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1 Introduction
This paper is devoted to investigating the following p-Laplacian Liénard neutral differen-
tial system:

(
ϕp
((
x(t) – Bx(t – τ )

)′))′ + f
(
x(t)

)
x′(t) + g

(
x
(
t – γ (t)

))
= e(t), (.)

where x(t) = (x(t),x(t), . . . ,xn(t))�;

ϕp :Rn →R
n, ϕp(x) = |x|p–x =

(√√√√ n∑
i=

xi

)p–

x, p > ;

f (x) =
(
f(x), f(x), . . . , fn(xn)

)
, fi(xi) ∈ C(R,R), i = , , . . . ,n;

g(x) =
(
g(x), g(x), . . . , gn(xn)

)�, gi(xi) ∈ C(R,R), i = , , . . . ,n;

e ∈ C(R,Rn) with e(t + T) = e(t); γ ∈ C(R,R) with γ (t + T) = γ (t); τ is a given constant;
B = [bij]n×n is a real matrix with |B| = (

∑n
i=
∑n

j= |bij|)/.
When the matrix B is a constant, Zhang [] studied the properties of a difference oper-

ator A and obtained the following results: define the operator A on CT

A : CT → CT , [Ax](t) = x(t) – cx(t – τ ), ∀t ∈R, (.)

where CT = {x : x ∈ C(R,R),x(t + T) ≡ x(t)}, c is a constant. If |c| �= , then A has a unique
continuous bounded inverse A– satisfying

[
A–f

]
(t) =

⎧⎨
⎩
∑

j≥ cjf (t – jτ ), if |c| < ,∀f ∈ CT ,

–
∑

j≥ c–jf (t + jτ ), if |c| > ,∀f ∈ CT .
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On the basis of Zhang’s work, Lu [] further studied the properties of the difference oper-
ator A and gave the following inequality properties for A:
() ‖A–‖ ≤ 

|–|k|| ;
()

∫ T
 |[A–f ](t)|dt ≤ 

|–|k||
∫ T
 |f (t)|dt, ∀f ∈ CT ;

()
∫ T
 |[A–f ](t)| dt ≤ 

|–|k||
∫ T
 |f (t)| dt, ∀f ∈ CT .

After that, by using the above results, many researchers studied the existence of periodic
solutions for some kinds of differential equations; see [–]. In a recent paper [], when
the constant c of (.) is a variable c(t), we generalized the results of [] and obtained
the following results. If |c(t)| �= , then the operator A has continuous inverse A– on CT ,
satisfying
()

[
A–f

]
(t) =

⎧⎨
⎩f (t) +

∑∞
j=
∏j

i= c(t – (i – )τ )f (t – jτ ), c < ,∀f ∈ CT ,

– f (t+τ )
c(t+τ ) –

∑∞
j=
∏j+

i=


c(t+iτ ) f (t + jτ + τ ), σ > ,∀f ∈ CT .

()

∫ T



∣∣[A–f
]
(t)
∣∣dt ≤

⎧⎨
⎩


–c

∫ T
 |f (t)|dt, c < ,∀f ∈ CT ,


σ–

∫ T
 |f (t)|dt, σ > ,∀f ∈ CT .

Using the above results, we have obtained some existence results of periodic solutions for
first-order, second-order and p-Laplacian neutral equations with a variable parameter; see
[–].
However, when B of (.) is a matrix, there are few existence results of periodic solu-

tions for neutral differential systems. In [], when B is a symmetric matrix, the authors
studied a second-order p-Laplacian neutral functional differential system and obtained
the existence of periodic solutions. In [], when B is a general matrix, the authors stud-
ied a second-order neutral differential system. But for p-Laplacian functional differential
system, to the best our knowledge, there are no results on the existence of periodic solu-
tions. Hence, in this paper, we will study system (.) and obtain the existence of periodic
solutions by using the generalization of Mawhin’s continuation theorem.

