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Abstract
This paper is concerned with the Hu-Meyer formula for fractional Brownian motion
with the Hurst parameter less than 1/2. By the mollifier approximation, the Hu-Meyer
formula is explicitly obtained based on the multiple Stratonovich integral, and the
proof is different from the known methods. Moreover, the obtained Hu-Meyer
formula can be applied to derive the convergence rate of the multiple fractional
Stratonovich integral.
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1 Introduction
It is well known that Hu andMeyer [] introduced a new multiple stochastic integral with
respect to a Wiener process, called a multiple Stratonovich integral, which is in general
different from the usually studiedmultipleWiener-Itô integral. The authors also proposed
a formula (called Hu-Meyer formula) that gives the relationship of the Stratonovich inte-
gral with the Itô integrals of some functions called the traces that involve integrals of f on
the diagonals.
An increasing interest is visible in the last decade inmodeling long dependence phenom-

ena in the fields of dynamical system, economics, hydrology, telecommunication network
by using fractional Brownian motion (fBm for short). The fBm is a suitable generalization
of standard Brownian motion which exhibits long-range dependence.
Recently, many authors have considered an integral with respect to fBm. Duncan et al.

[] employed the Wick products to define a fractional stochastic integral whose mean
is zero. This property is very convenient for both theoretical development and practical
applications. For more details, one can see [] and the references therein.
Bardina et al. [] constructed a multiple Stratonovich integral with respect to fBm with

the Hurst parameterH < / under some conditions. They defined the traces to obtain the
Hu-Meyer formula that gives the Stratonovich integral as a sum of Itô integrals of these
traces.
In this paper, we consider a similar problem for the multiple Stratonovich integral. In-

spired by [], we define the integral of Stratonovich type in the mollifier approximation
sense. Unlike our construction, in the paper [], the Stratonovich integral is defined in the
Solé-Utzet sense (see []). Our aimhere is to present a new proof of theHu-Meyer formula
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for fBm. We also do not make use of the integral representation of fBm in terms of ordi-
nary Brownian motion as in [], where the hypothesis involves the transferring operator
which is difficult to verify.
We have organized the paper as follows. Section  recalls some results from [] on the

multiple Stratonovich integral, which will be used in the remainder of the paper. Section 
gives the Hu-Meyer formula and its proof. As an application, the fourth section is devoted
to the convergence rate of the multiple fractional Stratonovich integral.

2 Multiple Stratonovich integral
In this paper, we denote by (�,F ,P) the basic probability space. The expectation on this
basic probability space is denoted by E. The fBm (BH

t , t ≥ ) of the Hurst parameter H is
a Gaussian process with mean  and covariance given by

E
(
BH
t B

H
s
)
=


(
tH + sH – |t – s|H)

, ≤ s, t < ∞.

Throughout this paper, we assume H < /.
For a fixed positive integer n and a suitable (deterministic) function f (t, . . . , tn) of n vari-

ables the multiple Itô integral

In(f ) =
∫
≤t,...,tn≤T

f (t, . . . , tn)dBH
t · · ·dBH

tn

and the multiple Stratonovich integral

Sn(f ) =
∫
≤t,...,tn≤T

f (t, . . . , tn)d◦BH
t · · ·d◦BH

tn (.)

are well defined (see [, ] and the references therein).
Following the notations in [], we define

f̄ (x, . . . ,xn) =

{
f (x, . . . ,xn) if (x, . . . ,xn) ∈ [,T]n,
 otherwise,

(.)

with

Vyf (x) = f (y).

This implies Vyf (x) is obtained by using a variable y instead of x.
For a continuous function of n variables f (t, . . . , tn), we define

Vk,sf = Vk,sf (t, . . . , tn) = f (t, . . . , tk–, s, tk+, . . . , tn).

This means Vk,sf is obtained from f by replacing the kth variable tk by s.

