈ N+, (2:1)

� (x) := xλ1

∞∑
n=1

(min{x,n})β
(max{x,n})α · nλ2−1, x ∈ (0,∞), (2:2)

then

0 < kλ1 (1 − θλ(x)) < � (x) < ω(n) = kλ1 , (2:3)

where

θλ(x) :=
1
kλ1

1/x∫
0

(min{1, t})β
(max{1, t})α · tλ2−1dt =

⎧⎪⎪⎨⎪⎪⎩
1
kλ1

(
1

β + λ2
+
1 − xα−λ2

α − λ2

)
, x ∈ (0, 1),

x−(β+λ2)

(β + λ2)kλ1

= O
(

1
xβ+λ2

)
, x ∈ [0,∞).
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Proof. For fixed n, let t =
x

n
, substituting into ω(n) gives

ω(n) =

∞∫
0

(min{1, t})β
(max{1, t})α · tλ1−1dt

=

1∫
0

tβ+λ1−1dt +

∞∫
1

t−α+λ1−1dt

=
1

α − λ1
+

1
β + λ1

= kλ1 .

In view of l2 ≤ 1 - b, a - l2 = b + l1 > 0, for fixed x > 0, the function

(min{x, y})β
(max{x, y})α · yλ2−1 =

{
x−αyβ+λ2−1, 0 < y < x,
xβy−α+λ2−1, y ≥ x

is monotonically decreasing with respect to y, then

� (x) < xλ1

∞∫
0

(min{x, y})β
(max{x, y})α · yλ2−1dy (t = y/x)

=

∞∫
0

(min{1, t})β
(max{1, t})α · tλ2−1dt =

1∫
0

tβ+λ2−1dt +

∞∫
1

t−α+λ2−1dt

=
1

β + λ2
+

1
α − λ2

=
1

α − λ1
+

1
β + λ1

= kλ1 .

� (x) > xλ1

∞∫
0

(min{x, y})β
(max{x, y})α · yλ2−1dy (t = y/x)

=

∞∫
1/x

(min{1, t})β
(max{1, t})α · tλ2−1dt

= kλ1 −
1/x∫
0

(min{1, t})β
(max{1, t})α · tλ2−1dt = kλ1 (1 − θλ(x)) > 0.

where θλ(x) =
1
kλ1

∫ 1/x
0

(min{1, t})β
(max{1, t})α · tλ2−1dt . If x Î (0,1), then

θλ(x) =
1
kλ1

⎛⎜⎝ 1∫
0

tβ+λ2−1dt +

1/x∫
1

t−α+λ2−1dt

⎞⎟⎠ =
1
kλ1

[
1

β + λ2
+
1 − xα−λ2

α − λ2

]
;

if x Î [1,∞), then

θλ(x) =
1
kλ1

1/x∫
0

tβ+λ2−1dt =
x−(β+λ2)

(β + λ2)kλ1

= O
(

1
xβ+λ2

)
.

Thus (2.3) is valid.
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In what follows, a, b will be real numbers such that l1 + l2 = a - b, -b <l1 <a, l2 ≤
1 - b.

LEMMA 2.2. Suppose that p > 0(p ≠ 1),
1
p
+
1
q
= 1, an ≥ 0, f(x) is a non-negative mea-

surable function in (0, ∞), then

(a) if p > 1, then the following two inequalities hold:

J :=
∞∑
n=1

npλ2−1

⎡⎣ ∞∫
0

(min{x,n})β
(max{x,n})α f (x)dx

⎤⎦p

≤ kpλ1

∞∫
0

xp(1−λ1)−1f p(x)dx, (2:4)

L :=

∞∫
0

xqλ1−1

[ ∞∑
n=1

(min{x,n})β
(max{x,n})α an

]q

dx ≤ kqλ1

∞∑
n=1

nq(1−λ2)−1aqn; (2:5)

(b) if 0 <p < 1, then we have

J ≥ kpλ1

∞∫
0

(1 − θλ(x))xp(1−λ1)−1f p(x)dx, (2:6)

L̃ :=

∞∫
0

xqλ1−1

[1 − θλ(x)]
q−1

[ ∞∑
n=1

(min{x,n})β
(max{x,n})α an

]q

dx ≤ kqλ1

∞∑
n=1

nq(1−λ2)−1aqn. (2:7)