2 Main lemmas
In this section, we give some notations and lemmas which will be used in this paper. Let

CT =
{
x|x ∈ C

(
R,Rn),x(t + T) ≡ x(t)

}
,

C
T =

{
x|x ∈ C(

R,Rn),x(t + T) = x(t)
}
,

X = C
T with the norm ‖x‖ =max{|x|, |x′|}, Z = CT with the norm

|x| = max
≤t≤T

∣∣x(t)∣∣, ∣∣x(t)∣∣ =
( n∑

i=

xi

)/

,

U is a complex such that

UBU– = Eλ = diag(J, J, . . . , Jn) (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/270
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is a Jordan’s normal matrix, where

Ji =

⎛
⎜⎜⎜⎜⎜⎜⎝

λi    · · · 
 λi   · · · 

· · · · · · · · · · · · · · · · · ·
  · · ·  λi 
    · · · λi

⎞
⎟⎟⎟⎟⎟⎟⎠

ni×ni

with
∑l

i= ni = n, {λi : i = , , . . . , l} is the set of eigenvalues of matrix B. Let

A : CT → CT , [Ax](t) = x(t) – Bx(t – τ ). (.)

Furthermore, we suppose that γ (t) ∈ C(R,R) with γ ′(t) < , ∀t ∈ R. It is obvious that the
function t – γ (t) has a unique inverse denoted by μ(t).

Lemma . ([]) Suppose that the matrix U and the operator A are defined by (.) and
(.), respectively, and for all i = , , . . . , l, |λi| �= . Then A has its inverse A–

 : CT → CT

with the following properties:
() ‖A–

 ‖ ≤ |U–||U|σ, σ =
∑l

i=
∑ni

j=
∑j

k=


|–λi|k .

() For all f ∈ CT ,
∫ T
 |[A–

 f ](s)|p ds≤ |U–|p|U|pσ
∫ T
 |f (s)|p ds, p ∈ [, +∞), where

σ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑l
i=
∑ni

j=(
∑j

k=


|–λi|k )
, p = ,

n
–p
 [
∑l

i=
∑ni

j=(
∑j

k=


|–λi|k )
q]

p
q , p ∈ [, ),

[
∑l

i=
∑ni

j=(
∑j

k=


|–λi|k )
q]

p
q , p ∈ [, +∞)

and q >  is a constant with /p + /q = .
() A–

 f ∈ C
T , [A–

 f ]′(t) = [A–
 f ′](t), for all f ∈ C

T , t ∈R.

Definition . ([]) Let X and Z be two Banach spaces with norms ‖ · ‖X , ‖ · ‖Z , respec-
tively. A continuous operator

M : X ∩ domM → Z

is said to be quasi-linear if
(i) ImM :=M(X ∩ domM) is a closed subset of Z;
(ii) KerM := {x ∈ X ∩ domM :Mx = } is linearly homeomorphic to R

n, n <∞.

Definition . ([]) Let � ⊂ X be an open and bounded set with the origin θ ∈ �, Nλ :
�̄ → Z, λ ∈ [, ] is said to be M-compact in �̄ if there exists a subset Z of Z satisfying
dimZ = dimKerM and an operator R : �̄ × [, ] → X being continuous and compact
such that for λ ∈ [, ],
(a) (I –Q)Nλ(�̄) ⊂ ImM ⊂ (I –Q)Z,
(b) QNλx = , λ ∈ (, ) ⇔QNx = , ∀x ∈ �,
(c) R(·, )≡  and R(·,λ)|∑

λ
= (I – P)|∑

λ
,

(d) M[P + R(·,λ)] = (I –Q)Nλ, λ ∈ [, ],

http://www.journalofinequalitiesandapplications.com/content/2012/1/270
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where X is the complement space of KerM in X, i.e., X = KerM ⊕ X; P, Q are two pro-
jectors satisfying ImP =KerM, ImQ = Z, N =N,

∑
λ = {x ∈ �̄ :Mx =Nλx}.

Lemma . ([]) Let X and Z be two Banach spaces with norms ‖ · ‖X , ‖ · ‖Z , respectively
and � ⊂ X be an open and bounded nonempty set. Suppose

M : X ∩ domM → Z

is quasi-linear and Nλ : �̄ → Z, λ ∈ [, ] is M-compact in �̄. In addition, if the following
conditions hold:

(A) Mx �=Nλx, ∀(x,λ) ∈ ∂� × (, );
(A) QNx �= , ∀x ∈KerM ∩ ∂�;
(A) deg{JQN ,� ∩KerM, } �= , J : ImQ →KerM is a homeomorphism.

Then the abstract equation Mx =Nx has at least one solution in domM ∩ �̄.