3 Hu-Meyer formula
Now, theWick product � of two functionals is introduced. To extend the theory of stochas-
tic calculus from Brownianmotions to fBms, theWick calculus for Gaussian processes (or
Gaussian measures) is used. TheWick product of two exponential functions (see []) ε(f )
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and ε(g) is defined as

ε(f ) � ε(g) = ε(f + g), (.)

where

ε(f ) := exp

{∫ ∞


ft dBH

t –


|f |φ

}
.

Using the linear property, we can generalize the Wick product to the linear combination
of exponential functionals. Then the Wick product can be extended to a general random
variable by taking limit.

Proposition  Let X and Y be two random variables. Then we have

X � Y = X · Y – E(XY ).

Proof By the definition of an exponential function,

ε(X) := etX–

 t

E(X), ε(Y ) := esY–

 s

E(Y),

using the expression (.)

ε(X) � ε(Y ) = etX–

 t

E(X) � esY–

 s

E(Y) = etX+sY–

 E(tX+sY )


,

we will compare the coefficients of the term s · t in the two sides of the above equality.
Observe that the coefficient of s ·t in the left isX�Y and the one in the right isX ·Y –E(XY ).
This fact implies the truth of the proposition. �

As in [], for ϕε(t, s) and fixed t, as ε tends to zero, ϕε(t, ·) tends to the Dirac function at
t, δ(t – s). Define

Ḃε
t =

∫ T


ϕε(t, s)dBH

s =
∫ T


ϕε(t, s)ḂH

s ds. (.)

Obviously,

Ḃε
t →

∫ T


δ(t – s)ḂH

s ds = ḂH
t

when ε tends to zero. Then Ḃε
t is a Gaussian random variable (see []). Furthermore, from

[], we have

lim
ε→

E
(
Ḃε
t Ḃ

ε
t

)
= lim

ε→

〈
ϕε(t, s),ϕε(t, s)

〉
H

= lim
ε→



H( – H)

∫
R

(I –Vs )ϕε(t, s)(I –Vs )ϕε(t, s)
|s – s|–H ds ds

=


H( – H)

I –Vt
|t – t|–H . (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/272
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Lemma  For Ḃε
ti defined by (.), i = , . . . ,n, we have

Ḃε
t · · · Ḃε

tn =
∑
i,...,in


k · k! Ḃ

ε
tin

� · · · � Ḃε
tin–k–

E
(
Ḃε
ti
Ḃε
ti

) · · ·E(
Ḃε
tik–

Ḃε
tik

)
, (.)

where i, . . . , in run over all permutations of {, . . . ,n} and tj ∈ [,T], j = , . . . ,n.

Proof Let Xi = Ḃε
ti =

∫ T
 ϕε(ti, si)ḂH

si dsi (i = , . . . ,n), by (.) we obtain

ε(tX) � · · · � ε(tnXn) = ε(tX + · · · + tnXn).

Then, by the definition of an exponential function,

etX+···+tnXn = e

 E(tX+···+tnXn)ε(tX) � · · · � ε(tnXn). (.)

Next we will compare the coefficients of t · · · tn. On the one hand, it is obvious that the
left-hand side of (.) is equal to

∑
i,...,in

ti · · · tinn
i! · · · in!X

i
 · · ·Xin

n ,

therefore, the coefficient of the term t · · · tn on the left-hand side is X · · ·Xn.
On the other hand, the right-hand side of (.) coincides with

∞∑
k=


k · k!

(
E(tX + · · · + tnXn)

)k
ε(tX) � · · · � ε(tnXn)

=
∞∑
k=


k · k!

(
E(tX + · · · + tnXn)

)k ∞∑
k=

tkX�k


k!
· · ·

∞∑
k=

tknX�k
n

k!

=
∞∑
k=


k · k!

( ∑
≤i≤j≤n

titjE(XiXj)
)k ∞∑

k=

tkX�k


k!
· · ·

∞∑
k=

tknX�k
n

k!
.

Notice that the coefficient of t · · · tn on the right-hand side is

∑
σ


k · k!Xin � · · · �Xin–k–E(XiXi ) · · ·E(Xik–Xik ),

where σ are the permutations of {, , . . . ,n}. This completes the proof. �

Let us state the main result of this section. The following explains the relations between
the multiple Itô integral and the Stratonovich integral.