Proof. (a) Using Hölder’s inequality with weight [15] and (2.3) gives⎡⎣ ∞∫
0

(min{x,n})β
(max{x,n})α f (x)dx

⎤⎦p

=

⎧⎨⎩
∞∫
0

(min{x,n})β
(max{x,n})α

[
x(1−λ1)/q

n(1−λ2)/p
f (x)

][
n(1−λ2)/p

x(1−λ1)/q

]
dx

⎫⎬⎭
p

≤
∞∫
0

(min{x,n})β
(max{x,n})α

x(1−λ1)(p−1)

n1−λ2
f p(x)dx

⎡⎣ ∞∫
0

(min{x,n})β
(max{x,n})α

n(1−λ2)(q−1)

x1−λ1
dx

⎤⎦p−1

=

∞∫
0

(min{x,n})β
(max{x,n})α

x(1−λ1)(p−1)

n1−λ2
f p(x)dx

[
nq(1−λ2)−1ω(n)

]p−1

= n−pλ2+1kp−1
λ1

∞∫
0

(min{x,n})β
(max{x,n})α

x(1−λ1)(p−1)

n1−λ2
f p(x)dx.
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J ≤ kp−1
λ1

∞∑
n=1

∞∫
0

(min{x,n})β
(max{x,n})α

x(1−λ1)(p−1)

n1−λ2
f p(x)dx

= kp−1
λ1

∞∫
0

[
xλ1

∞∑
n=1

(min{x,n})β
(max{x,n})α n

λ2−1

]
xp(1−λ1)−1f p(x)dx

= kp−1
λ1

∞∫
0

� (x)xp(1−λ1)−1f p(x)dx ≤ kpλ1

∞∫
0

xp(1−λ1)−1f p(x)dx.

(2:8)

Hence (2.4) is valid. By similar reasoning to the above it may be shown that[ ∞∑
n=1

(min{x,n})β
(max{x,n})α an

]q

=

{ ∞∑
n=1

(min{x,n})β
(max{x,n})α

[
x(1−λ1)/q

n(1−λ2)/p

][
n(1−λ2)/p

x(1−λ1)/q
an

]}q

≤ [� (x)xp(1−λ1)−1]q−1
∞∑
n=1

(min{x,n})β
(max{x,n})α

n(1−λ2)(q−1)

x1−λ1
aqn

= kq−1
λ1

x−qλ1+1
∞∑
n=1

(min{x,n})β
(max{x,n})α

n(1−λ2)(q−1)

x1−λ1
aqn.

(2:9)

L ≤ kq−1
λ1

∞∫
0

∞∑
n=1

(min{x,n})β
(max{x,n})α

n(1−λ2)(q−1)

x1−λ1
aqndx

= kq−1
λ1

∞∑
n=1

⎡⎣nλ2

∞∫
0

(min{x,n})β
(max{x,n})α x

λ1−1dx

⎤⎦nq(1−λ2)−1aqn

= kq−1
λ1

∞∑
n=1

ω(n)nq(1−λ2)−1aqn = kqλ1

∞∑
n=1

nq(1−λ2)−1aqn.

Thus (2.5) is valid.

(b) Similarly, using the reverse Hölder’s inequality with weight [15] and (2.3) gives

(2.6) and (2.7).

LEMMA 2.3. Suppose that 0 <q < 1,
1
p
+
1
q
= 1, an ≥ 0, f(x) is a non-negative measur-

able function in (0, ∞), then (Let J, L be as in Lemma 2.2)

J ≤ kpλ1

∞∫
0

xp(1−λ1)−1f p(x)dx, (2:10)

L ≥ kqλ1

∞∑
n=1

nq(1−λ2)−1aqn. (2:11)
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Proof. Applying Hölder’s inequality [15] and (2.3), where p < 0 gives⎡⎣ ∞∫
0

(min{x,n})β
(max{x,n})α f (x)dx

⎤⎦p

=

⎧⎨⎩
∞∫
0

(min{x,n})β
(max{x,n})α

[
x(1−λ1)/q

n(1−λ2)/p
f (x)

][
n(1−λ2)/p

x(1−λ1)/q

]
dx

⎫⎬⎭
p

≤
∞∫
0

(min{x,n})β
(max{x,n})α

x(1−λ1)(p−1)

n1−λ2
f p(x)dx

⎡⎣ ∞∫
0

(min{x,n})β
(max{x,n})α

n(1−λ2)(q−1)

x1−λ1
dx

⎤⎦p−1

=

∞∫
0

(min{x,n})β
(min{x,n})α

x(1−λ1)(p−1)

n1−λ2
f p(x)dx

[
nq(1−λ2)−1ω(n)

]p−1

= n−pλ2+1kp−1
λ1

∞∫
0

(min{x,n})β
(max{x,n})α

x(1−λ1)(p−1)

n1−λ2
f p(x)dx.

