
Sonker and Singh Journal of Inequalities and Applications 2012, 2012:278
http://www.journalofinequalitiesandapplications.com/content/2012/1/278

RESEARCH Open Access

Degree of approximation of the conjugate of
signals (functions) belonging to
Lip(α, r)-class by (C, )(E,q)means of
conjugate trigonometric Fourier series
Smita Sonker and Uaday Singh*

*Correspondence:
usingh2280@yahoo.co.in
Department of Mathematics, Indian
Institute of Technology Roorkee,
Roorkee, 247667, India

Abstract
In this paper, we determine the degree of approximation of the conjugate of
2π -periodic signals (functions) belonging to Lip(α, r) (0 < α ≤ 1, r ≥ 1)-class by using
Cesàro-Euler (C, 1)(E,q) means of their conjugate trigonometric Fourier series. Our
result generalizes the result of Lal and Singh (Tamkang J. Math. 33(3):269-274, 2002).
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1 Introduction
Let

∑∞
n= un be a given infinite series with {sn}, the sequence of its nth partial sum. The

sequence-to-sequence transform

C
n =


n + 

n∑
k=

sk , n = , , , . . . , (.)

defines the Cesàro means of order one of {sn}. The series
∑∞

n= un is said to be (C, )
summable to s, if limn→∞ C

n = s. The sequence-to-sequence transform

Eq
n =


( + q)n

n∑
k=

(
n
k

)
qn–ksk , q > ,n = , , , . . . , (.)

defines the Euler means of order q >  of {sn}. By super imposing the (C, ) means on (E,q)
means of {sn}, we get (C, )(E,q) means of {sn} denoted by C

nE
q
n and defined by

C
nE

q
n =


n + 

n∑
k=

Eq
k =


n + 

n∑
k=

(q + )–k
k∑

v=

(
k
v

)
qk–vsv. (.)

The series
∑∞

n= un is said to be (C, )(E,q) summable to s, if limn→∞ C
nE

q
n = s.

For a given π-periodic Lebesgue integrable signal (function), let

sn(f ;x) =
a


+
n∑
k=

(ak coskx + bk sinkx) (.)
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denote the (n+ )th partial sum, called trigonometric polynomial of degree n (or order n),
of the Fourier series of f ∈ L[–π ,π ].
The conjugate of Fourier series of f is defined by

∞∑
k=

(bk coskx – ak sinkx), (.)

and its nth partial sum is defined as

s̃n(f ;x) =
n∑
k=

(bk coskx – ak sinkx) (.)

The conjugate of f denoted by f̃ is defined by

π f̃ (x) = – lim
ε→

∫ π

ε

ψ(t) cot(t/)dt,

where ψ(t) = f (x + t) – f (x – t) [, p.].
A function f ∈ Lipα, if

∣∣f (x + t) – f (x)
∣∣ =O

(
tα

)
,

and f ∈ Lip(α, r) if

(∫ π



∣∣f (x + t) – f (x)
∣∣r dx)/r

=O
(
tα

)
,  < α ≤ , r ≥ .

The Lr-norm for f ∈ Lr[–π ,π ] is defined by

‖f ‖r =
(∫ π



∣∣f (x)∣∣r dx)/r

, r ≥ .

The L∞-norm is defined by

‖f ‖∞ = sup
{∣∣f (x)∣∣ : x ∈ R

}
.

The degree of approximation En(f ) of a function f ∈ Lip(α, r) by trigonometric polynomi-
als Tn(x) of degree n is given by

En(f ) =min
Tn

‖f – Tn‖r .

This method of approximation is called trigonometric Fourier approximation (tfa). We
also write

Kn(t) =


n + 

n∑
k=


( + q)k

k∑
v=

(
k
v

)
qk–v

cos(v + /)t
sin(t/)

and τ = [/t], the integral part of /t.
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2 Known result
Various investigators such as Dhakal [], Lal and Singh [], Mittal et al. [, ], Nigam [],
Qureshi [, ] have studied the degree of approximation in various function spaces such as
Lipα, Lip(α, r), Lip(ξ (t), r) and weighted (Lr , ξ (t)) by using triangular matrix summability
and product summability (C, )(E, ), (N ,pn)(E, ). Recently, Lal and Singh [] have deter-
mined the degree of approximation of the conjugate of f ∈ Lip(α, r) by (C, )(E, ) means
of conjugate Fourier series. Lal and Singh [] have proved the following.

Theorem  [] If f : R → R is a π -periodic and Lip(α, r) function, then the degree of
approximation of its conjugate function f̃ (x) by the (C, )(E, ) product means of conjugate
series of Fourier series of f satisfies, for n = , , , . . . ,

Mn (̃f ) =Min
∥∥(CE)n – f̃

∥∥
r =O

(
n–α+/r), (.)

where

(CE)n =


n + 

n∑
k=

(

k

k∑
i=

(
k
i

)
Si

)
,

is (C, )(E, )means of series (.).