Theorem  (Hu-Meyer formula) Let f ∈ Ls ([,T]n). There exists the limit in L(�) of

Sn
(
f ε

)
=

∫
[,T]n

f (t, . . . , tn)Ḃε
t · · · Ḃε

tn dt · · ·dtn,

http://www.journalofinequalitiesandapplications.com/content/2012/1/272


Wang and Hu Journal of Inequalities and Applications 2012, 2012:272 Page 5 of 12
http://www.journalofinequalitiesandapplications.com/content/2012/1/272

and the limit is given by the extended Hu-Meyer formula

Sn(f ) =
[ n ]∑
k=

n!
(n – k)!k!k

In–k
(
Trkf

)
,

where

Trk(f ) :=
(
H( – H)

)k ∫
Rk

∏k
i=(I –Vi,ti– )f̄ (t, . . . , tk , ·)∏k

i= |ti– – ti|–H
dt · · ·dtk ,

with the convention that Trf = f .

Remark  This result is not the same as Theorem . in [], where the traces that appear
are defined by a limit procedure, not in the way stated here.

Proof Using Lemma  and the property of the Wick product, we have that

Sn
(
f ε

)
=

∫
[,T]n

f (t, . . . , tn)Ḃε
t · · · Ḃε

tn dt · · ·dtn

=
∑

σ


k · k!

∫
[,T]n

f (t, . . . , tn)Ḃε
tn–k– � · · · � Ḃε

tnE
(
Ḃε
t Ḃ

ε
t

)
· · ·E(

Ḃε
tk– Ḃ

ε
tk

)
dt · · ·dtn

=
∑

σ


k · k!

∫
[,T]n

f (t, . . . , tn)Ḃε
tn–k– � · · · � Ḃε

tn

〈
ϕε(t, ·),ϕε(t, ·)

〉
H

· · · 〈ϕε(tk–, ·),ϕε(tk , ·)
〉
H dt · · ·dtn

=
∑

σ


k · k!

∫
[,T]n–k

gε(tk+, . . . , tn)Ḃε
tn–k– � · · · � Ḃε

tn dtn–k– · · ·dtn

=
∑

σ


k · k!

∫
[,T]n–k

gε(tk+, . . . , tn)Ḃε
tk+ � · · · � Ḃε

tn dtk+ · · ·dtn,

where

gε(tk+, . . . , tn)

=
∫
[,T]k

f (t, . . . , tn)
〈
ϕε(t, ·),ϕε(t, ·)

〉
H · · · 〈ϕε(tk–, ·),ϕε(tk , ·)

〉
H dt · · ·dtk .

Submitting (.) to the above expression,

lim
ε→

gε(tk+, . . . , tn)

=
(
H( – H)

)k ∫
Rk

∏k
i=(I –Vi,ti– )f̄ (t, . . . , tk , ·)∏k

i= |ti– – ti|–H
dt · · ·dtk

= Trkf .
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By the continuity of themultiple Itô-type integrals on the (LH
T )⊗(n–k) spaces [], it follows

that ∫
[,T]n–k

gε(tk+, . . . , tn)Ḃε
tk+ � · · · � Ḃε

tn dtk+ · · ·dtn

=
∫
[,T]n–k

gε(tk+, . . . , tn)
∫ T


ϕε(tk+, sk+)dBH

sk+

� · · · �
∫ T


ϕε(tn, sn)dBH

sndtk+ · · ·dtn

→ In–k
(
Trkf

)
,

which is in the L(�) sense as ε → .
Denote∫

[,T]k
gε(t, . . . , tk)Ḃε

t � · · · � Ḃε
tk dt · · ·dtk =

∫
[,T]k

hε(s, . . . , sk)dBH
s � · · · � dBH

sk ,

where

hε(s, . . . , sk) =
∫
[,T]k

gε(t, . . . , tk)ϕε(t, s) · · ·ϕε(tk , sk)dt · · ·dtk .