J ≤ kp−1
λ1

∞∑
n=1

∞∫
0

(min{x,n})β
(max{x,n})α

x(1−λ1)(p−1)

n1−λ2
f p(x)dx

= kp−1
λ1

∞∫
0

[
xλ1

∞∑
n=1

(min{x,n})β
(max{x,n})α n

λ2−1

]
xp(1−λ1)−1f p(x)dx

= kp−1
λ1

∞∫
0

� (x)xp(1−λ1)−1f p(x)dx ≤ kpλ1

∞∫
0

xp(1−λ1)−1f p(x)dx

(2:12)

Hence (2.10) is valid. By similar reasoning to the above, in view of 0 <q < 1, it may

be shown that[ ∞∑
n=1

(min{x,n})β
(max{x,n})α an

]q

=

{ ∞∑
n=1

(min{x,n})β
(max{x,n})α

[
x(1−λ1)/q

n(1−λ2)/p

][
n(1−λ2)/p

x(1−λ1)/q
an

]}q

≥ [� (x)xp(1−λ1)−1]q−1
∞∑
n=1

(min{x,n})β
(max{x,n})α

n(1−λ2)(q−1)

x1−λ1
aqn

≥ kq−1
λ1

x−qλ1+1
∞∑
n=1

(min{x,n})β
(max{x,n})α

n(1−λ2)(q−1)

x1−λ1
aqn.

(2:13)
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L ≥ kq−1
λ1

∞∫
0

∞∑
n=1

(min{x,n})β
(max{x,n})α

n(1−λ2)(q−1)

x1−λ1
aqndx

= kq−1
λ1

∞∑
n=1

⎡⎣nλ2

∞∫
0

(min{x,n})β
(max{x,n})α x

λ1−1dx

⎤⎦nq(1−λ2)−1aqn

= kq−1
λ1

∞∑
n=1

ω(n)nq(1−λ2)−1aqn = kqλ1

∞∑
n=1

nq(1−λ2)−1aqn.

Thus (2.11) is valid.

3. Main results

THEOREM 3.1. If p > 1,
1
p
+
1
q
= 1, an ≥ 0, f(x) ≥ 0 such that

0 <
∑∞

n=1 n
q(1−λ2)−1aqn < ∞and 0 <

∑∞
n=1 n

q(1−λ2)−1aqn < ∞, then we have the following

equivalent inequalities

I : =
∞∑
n=1

an

∞∫
0

(min{x,n})β
(max{x,n})α f (x)dx =

∞∫
0

f (x)
∞∑
n=1

(min{x,n})β
(max{x,n})α andx

< kλ1

⎧⎨⎩
∞∫
0

xp(1−λ1)−1f p(x)dx

⎫⎬⎭
1/p{ p∑

n=1

nq(1−λ2)−1aqn

}1/q

,

(3:1)

J =
∞∑
n=1

npλ2−1

⎡⎣ ∞∫
0

(min{x,n})β
(max{x,n})α f (x)dx

⎤⎦p

< kpλ1

∞∫
0

xp(1−λ1)−1f p(x)dx, (3:2)

L =

∞∫
0

xqλ1−1

[ ∞∑
n=1

(min{x,n})β
(max{x,n})α an

]q

dx < kqλ1

∞∑
n=1

nq(1−λ2)−1aqn, (3:3)

where the constant factor kλ1 =
1

α − λ1
+

1
β + λ1

, kpλ1
, kqλ1

, are the best possible.