Lemma . ([]) Let s,σ ∈ C(R,R) with s(t +T) ≡ s(t) and σ (t +T) ≡ σ (t). Suppose that
the function t – σ (t) has a unique inverse μ(t), ∀t ∈R. Then s(μ(t + T)) ≡ s(μ(t)).

For fixed l ∈ Z and a ∈R
n, define

Gl(a) =

T

∫ T


ϕ–
p
(
a + l(t)

)
dt.

Lemma . ([]) The function Gl has the following properties:
() For any fixed l ∈ Z, there must be a unique ã = ã(l) such that the equation

Gl(a) = .

() The function ã : Z → R
n defined as above is continuous and sends bounded sets into

bounded sets.

Lemma. ([]) Let p ∈ (, +∞) be a constant, s ∈ C(R,R) such that s(t)≡ s(t+T), u ∈ X.
Then

∫ T



∣∣u(t) – u
(
t – s(t)

)∣∣p dt ≤ 
(
max
t∈[,T]

∣∣s(t)∣∣)p ∫ T



∣∣u′(t)
∣∣p dt.

3 Main results
For convenience of applying Lemma ., the operators A,M, Nλ are defined by

A : Z → Z, (Ax)(t) = x(t) – Bx(t – τ ), t ∈R, (.)

M : domM ∩X → Z, (Mx)(t) =
(
ϕp
[
(Ax)′

])′(t), t ∈R, (.)

Nλ : Z → Z, (Nλx)(t) = –λf
(
x(t)

)
x′(t) – λg

(
x
(
t – γ (t)

))
+ λe(t), t ∈ R,λ ∈ [, ],

(.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/270
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where domM = {x ∈ X : ϕp[(Ax)′] ∈ C
T }. For convenience of the proof, let

F(t,x) = –f
(
x(t)

)
x′(t) – g

(
x
(
t – γ (t)

))
+ e(t), (.)

then (Nλx)(t) = λF . By (.)-(.), Eq. (.) is equivalent to the operator equationNx =Mx,
where N =N . Then we have

KerM =
{
x ∈ domM ∩X : x(t) = a,a ∈R

n, t ∈R
}
,

ImM =
{
z ∈ Z :

∫ T


z(s)ds = θ

}
.

Since KerM ∼= R
n, ImM is a closed set in Z, then we have the following.

Lemma . Let M be as defined by (.), then M is a quasi-linear operator.

Let

P : X →KerM, (Px)(t) = x(), t ∈R,

Q : Z → Z/ ImM, (Qz)(t) =

T

∫ T


z(s)ds, t ∈R.

Lemma . If f , g , e, γ satisfy the above conditions, then Nλ is M-compact.

Proof Let Z = ImQ. For any bounded set �̄ ⊂ X �= ∅, define R : �̄ × [, ] →KerP,

R(x,λ)(t) = A–
{∫ t


ϕq

[
ax +

∫ s


λ
(
F
(
r,x(r)

)
– (QF)(r)

)
dr
]
ds
}
, t ∈ [,T],

where F is defined by (.) and ax is a constant vector in R
n which depends on x. By

Lemma ., we know that ax exists uniquely. Hence, R(x,λ)(t) is well defined.
We first show that R(·,λ) is completely continuous on �̄ × [, ]. Let

Gλ(t) =
∫ t


ϕq

[
ax +

∫ s


λ
(
F
(
r,x(r)

)
– (QF)(r)

)
dr
]
ds, t ∈ [,T],

we have

R(x,λ)(t) =
[
A–Gλ

]
(t).

From the properties of f , g , e, γ , obviously, ∀x ∈ �̄,Gλ(t) ∈ CT . Then by Lemma . R(x,λ)
is uniformly bounded on �̄×[, ]. Now,we showR(x,λ) is equicontinuous. ∀t, t ∈ [,T],
ε >  is sufficiently small, then there exists δ > , for |t – t| < δ, byGλ,A–Gλ ∈ CT we have

∣∣[A–Gλ

]
(t) –

[
A–Gλ

]
(t)

∣∣ < ε.