It is easy to prove that hε(s, . . . , sk) converge to h(s, . . . , sk) in the same way as in []. Since
σ are the permutations of {, , . . . ,n}, we get the desired result. �

4 Applications to the convergence rate of themultiple Stratonovich integral
To complement the paper, we introduce some notations. Let π :  = t < t < · · · < tn = T
be a partition of the interval [,T]. Denote

	i = ti+ – ti, 	 =max
i

	i.

Without ambiguity, we will also denote the interval (ti, ti+] by 	i. We also consider a class
of partitions 
 such that

C
 = sup
π∈


sup
i,j

	π
i

	π
j
< ∞. (.)

Let BH,π
t be the interpolation approximation of BH

t ,

BH,π
t = BH

ti +
	BH

ti
	i

(t – ti), when t ∈ 	i,

where

	BH
ti = BH

ti+ – BH
ti .

Consider the approximation of the multiple stochastic integral

Sπ
n (f ) =

∫
≤t,...,tn≤T

f (t, . . . , tn)dBH,π
t · · ·dBH,π

tn . (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/272
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It is proved in [] that, under some mild conditions, Sπ
n (f ) converges to Sn(f ) in the mean

square sense. Then the natural question is: what is the precise asymptotic, i.e., convergence
rate?
Our main result in this section is stated as follows.

Theorem  Suppose that f ∈ Cn+([,T]n). Given a sequence partition π of the interval
[,T] satisfying (.), there is a random variable Sn(f ) such that Sπ

n (f ) converges to Sn(f ) in
the mean square sense. Moreover, there is a constant C, independent of partition π , such
that

E
∣∣Sπ

n (f ) – Sn(f )
∣∣ ≤ C	H . (.)

We must point out that the Hu-Meyer formula will be the key tool used in order to
obtain the convergence rate of the interpolation approximation for general n considered
in the section. In order to prove the above theorem, we also need the following results.

Proposition  Assume t,x ∈ 	i , t,x ∈ 	j and s, y ∈ 	i , s, y ∈ 	j . Let f continu-
ously bound first and second derivatives on [,T]. Then we have

( ∏
k=

(I –Vk,sk )f (t, t) –
∏

k=

(I –Vk,yk )f (x,x)

)

≤ C|x – y|	 +C|x – y|	 +C	.

Proof Notice that

(t – s)(t – s) = (δ + x – y)(δ + x – y),

where

δ = t – x + y – s,

δ = t – x + y – s.

Since t,x ∈ 	i , y, s ∈ 	j , we get

|δ| = |t – x + y – s| ≤ |t – x| + |y – s|
≤ 	i +	j ≤ 	.

Similarly, we also have |δ| ≤ 	.
We denote f = ∂f

∂x
, f = ∂f

∂x∂x
, a simple computation implies that

∏
k=

(I –Vk,sk )f (t, t)

=
∫ 



∫ 


f

(
s + θ(t – s), s + θ(t – s)

)
dθ dθ(t – s)(t – s), (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/272
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and

∏
k=

(I –Vk,yk )f (x,x)

=
∫ 



∫ 


f

(
y + θ(x – y), y + θ(x – y)

)
dθ dθ(x – y)(x – y)

= A(x – x)(y – y), (.)

where A =
∫ 


∫ 
 f(y + θ(x – y), y + θ(x – y))dθ dθ is a bounded constant.

Denote

δ = f
(
s + θ(t – s), s + θ(t – s)

)
– f

(
y + θ(x – y), y + θ(x – y)

)
,

obviously, |δ| ≤ C|	|. According to (.) and (.), we have

∣∣∣∣∣
∏

k=

(I –Vk,sk )f (t, t) –
∏

k=

(I –Vk,yk )f (x,x)

∣∣∣∣∣
=

∣∣(A + δ)(δ + x – y)(δ + x – y) –A(x – y)(x – y)
∣∣

=
∣∣Aδδ +A(x – y)δ +A(x – y)δ + δδδ + (x – y)δδ

+ (x – y)δδ + (x – y)(x – y)δ
∣∣

≤ |Aδδ| +
∣∣A(x – y)δ

∣∣ + ∣∣A(x – y)δ
∣∣ + |δδδ| +

∣∣(x – y)δδ
∣∣

+
∣∣(x – y)δδ

∣∣ + ∣∣(x – y)(x – y)δ
∣∣

≤ C	 +C|x – y|	 +C|x – y|	,

the proof is complete. �

It is easy to obtain the following result by calculation.