Proof. Using Lebesgue term-by-term integration theorem, there are two forms of I of

(3.1). In view of 0 <
∫∞
0 xp(1−λ1)−1f p(x)dx < ∞, (2.8) takes the strict inequality, thus

(3.1) is valid. On one hand, using Hölder’s inequality [15] gives

I =
∞∑
n=1

⎡⎢⎣nλ2−
1
p

∞∫
0

(min{x,n})β
(max{x,n})α f (x)dx

⎤⎥⎦
⎡⎢⎣n

1
p

−λ2

an

⎤⎥⎦ ≤ J1/p =

{ ∞∑
n=1

nq(1−λ2)−1aqn

}1/q

. (3:4)

By (3.2), (3.1) is valid. On the other hand, suppose that (3.1) is valid. Let

an := npλ2−1

⎡⎣ ∞∫
0

(min{x,n})β
(max{x,n})α f (x)dx

⎤⎦p−1

,n ∈ N+,
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then from (3.1), it follows

∞∑
n=1

nq(1−λ2)−1aqn = J = I ≤ kλ1

⎧⎨⎩
∞∫
0

xp(1−λ1)−1f p(x)dx

⎫⎬⎭
1/p{ ∞∑

n=1

nq(1−λ2)−1aqn

}1/q

.(3:5)

By (2.8) and the conditions, it follows that J < ∞. If J = 0, then (3.2) is naturally valid.

If J > 0, in view of the conditions of (3.1), then (3.5) takes the strict inequality, and

J1/p
{ ∞∑

n=1

nq(1−λ2)−1aqn

}1/p

< kλ1

⎧⎨⎩
∞∫
0

xp(1−λ1)−1f p(x)dx

⎫⎬⎭
1/p

.

Hence (3.2) is valid, which is equivalent to (3.1).

On one hand, in view of the conditions, (2.9) takes the strict inequality, thus (3.3) is

valid. Using Hölder’s inequality [15] gives

I =

∞∫
0

∞∑
n=1

an
(min{x,n})β
(max{x,n})α f (x)dx

=

∞∫
0

⎡⎢⎣x
1
q

−λ1

f (x)

⎤⎥⎦
⎡⎢⎣xλ1−

1
q an

∞∑
n=1

(min{x,n})β
(max{x,n})α

⎤⎥⎦ dx

≥
⎧⎨⎩

∞∫
0

xp(1−λ1)−1f p(x)

⎫⎬⎭
1/p

L1/q.

(3:6)

By (3.3), (3.1) is valid. On the other hand, suppose that (3.1) is valid. Let

f (x) := xqλ1−1

[ ∞∑
n=1

(min{x,n})β
(max{x,n})α an

]q−1

, x ∈ (0,∞).

Applying (3.1) gives

∞∫
0

xp(1−λ1)−1f p(x) = L = I

≤ kλ1

⎧⎨⎩
∞∫
0

xp(1−λ1)−1f p(x)dx

⎫⎬⎭
1/p{ ∞∑

n=1

nq(1−λ2)−1aqn

}1/q

.

(3:7)

By (2.9) and the conditions, it follows that L < ∞. If L = 0, then (3.3) is naturally

valid. If L > 0, in view of the conditions of (3.1), then (3.7) takes the strict inequality,

and

L1/q =

⎧⎨⎩
∞∫
0

xp(1−λ1)−1f p(x)

⎫⎬⎭
1/q

< kλ1

{ ∞∑
n=1

nq(1−λ2)−1aqn

}1/q

.

Hence (3.3) is valid, which is equivalent to (3.1). Thus (3.1), (3.2), and (3.3) are

equivalent to each other.
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For any 0 <ε <ql2, suppose that
f̃ (x) = 0, x ∈ (0, 1); f̃ (x) = x

λ1−
ε

p
−1

, x ∈ [1,∞)
and

ãn = n
λ2−

ε

q
−1

,n ∈ N+
. Assuming there exists a positive number k with k ≤ kλ1, such

that (3.1) is still valid by changing kλ1 to k. In particular, on one hand,

Ĩ =
∞∑
n=1

ãn

∞∫
0

(min{x,n})β
(max{x,n})α f̃ (x)dx

< k

⎧⎨⎩
∞∫
0

xp(1−λ1)−1̃f p(x)dx

⎫⎬⎭
1/p{ ∞∑

n=1

nq(1−λ2)−1̃aqn

}1/q

= k

⎛⎝ ∞∫
1

x−1−εdx

⎞⎠1/p(
1 +

∞∑
n=2

n−1−ε

)1/q

< k
(
1
ε

)1/p
⎛⎝1 +

∞∫
1

x−1−εdx

⎞⎠1/q

=
k
ε
(ε + 1)1/q.