3 Main result
Recently, Nigam and Sharma [] have studied the degree of approximation of functions
belonging to Lip(ξ (t), r)-class through (C, )(E,q) means of their Fourier series. In this
paper, we use the (C, )(E,q) means of conjugate Fourier series of f ∈ Lip(α, r) to determine
the degree of approximation of the conjugate of f , which in turn generalizes the result of
Lal and Singh []. More precisely we prove

Theorem  Let f (x) be a π -periodic, Lebesgue integrable function and belong to the
Lip(α, r)-class with r ≥  and αr ≥ . Then the degree of approximation of f̃ (x), the con-
jugate of f (x) by (C, )(E,q)means of its conjugate Fourier series is given by

∥∥C
nE

q
n – f̃

∥∥
r =O

(
n–α+/r), n = , , , . . . , (.)

provided

(∫ π/(n+)



(∣∣ψ(t)
∣∣/tα)r dt)/r

=O
(
(n + )–

)
, (.)

(∫ π

π/(n+)

(
t–δ

∣∣ψ(t)
∣∣/tα)r dt)/r

=O
(
(n + )δ

)
, (.)

where δ is an arbitrary number such that (α + δ)s +  <  and /r + /s =  for r > .

Remark  The authors have used conditions (
∫ π/(n+)
 | tψ(t)

tα |r dt)/r =O() implied by (.)
and (.), but not mentioned in the statement of Theorem  [, pp.-].
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4 Lemmas
We need the following lemmas for the proof of our theorem.

Lemma  |Kn(t)| =O(/t) +O((n + )t) for  ≤ t ≤ π/(n + ) ≤ π/(v + ).

Proof

∣∣Kn(t)
∣∣ ≤ 

π (n + )

∣∣∣∣∣
n∑

k=


( + q)k

k∑
v=

(
k
v

)
qk–v

cos(v + /)t
sin(t/)

∣∣∣∣∣
=


π (n + )

∣∣∣∣∣
n∑

k=


( + q)k

k∑
v=

(
k
v

)
qk–v

cos(v +  – /)t
sin(t/)

∣∣∣∣∣
≤ 

(n + )

n∑
k=


( + q)k

k∑
v=

(
k
v

)
qk–v

∣∣∣∣cos(v + )t cos(t/) + sin(v + )t sin(t/)
sin(t/)

∣∣∣∣
=


(n + )

n∑
k=


( + q)k

k∑
v=

(
k
v

)
qk–v

[
O(/t) +O

(
sin(v + )t

)]

= O

[


(n + )t

n∑
k=


( + q)k

k∑
v=

(
k
v

)
qk–v

]

+O

[


(n + )

n∑
k=


( + q)k

k∑
v=

(
k
v

)
qk–v(v + )t

]

= O
[


(n + )t

(n + )
]
+O

[


(n + )
(n + )(n + )t

]
= O(/t) +O

(
(n + )t

)
,

in view of sin(v + )t ≤ (v + )t for  ≤ t < π/(v + ) and (sin(t/))– < π/t for  < t ≤ π

[, p.]. �

Lemma  |Kn(t)| =O(/t) +O() for π/(v + ) ≤ t ≤ π .

Proof

∣∣Kn(t)
∣∣ ≤ 

π (n + )

∣∣∣∣∣
n∑

k=


( + q)k

k∑
v=

(
k
v

)
qk–v

cos(v + /)t
sin(t/)

∣∣∣∣∣
=


π (n + )

∣∣∣∣∣
n∑

k=


( + q)k

k∑
v=

(
k
v

)
qk–v

cos(v +  – /)t
sin(t/)

∣∣∣∣∣
≤ 

(n + )

n∑
k=


( + q)k

k∑
v=

(
k
v

)
qk–v

∣∣∣∣cos(v + )t cos(t/) + sin(v + )t sin(t/)
sin(t/)

∣∣∣∣
=


(n + )

n∑
k=


( + q)k

k∑
v=

(
k
v

)
qk–v

[
O(/t) +O()

]

= O

[


(n + )t

n∑
k=


( + q)k

k∑
v=

(
k
v

)
qk–v

]
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+O

[


(n + )

n∑
k=


( + q)k

k∑
v=

(
k
v

)
qk–v

]

= O
[


(n + )t

(n + )
]
+O

[


(n + )
(n + )

]
= O(/t) +O(),

in view of | sin(v + )t| ≤  and (sin(t/))– ≤ π/t for  < t ≤ π [, p.]. �

5 Proof of Theorem 2
The integral representation of s̃n(f ;x) is given by

s̃n(f ;x) = –

π

∫ π


ψ(t)

cos(t/) – cos(n + /)t
 sin(t/)

dt.