Hence, R(x,λ) is equicontinuous on �̄ × [, ]. By using the Arzelà-Ascoli theorem, we
have R(x,λ) is completely continuous on �̄ × [, ].

http://www.journalofinequalitiesandapplications.com/content/2012/1/270
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Secondly, we show that Nλ is M-compact in four steps, i.e., the conditions of Defini-
tion . are all satisfied.
Step . ByQ =Q, we haveQ(I –Q)Nλ(�̄) = θ , so (I –Q)Nλ(�̄) ⊂KerQ = ImM, here θ is

an n-dimension zero vector. On the other hand, ∀z ∈ ImM. Clearly,Qz = θ , so z = z–Qz =
(I –Q)z, then z ∈ (I –Q)Z. So, we have

(I –Q)Nλ(�̄) ⊂ ImM ⊂ (I –Q)Z.

Step . We show that QNλx = θ , λ ∈ (, ) ⇔ QNx = θ , ∀x ∈ �. Because QNλx =

T
∫

λF dr = θ , we get 
T
∫
F dr = θ , i.e., QNx = θ . The inverse is true.

Step . When λ = , from the above proof, we have ax = θ . So, we get R(·, ) = θ . ∀x ∈∑
λ = {x ∈ �̄ :Mx = Nλx}, we have (ϕp[(Ax)′])′ = λF and QF = θ . In this case, when ax =

ϕp[(Ax)′()], we have

Gλ(T) =
∫ T


ϕq

[
ax +

∫ s


λ
(
F
(
r,x(r)

)
– (QF)(r)

)
dr
]
ds

=
∫ T


ϕq

[
ϕp
[
(Ax)′()

]
+
∫ s


λF
(
r,x(r)

)
dr
]
ds

=
∫ T


ϕq

[
ϕp
[
(Ax)′()

]
+
∫ s



(
ϕp
[
(Ax)′(r)

])′ dr]ds
=
∫ T


(Ax)′(s)ds

= (Ax)(T) – (Ax)() = θ .

Hence,

R(x,λ)(t) = A–
{∫ t


ϕq

[
ϕp
[
(Ax)′()

]
+
∫ s


λ
(
F
(
r,x(r)

)
– (QF)(r)

)
dr
]
ds
}

= A–
{∫ t


ϕq

[
ϕp
[
(Ax)′()

]
+
∫ s


λF
(
r,x(r)

)
dr
]
ds
}

= A–
{∫ t


ϕq

[
ϕp
[
(Ax)′()

]
+
∫ s



(
ϕp
[
(Ax)′(r)

])′ dr]ds}

= A–
{∫ t


(Ax)′(s)ds

}

= A–[(Ax)(t) – (Ax)()
]

=
[
(I – P)x

]
(t).

Step . ∀x ∈ �̄, we have

M
[
Px + R(x,λ)

]
(t)

=
(

ϕp

([
(Ax)() +AA–

{∫ t


ϕq

[
ax +

∫ s


λ
(
F
(
r,x(r)

)
– (QF)(r)

)
dr
]
ds
}]′))′

=
(

ϕp

({∫ t


ϕq

[
ax +

∫ s


λ
(
F
(
r,x(r)

)
– (QF)(r)

)
dr
]
ds
}′))′

http://www.journalofinequalitiesandapplications.com/content/2012/1/270
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=
(

ϕp

(
ϕq

[
ax +

∫ t


λ
(
F
(
r,x(r)

)
– (QF)(r)

)
dr
]))′

=
(
ax +

∫ t


λ
(
F
(
r,x(r)

)
– (QF)(r)

)
dr
)′

=
[
(I –Q)Nλx

]
(t).

Hence, Nλ isM-compact in �̄. �

Theorem. Suppose that
∫ T
 e(s)ds = θ , λ,λ, . . . ,λl are eigenvalues of thematrix B with

|λi| �= , i = , , . . . l, and there exist positive constants D > , l >  and σ >  such that

(H) xigi(xi) > , ∀xi ∈R, |xi| >D, for each i = , , . . . ,n,
(H) |gi(u) – gi(u)| ≤ l|u – u|, u,u ∈R, for each i = , , . . . ,n,
(H) |fi(xi)| ≥ σ , xi ∈R, for each i = , , . . . ,n.

Then Eq. (.) has at least one T-periodic solution if one of the following two conditions is
satisfied:

σ >
√
l max

t∈[,T]
∣∣γ (t)∣∣ for  < q <  or

σ >
√
l max

t∈[,T]
∣∣γ (t)∣∣, ∣∣U–∣∣|U|σ

√
nTfR <  for q = ,

where fR =max|x|≤R |f (x)|,R is defined by (.).