(3:8)

On the other hand, by monotonicity and Fubini theorem, it follows that

Ĩ =

∞∫
1

x
λ1−

ε

p
−1
⎡⎣ ∞∑

n=1

n
λ2−

ε

q
−1 (min{x,n})β

(max{x,n})α

⎤⎦ dx

≥
∞∫
1

x
λ1−

ε

p
−1
⎡⎣ ∞∫

1

y
λ2−

ε

q
−1 (min{x, y})β

(max{x, y})α dy
⎤⎦dx, (t = y/x)

=

∞∫
1

x−ε−1

⎡⎢⎣ ∞∫
1/x

t
λ2−

ε

q
−1 (min{x, t})β

(max{x, t})α dt

⎤⎥⎦ dx.

=

∞∫
1

x−ε−1

⎡⎢⎣ 1∫
1/x

t
λ2−

ε

q
−1 (min{1, t})β

(max{1, t})α dt

⎤⎥⎦ dx +
1
ε

∞∫
1

t
λ2−

ε

q
−1 (min{1, t})β

(max{1, t})α dt

=

1∫
0

(min{1, t})β
(max{1, t})α

⎛⎜⎝ ∞∫
1/t

x−ε−1dx

⎞⎟⎠ t
λ2−

ε

q
−1

dt +
1
ε

∞∫
1

t
λ2−

ε

q
−1 (min{1, t})β

(max{1, t})α dt

=
1
ε

1∫
0

(min{1, t})β
(max{1, t})α t

λ2+
ε

p
−1

dt +
1
ε

∞∫
1

t
λ2−

ε

q
−1 (min{1, t})β

(max{1, t})α dt.

(3:9)

Applying (3.8) and (3.9) gives

1∫
0

(min{1, t})β
(max{1, t})α t

λ2+
ε

p
−1

dt +

∞∫
1

t
λ2−

ε

q
−1 (min{1, t})β

(max{1, t})α dt < k(ε + 1)1/q.
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Using Fatou theorem gives

kλ1 =

1∫
0

lim
ε→0+

(min{1, t})β
(max{1, t})α t

λ2+
ε

p
−1

dt +

∞∫
1

lim
ε→0+

t
λ2−

ε

q
−1 (min{1, t})β

(max{1, t})α dt

≤ lim
ε → 0+

⎡⎣ 1∫
0

(min{1, t})β
(max{1, t})α t

λ2+
ε

p
−1

dt +

∞∫
1

t
λ2−

ε

q
−1 (min{1, t})β

(max{1, t})α dt
⎤⎦

≤ lim
ε → 0+

k(ε + 1)1/q = k.

Hence k = kλ1 is the best constant factor of (3.1). It is obvious that the constant factor

in (3.2) (or (3.3)) is the best possible. Otherwise, by (3.4) (or (3.6)), we may get a con-

tradiction that the constant factor in (3.1) is not the best possible. This completes the

proof.

Remark 1. Let 
(x) = xp(1−λ1)−1, x Î (0,∞) and �(n) = nq(1−λ2)−1, n Î N+, then

[
(x)]1−q = xqλ1−1, [�(n)]1−p = npλ2−1.

(i) A half-discrete Hilbert’s operator T : Lp,
(0,∞) → lp,�1−p is defined by:

Tf (n) =

∞∫
0

hλ(x,n)f (x)dx,n ≥ 1.

where f ∈ Lp,
(0,∞),Tf ∈ lp,�1−p , hλ(x,n) =
(min{x,n})β
(max{x,n})α ,λ =: α − β. Then by (3.2),

it follows that:
∥∥Tf∥∥p,�1−p ≤ kλ1

∥∥f∥∥p,
, i.e., T is a bounded operator with ‖T‖ = kλ1. Since

the constant factor in (3.2) is the best possible, we have ‖T‖ = kλ1.

(ii) Similarly, another half-discrete Hilbert’s operator T̃ : lq,� → Lq,
1−q(0,∞) is

defined by:

T̃a(x) =
∞∑
1

hλ(x,n)an, x ∈ (0,∞).

where a ∈ lq,� , T̃a ∈ Lq,
1−q(0,∞). Then by (3.3), it follows that:∥∥T̃a∥∥q,
1−q ≤ kλ1‖a‖q,�. In another word, T is a bounded operator with
∥∥T̃∥∥ ≤ kλ1

. Since

the constant factor in (3.3) is the best possible, we obtain
∥∥T̃∥∥ ≤ kλ1

.