Lemma  Let f ∈ Cn+([,T]n). If we denote

fk+ =
∂f

∂xk+
, . . . , fk+···n =

∂n–kf
∂xk+ · · · ∂xn ,

then we have

∣∣Trkf π
k+···n(x, . . . ,xk ,xk+, . . . ,xn) – Trkfk+···n(x, . . . ,xk ,xk+, . . . ,xn)

∣∣
≤ C	H .

Lemma  Suppose that f ∈ Cn+([,T]n). If we denote

f =
∂f
∂x

, f =
∂f

∂x∂x
, . . . , f···n =

∂nf
∂x · · · ∂xn ,

http://www.journalofinequalitiesandapplications.com/content/2012/1/272
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we have

n∏
k=

(I –Vk,yk )f (x, . . . ,xn)

=
∫ 


· · ·

∫ 


f···n

(
y + θ(x – y), . . . , yn + θn(xn – yn)

)
dθ · · ·dθn

n∏
k=

(xk – yk),

and
∣∣∣∣∣

n∏
k=

(I –Vk,yk )f (x, . . . ,xn)

∣∣∣∣∣ ≤ C
n∏
k=

|xk – yk|.

Proof It follows easily by induction. �

Lemma  Suppose that f ∈ Cn+([,T]n). Then, for tl,xl ∈ 	il , sl, yl ∈ 	jl , l = , . . . ,n,

( n∏
k=

(I –Vk,sk )f (t, . . . , tn) –
n∏
k=

(I –Vk,yk )f (x, . . . ,xn)

)

≤ C
n–∑
k=

( ∑
≤i<i<···<ik≤n

(xi – yi )
 · · · (xik – yik )


)

	(n–k) +C	n.

Proof Observe that for tl,xl ∈ 	il , sl, yl ∈ 	jl , l = , . . . ,n,

tl – sl = tl – xl + xl – yl + yl – sl =: δl + xl – yl,

where

δl = tl – xl + yl – sl.

It is obvious that |δl| ≤ |tl – xl| + |yl – sl| ≤ 	il +	jl ≤ 	.
Set

f···n
(
s + θ(t – s), . . . , sn + θn(tn – sn)

)
=: f···n

(
y + θ(x – y), . . . , yn + θn(xn – yn)

)
+ δn+, (.)

where

δn+ = f···n
(
s + θ(t – s), . . . , sn + θn(tn – sn)

)
– f···n

(
y + θ(x – y), . . . , yn + θn(xn – yn)

)
. (.)

Moreover, |δn+| ≤ C|	|.
Without loss of generality, we can write

A =
∫ 


· · ·

∫ 


f···n

(
y + θ(x – y), . . . , yn + θn(xn – yn)

)
dθ · · ·dθn.

http://www.journalofinequalitiesandapplications.com/content/2012/1/272
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Clearly, A is a bounded constant.
Putting together (.) and (.) and using Lemma , we get that

∣∣∣∣∣
n∏
k=

(I –Vk,sk )f (t, . . . , tn) –
n∏
k=

(I –Vk,yk )f (x, . . . ,xn)

∣∣∣∣∣
=

∣∣∣∣
∫ 


· · ·

∫ 



[
f···n

(
y + θ(x – y), . . . , yn + θn(xn – yn)

)
+ δn+

]
dθ · · ·dθk

× (δ + x – y) · · · (δn + xn – yn) –A(x – y) · · · (xn – yn)
∣∣∣∣

=
∣∣(A + δn+)(δ + x – y) · · · (δn + xn – yn) –A(x – y) · · · (xn – yn)

∣∣
≤ C

n–∑
k=

( ∑
≤i<i<···<ik≤n

|xi – yi | · · · |xik – yik |
)

	n–k +C	n.
�

Proof of Theorem  If we take ϕε(x, y) =
∑

i


	i
	i (x)	i (y), then we have the polygonal

approximation (.). By using Theorem , it is easy to see that

Sπ
n (f ) – Sn(f ) =

∑
k≤[n/]

n!
kk!(n – k)!