Proof We complete the proof in three steps.
Step . Let � = {x ∈ domM :Mx =Nλx,λ ∈ (, )}. We show that � is a bounded set. If

x ∈ �, thenMx =Nλx, i.e.,

(
ϕp
[
(Ax)′

])′ = –λf
(
x(t)

)
x′(t) – λg

(
x
(
t – γ (t)

))
+ λe(t). (.)

Integrating both sides of (.) over [,T], we have

∫ T


g
(
x
(
t – γ (t)

))
dt = θ ,

which together with assumption (H) leads to the fact that there exists a point ξi ∈R such
that

∣∣xi(ξi – γ (ξi)
)∣∣≤ D, for each i = , , . . . ,n.

Let ξi – γ (ξi) = kT + ηi, k ∈ Z, ηi ∈ [,T]. Then

∣∣xi(ηi)∣∣≤ D, for each i = , , . . . ,n.

Thus,

|xi| ≤ D +
∫ T



∣∣x′
i(s)

∣∣ds, for each i = , , . . . ,n. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/270
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By (.), we have

|x| = (
x + x + · · · + xn

) 


≤ √
n
(
D +

∫ T



∣∣x′(s)
∣∣ds) (.)

and

|x| ≤ √
n
(
D +

∫ T



∣∣x′(s)
∣∣ds). (.)

On the other hand, multiplying the two sides of Eq. (.) by [x′(t)]� from the left side
and integrating them over [,T], we have

∫ T



[
x′(t)

]�(
ϕp
[
(Ax)′

])′ dt = –λ

∫ T



[
x′(t)

]�f (x(t))x′(t)dt

– λ

∫ T



[
x′(t)

]�g(x(t – γ (t)
))
dt

+ λ

∫ T



[
x′(t)

]�e(t)dt. (.)

Let ω(t) = ϕp[(Ax)′(t)], then

∫ T



[
x′(t)

]�(
ϕp
[
(Ax)′

])′ dt = ∫ T



{
A–(ϕq

(
ω(t)

))}� dω(t) = .

By (.), we have

∣∣∣∣∣
n∑
i=

∫ T


fi
(
xi(t)

)[
x′
i(t)

] dt
∣∣∣∣∣

≤
∣∣∣∣
∫ T



[
x′(t)

]�g(x(t – γ (t)
))
dt
∣∣∣∣ +

∣∣∣∣
∫ T



[
x′(t)

]�e(t)dt∣∣∣∣. (.)

By assumption (H), we have

σ

n∑
i=

∫ T



∣∣x′
i(t)

∣∣ dt ≤
n∑
i=

∫ T



∣∣fi(xi(t))∣∣[x′
i(t)

] dt

=

∣∣∣∣∣
n∑
i=

∫ T


fi
(
xi(t)

)[
x′
i(t)

] dt
∣∣∣∣∣. (.)

From (.) and (.), we have

σ

n∑
i=

∫ T



∣∣x′
i(t)

∣∣ dt ≤
∫ T



∣∣[x′(t)
]�g(x(t – γ (t)

))∣∣dt + ∫ T



∣∣[x′(t)
]�e(t)∣∣dt. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/270
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From
∫ T
 [x′(t)]�g(x(t))dt = , assumption (H), Lemma . and (.), we have

σ

n∑
i=

∫ T



∣∣x′
i(t)

∣∣ dt
≤
∫ T



∣∣[x′(t)
]�[g(x(t)) – g

(
x
(
t – γ (t)

))]∣∣dt + ∫ T



∣∣[x′(t)
]�e(t)∣∣dt

≤
n∑
i=

l
∫ T



∣∣x′
i(t)

∣∣∣∣xi(t) – xi
(
t – γ (t)

)∣∣dt +(∫ T



∣∣x′(t)
∣∣ dt)/(∫ T



∣∣e(t)∣∣ dt)/

≤
n∑
i=

l
(∫ T



∣∣x′
i(t)

∣∣ dt)/(∫ T



∣∣xi(t) – xi
(
t – γ (t)

)∣∣ dt)/

+
(∫ T



∣∣x′(t)
∣∣ dt)/(∫ T



∣∣e(t)∣∣ dt)/

≤
n∑
i=

√
l max

t∈[,T]
∣∣γ (t)∣∣ ∫ T



∣∣x′
i(t)

∣∣ dt +(∫ T



∣∣x′(t)
∣∣ dt)/(∫ T



∣∣e(t)∣∣ dt)/

. (.)