THEOREM 3.2. If 0 <p < 1,

1
p
+
1
q
= 1, θλ(x) :=

1
kλ1

∫ 1/x
0

(min{1, t})β
(max{1, t})α · tλ2−1(x ∈ (0,∞)), an ≥ 0, f(x) ≥ 0 such that

0 <
∑∞

n=1 n
q(1−λ2)−1aqn < ∞and 0 <

∑∞
n=1 n

q(1−λ2)−1aqn < ∞, then we have the following

equivalent inequalities (Let I, J be as in Theorem 3.1)

I > kλ1

⎧⎨⎩
∞∫
0

(1 − θλ(x))xp(1−λ1)−1f p(x)dx

⎫⎬⎭
1/p{ ∞∑

n=1

nq(1−λ2)−1aqn

}1/q

, (3:10)
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J > kpλ1

∞∫
0

(1 − θλ(x))xp(1−λ1)−1f p(x)dx, (3:11)

L̃ =

∞∫
0

xqλ1−1

[1 − θλ(x)]
q−1

[ ∞∑
n=1

(min{x,n})β
(max{x,n})α an

]q

dx < kqλ1

∞∑
n=1

nq(1−λ2)−1aqn, (3:12)

where the constant factor kλ1 =
1

α − λ1
+

1
β + λ1

, kpλ1
, kqλ1

are the best possible.

Proof. Similar to (2.8), by the reverse Hölder’s inequality [15], (2.3) and the condi-

tions, we have

J ≥ kp−1
λ1

∞∫
0

� (x)xp(1−λ1)−1f p(x)dx > kpλ1

∞∫
0

(1 − θλ(x))xp(1−λ1)−1f p(x)dx, (3:13)

thus (2.11) is valid. On one hand, by the reverse Hölder’s inequality [15], we obtain

the reverse form of (3.4) as follows

I =
∞∑
n=1

⎡⎢⎣nλ2−
1
p

∞∫
0

(min{x,n})β
(max{x,n})α f (x)dx

⎤⎥⎦
⎡⎢⎣n

1
p

−λ2

an

⎤⎥⎦ ≥ J1/p
{ ∞∑

n=1

nq(1−λ2)−1aqn

}1/q

. (3:14)

by (3.11), (3.10) is valid. On the other hand, suppose that (3.10) is valid. Let

an = npλ2−1

⎡⎣ ∞∫
0

(min{x,n})β
(max{x,n})α f (x)dx

⎤⎦p−1

,n ∈ N+.

Applying (3.10) gives

∞∑
n=1

nq(1−λ2)−1aqn = J = I

≥ kλ1

⎧⎨⎩
∞∫
0

(1 − θλ(x))xp(1−λ1)−1f p(x)dx

⎫⎬⎭
1/p{ ∞∑

n=1

nq(1−λ2)−1aqn

}1/q

,

(3:15)

By (3.13) and the conditions, it follows that J > 0. If J = ∞, then (3.11) is naturally

valid. If J < ∞, in view of the conditions and (3.10), then (3.15) takes the strict inequal-

ity, and

J1/p =

{ ∞∑
n=1

nq(1−λ2)−1aqn

}1/q

> kλ1

⎧⎨⎩
∞∫
0

(1 − θλ(x))xp(1−λ1)−1f p(x)dx

⎫⎬⎭
1/p

.

Hence (3.11) is valid, which is equivalent to (3.10).

On one hand, similar to (2.9), by the reverse Hölder’s inequality [15], (2.3) and the

conditions, in view of q < 0, we have
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[ ∞∑
n=1

(min{x,n})β
(max{x,n})α an

]q

≤ [ω(x)xp(1−λ1)−1]q−1
∞∑
n=1

(min{x,n})β
(max{x,n})α

n(1−λ2)(q−1)

x1−λ1
aqn

< kq−1
λ1

(1 − θλ(x))x−qλ1+1
∞∑
n=1

(min{x,n})β
(max{x,n})α

n(1−λ2)(q−1)

x1−λ1
aqn.