In–k
(
Trkf π

)

–
∑

k≤[n/]

n!
kk!(n – k)!

In–k
(
Trkf

)
.

Set

gπ (x, . . . ,xn) = f π (x, . . . ,xn) – f (x, . . . ,xn).

Then

Sπ
n (f ) – Sn(f ) =

∑
k≤[n/]

n!
kk!(n – k)!

In–k
(
Trkf π

)

–
∑

k≤[n/]

n!
kk!(n – k)!

In–k
(
Trkf

)

=
∑

k≤[n/]

n!
kk!(n – k)!

In–k
(
Trkgπ

)
.

Using the properties of multiple Wiener-Itô integrals (see []), we derive the following:

E
∣∣Sπ

n (f ) – Sn(f )
∣∣ = ∑

k≤[n/]

(n!)

k(k!)[(n – k)!]
E

∣∣In–k(Trkgπ
)∣∣

=
∑

k≤[n/]

(n!)

k(k!)[(n – k)!]
∥∥Trkgπ

∥∥
LH,n–k .

In order to prove (.), we will check ‖Trkgπ‖LH,n–k for all  ≤ k ≤ [n/].
For k = , we get

∥∥Trkgπ
∥∥
LH,n–k =

∥∥gπ
∥∥
LH,n ≤ C	H+.
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For  ≤ k ≤ [n/], we also write

∥∥Trkf π – Trkf
∥∥
LH,n–k

= C
∫
R(n–k)

(
∏n

i=k+(I –Vi,yi )F̄π (xk+, . . . ,xn))∏n
i=k+ |xi – yi|–H dxk+ · · ·dxn dyk+ · · ·dyn

= CFπ
(n–k) + · · · +CFπ

(n–k)–k′ + · · · +CFπ
n–k

(
 ≤ k′ < n – k

)
,

where Fπ = Trkf π – Trkf .
By some elementary calculations, we know that the main terms which determine the

convergence rate are Fπ
(n–k) and Fπ

n–k , whose expressions are similar to the correspon-
dence terms Fπ

n and Fπ
n respectively.

On the one hand, by Lemma  and Lemma , we obtain

( n∏
i=k+

(I –Vi,yi )F
π (xk+, . . . ,xn)

)

=
∣∣∣∣
∫ 


· · ·

∫ 


Fπ
k+···n

(
yk+ + θk+(xk+ – yk+), . . . ,

yn + θn(xn – yn)
)
dθk+ · · ·dθn(xk+ – yk+) · · · (xn – yn)

∣∣∣∣


≤ 	H (xk+ – yk+) · · · (xn – yn).

Note that

Fπ
(n–k) =

∫
IT (n–k)

(
∏n

i=k+(I –Vi,yi )Fπ (xk+, . . . ,xn))∏n
i=k+ |xi – yi|–H dxk+ · · ·dxn dyk+ · · ·dyn

≤ 	H
∫
IT (n–k)

n∏
i=k+

|xi – yi|H dxk+ · · ·dxn dyk+ · · ·dyn

≤ C	H .

On the other hand, clearly, we have

Fπ
n–k =

∫
IT n–k

(
Fπ (xk+, . . . ,xn)

) n∏
i=k+

H(xi)dxk+ · · ·dxn

≤ C	.

Therefore, we obtain

∥∥Trkf π – Trkf
∥∥
LH,n–k ≤ C	H+ +C	H +C	

≤ C	H ,

and the proof is complete. �
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