Therefore, we have

s̃n(f ;x) – f̃ (x) =

π

∫ π


ψ(t)

cos(n + /)t
sin(t/)

dt.

Now, denoting (C, )(E,q) transform of s̃n(f ;x) by C
nE

q
n, we write

C
nE

q
n – f̃ =


π (n + )

[ n∑
k=


( + q)k

∫ π



ψ(t)
sin(t/)

k∑
v=

(
k
v

)
qk–v cos(v + /)t dt

]

=
[∫ π/(n+)


+

∫ π

π/(n+)

]
ψ(t)Kn(t)dt = I + I, say. (.)

Using Lemma , Hölder’s inequality, condition (.) and Minkowiski’s inequality, we have

|I| =
∫ π/(n+)



∣∣ψ(t)
∣∣∣∣Kn(t)

∣∣dt
≤

[∫ π/(n+)



(∣∣ψ(t)
∣∣/tα)r dt]/r[

lim
ε→

∫ π/(n+)

ε

(
tα

∣∣Kn(t)
∣∣)s dt]/s

= O
(
(n + )–

)[
lim
ε→

∫ π/(n+)

ε

(
tα– + (n + )tα+

)s dt]/s

= O
(
(n + )–

)[(
lim
ε→

∫ π/(n+)

ε

t(α–)s dt
)/s

+
(
lim
ε→

∫ π/(n+)

ε

(n + )t(α+)s dt
)/s]

= O
(
(n + )–

)[
(n + )–α+–/s + (n + )(n + )–α––/s]

= O
(
(n + )–

)[
(n + )–α+/r + (n + )(n + )–α––+/r]

= O
[
(n + )–α+/r– + (n + )–α–+/r]

= O
(
(n + )–α–+/r). (.)

Now, we consider

|I| ≤
∫ π

π/(n+)

∣∣ψ(t)
∣∣∣∣Kn(t)

∣∣dt.

http://www.journalofinequalitiesandapplications.com/content/2012/1/278


Sonker and Singh Journal of Inequalities and Applications 2012, 2012:278 Page 6 of 7
http://www.journalofinequalitiesandapplications.com/content/2012/1/278

Using Lemma , Hölder’s inequality, condition (.) and Minkowiski’s inequality, we have

|I| ≤
[∫ π

π/(n+)

(
t–δ|ψ(t)|

tα

)r

dt
]/r[∫ π

π/(n+)

(
tα|Kn(t)|

t–δ

)s

dt
]/s

= O
(
(n + )δ

)[∫ π

π/(n+)

(
tα

t–δ

(
O(/t) +O()

))s

dt
]/s

= O
(
(n + )δ

)[∫ π

π/(n+)

(
tα+δ– + tα+δ

)s dt]/s

= O
(
(n + )δ

)[(∫ π

π/(n+)
t(α+δ–)s dt

)/s

+
(∫ π

π/(n+)
t(α+δ)s dt

)/s]
= O

(
(n + )δ

)[
(n + )(–α–δ+)–/s + (n + )(–α–δ)–/s] (

(α + δ)s +  < 
)

= O
[
(n + )–α+–/s + (n + )–α–/s]

= O
[
(n + )–α+/r + (n + )–α–+/r] =O

[
(n + )–α+/r( + (n + )–

)]
= O

(
(n + )–α+/r). (.)

Combining (.)-(.), we have

∣∣C
nE

q
n – f̃

∣∣ =O
(
(n + )–α+/r).

Hence,

∥∥C
nE

q
n – f̃

∥∥
r =

(∫ π



∣∣C
nE

q
n – f̃ (x)

∣∣r dx)/r

=O
(
n–α+/r).

This completes the proof of Theorem .

Remark  The proof of Theorem  for r = , i.e., s = ∞, can be written by using sup norm
while using Hölder’s inequality.

6 Corollaries
Corollary  When q = , then (C, )(E,q)means reduces to (C, )(E, )means.
Hence, Theorem  reduces to Theorem .

Corollary  If f : R → R is a π -periodic, Lebesgue integrable and belonging to the Lipα

( < α ≤ ) class, then the degree of approximation of f̃ (x), the conjugate of f (x) ∈ Lipα,
with  < α ≤  by (C, )(E,q)means of its Fourier series is given by

∥∥C
nE

q
n – f̃

∥∥∞ =O
(
n–α

)
for n = , , , . . . .

Proof If r → ∞ in Theorem , then for  < α < ,

∥∥C
nE

q
n – f̃ (x)

∥∥∞ =O
(
n–α

)
.

For α = , we can write an independent proof by using α =  and ψ(t) = O(t) in I and I.
�
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