(3:16)

Similarly, we get (3.12). Applying the reverse Hölder’s inequality [15] gives

I =

∞∫
0

⎡⎢⎣(1 − θλ(x))
1/px

1
q

−λ1

f (x)

⎤⎥⎦
⎡⎢⎢⎢⎣ x

λ1−
1
q

(1 − θλ(x))
1/p

∞∑
n=1

(min{x,n})β
(max{x,n})α · an

⎤⎥⎥⎥⎦ dx

≥
⎧⎨⎩

∞∫
0

(1 − θλ(x))xp(1−λ1)−1f p(x)

⎫⎬⎭
1/p

L̃1/q.

(3:17)

By (3.12), (3.10) is valid. On the other hand, suppose that (3.10) is valid. Let

f (x) =
xqλ1−1

(1 − θλ(x))
q−1

[ ∞∑
n=1

(min{x,n})β
(max{x,n})α an

]q−1

, x ∈ (0,∞),

applying (3.10) gives

∞∫
0

(1 − θλ(x))xp(1−λ1)−1f p(x) = L̃ = I

≤ kλ1

⎧⎨⎩
∞∫
0

(1 − θλ(x))xp(1−λ1)−1f p(x)dx

⎫⎬⎭
1/p{ ∞∑

n=1

nq(1−λ2)−1aqn

}1/q

.

(3:18)

By (3.16) and the conditions, it follows that L̃ < ∞ . If L̃ = 0 , then (3.12) is naturally

valid. If L̃ > 0 , in view of the conditions of (3.10), then (3.18) takes the strict inequal-

ity, and

L̃1/q =
{∞∫
0
(1 − θλ(x))xp(1−λ1)−1f p(x)dx

}1/q

> kλ1

{ ∞∑
n=1

nq(1−λ2)−1aqn

}1/q

.

In view of q < 0, hence (3.12) is valid, which is equivalent to (3.10). Thus (3.10),

(3.11) and (3.12) are equivalent to each other.

For any 0 <ε <p(l1 + b), suppose that
f̃ (x) = 0, x ∈ (0, 1); f̃ (x) = x

λ1−
ε

p
−1

, x ∈ [1,∞)

and
ãn = n

λ2−
ε

q
−1

,n ∈ N+
. Assuming there exists a positive number K with K ≥ kλ1 ,

such that (3.10) is still valid by changing kλ1 to K. In particular, on one hand,
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Ĩ > K

⎧⎨⎩
∞∫
0

(1 − θλ(x))xp(1−λ1)−1̃f p(x)dx

⎫⎬⎭
1/p{ ∞∑

n=1

nq(1−λ2)−1̃aqn

}1/q

= K

⎛⎝ ∞∫
1

(1 − θλ(x))x−1−εdx

⎞⎠1/p(
1 +

∞∑
n=1

n−1−ε

)1/q

= K

⎛⎝ ∞∫
1

(
x−1−ε − O

(
1

xβ+λ2+ε+1

))
dx

⎞⎠1/p(
1 +

∞∑
n=2

n−1−ε

)1/q

> K
(
1
ε

− O(1)
)1/p

⎛⎝1 +

∞∫
1

x−1−εdx

⎞⎠1/q

=
K

ε
(1 − εO(1))1/p(ε + 1)1/q.

(3:19)

On the other hand,

Ĩ ≤
∞∑
n=1

n
λ2− ε

q−1
∞∫
0

x
λ1− ε

p−1 (min{x,n})β
(min{x,n})α dx

=
∞∑
n=1

n
λ2− ε

q−1

⎛⎝n−α

n∫
0

x
λ1+β− ε

p−1
dx + nβ

∞∫
n

x
λ1−α− ε

p−1
dx

⎞⎠
=

(
1

λ1 + β − ε
p

+
1

α − λ1 + ε
p

) ∞∑
n=1

n−1−ε = (kλ1 + o(1))
∞∑
n=1

n−1−ε

≤ (kλ1 + o(1))

⎛⎝1 +

∞∫
1

x−1−εdx

⎞⎠ =
1 + ε

ε
(kλ1 + o(1)).

(3:20)

By (3.19) and (3.20), it may be shown that

(1 + ε)(kλ1 + o(1)) > K(1 + εO(1))1/p(ε + 1)1/q. (3:21)

Let ε ® 0+, then kλ1 ≥ K . Hence K = kλ1 is the best constant factor of (3.10). It is

obviously that the constant factor in (3.11) (or (3.12)) is the best possible. Otherwise,

by (3.14) (or (3.17)), we may get a contradiction that the constant factor in (3.10) is

not the best possible. This completes the proof.

THEOREM 3.3. If 0 <q < 1,
1
p
+
1
q
= 1, an ≥ 0, f(x) ≥ 0 such that

0 <
∑∞

n=1 n
q(1−λ2)−1aqn < ∞and 0 <

∑∞
n=1 n

q(1−λ2)−1aqn < ∞, then the following

inequalities hold and are equivalent (Let I, J, L be as in Theorem 3.1):

I > kλ1

⎧⎨⎩
∞∫
0

xp(1−λ1)−1f p(x)dx

⎫⎬⎭
1/p{ ∞∑

n=1

nq(1−λ2)−1aqn

}1/q

, (3:22)

J < kqλ1

∞∫
0

xp(1−λ1)−1f p(x)dx, (3:23)
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L > kqλ1

∞∑
n=1

nq(1−λ2)−1aqn, (3:24)

where the constant factor kλ1 =
1

α − λ1
+

1
β + λ1

, kpλ1
, kqλ1

are the best possible.

Proof In view of p < 0, the proof can be completed by following the same steps as in

the proof of Theorem 3.2, thus we omit the details.

Remark 2. (1) In particular, if b = 0, 0 <l1 <a, l2 ≤ 1, l1 + l2 = a, then (3.1)

reduces to (1.4), (3.2), and (3.3) reduce to the following inequalities respectively, which

are equivalent to (1.4):

∞∑
n=1

npλ2−1

⎡⎣ ∞∫
0

f (x)
(max{x,n})α dx

⎤⎦p

<

(
α

λ1λ2

)p ∞∫
0

xp(1−λ1)−1f p(x)dx, (3:25)

∞∫
0

xqλ1−1

[ ∞∑
n=1

an
(max{x,n})α

]q

dx <

(
α

λ1λ2

)q ∞∑
n=1

nq(1−λ2)−1aqn. (3:26)

(2) If a = 0, -b <l1 < 0, l2 ≤ 1 - b, l1 + l2 = -b, then (3.1)-(3.3), respectively, reduce

to the following equivalent inequalities:

∞∑
n=1

an

∞∫
0

(min{x,n})β f (x)dx

<
β

λ1λ2

⎧⎨⎩
∞∫
0

xp(1−λ1)−1f p(x)dx

⎫⎬⎭
1/p{ ∞∑

n=1

nq(1−λ2)−1aqn

}1/q

,

(3:27)

∞∑
n=1

npλ2−1

⎡⎣ ∞∫
0

(min{x,n})β f (x)dx
⎤⎦p

<

(
β

λ1λ2

)p ∞∫
0

xp(1−λ1)−1f p(x)dx, (3:28)

∞∫
0

xqλ1−1

[ ∞∑
n=1

(min{x,n})βan
]q

dx <

(
β

λ1λ2

)q ∞∑
n=1

nq(1−λ2)−1aqn. (3:29)

(3) If a = b, -a <l1 <a, l2 ≤ 1 - a, l1 + l2 = 0, then (3.1)-(3.3), respectively, reduce

to the following equivalent inequalities:

∞∑
n=1

an

∞∫
0

(
min{x,n}
max{x,n}

)α

f (x)dx

<
2α

α2 − λ2
1

⎧⎨⎩
∞∫
0

xp(1−λ1)−1f p(x)dx

⎫⎬⎭
1/p{ ∞∑

n=1

nq(1−λ2)−1aqn

}1/q

,

(3:30)
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∞∑
n=1

npλ2−1

⎡⎣ ∞∫
0

(
min{x,n}
max{x,n}

)α

f (x)dx

⎤⎦p

<

(
2α

α2 − λ2
1

)p ∞∫
0

xp(1−λ1)−1f p(x)dx, (3:31)

∞∫
0

xqλ1−1

[ ∞∑
n=1

(
min{x,n}
max{x,n}

)α

an

]q

dx <

(
2α

α2 − λ2
1

)q ∞∑
n=1

nq(1−λ2)−1aqn. (3:32)
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