Since σ >
√
lmaxt∈[,T] |γ (t)|, by (.), there exists a positive constant R such that

∫ T



∣∣x′(s)
∣∣ds≤ R.

Then by (.),

|x| ≤ √
n(D + R) := R. (.)

By (.), we have

∣∣(ϕp
[
(Ax)′

])′∣∣≤ fR
∣∣x′(t)

∣∣ + gR + |e|,

where fR =max|x|≤R |f (x)|, gR =max|x|≤R |g(x)|. Take ϕp[(Ax)′(t)] = y(t), then

∣∣y′∣∣
 ≤ fR

∣∣x′(t)
∣∣ + gR + |e| (.)

and (Ax)′(t) = ϕq(y(t)). Because there exists a ti ∈ [,T] such that y(ti) = , i = , , . . . ,n, so
by (.), we get

∣∣y(t)∣∣≤ √
nT

∣∣y′∣∣
 ≤ √

nTfR
∣∣x′(t)

∣∣ +√
nTgR +

√
nT |e|

and

∣∣(Ax)′(t)∣∣≤ (√
nTfR

∣∣x′(t)
∣∣ +√

nTgR +
√
nT |e|

)q–. (.)

By (.) and Lemma ., we have

∣∣x′(t)
∣∣ = ∣∣[A–Ax′](t)∣∣≤ ∣∣U–∣∣|U|σ

∣∣(Ax)′(t)∣∣
≤ ∣∣U–∣∣|U|σ

(√
nTfR

∣∣x′(t)
∣∣ +√

nTgR +
√
nT |e|

)q–. (.)
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Now, we consider (
√
nTfR |x′(t)| +√

nTgR +
√
nT |e|)q–. In the formal case, we get

(√
nTfR

∣∣x′(t)
∣∣ +√

nTgR +
√
nT |e|

)q–
=
(√

nTfR
∣∣x′(t)

∣∣)q–( + √
nTgR +

√
nT |e|√

nTfR |x′(t)|
)q–

. (.)

By classical elementary inequalities, we see that there is a constant h(p) > , which is de-
pendent on p only, such that

( + x)p <  + ( + p)x, ∀x ∈ (,h(p)]. (.)

Case .. If
√
nTgR+

√
nT |e|√

nTfR |x′(t)| > h, then

∣∣x′(t)
∣∣ < √

nTgR +
√
nT |e|√

nTfRh
:=M. (.)

Case .. If
√
nTgR+

√
nT |e|√

nTfR |x′(t)| ≤ h, by (.) and (.), we have

(√
nTfR

∣∣x′(t)
∣∣ +√

nTgR +
√
nT |e|

)q–
=
(√

nTfR
∣∣x′(t)

∣∣)q–( + √
nTgR + T |e|√
nTfR

∣∣x′(t)
∣∣
)q–

≤ (√
nTfR

∣∣x′(t)
∣∣)q–( + q(

√
nTgR +

√
nT |e|)√

nTfR
∣∣x′(t)

∣∣
)

= (
√
nTfR )

q–∣∣x′(t)
∣∣q– + q

(√
nTgR +

√
nT |e|

)
(
√
nTfR )

q–∣∣x′(t)
∣∣q–. (.)

From (.) and (.), we have

∣∣x′(t)
∣∣ ≤ ∣∣U–∣∣|U|σ(

√
nTfR )

q–∣∣x′(t)
∣∣q–

+
∣∣U–∣∣|U|σq

(√
nTgR + T |e|

)
(
√
nTfR )

q–∣∣x′(t)
∣∣q–. (.)

When q = , from |U–||U|σ
√
nTfR < , we know that there exists a constantM >  such

that

∣∣x′(t)
∣∣≤ M. (.)

When  < q < , there must be a constantM >  such that

∣∣x′(t)
∣∣≤ M. (.)

Hence, from (.), (.), (.) and (.), we have

‖x‖ <max{R,M,M,M} +  := L.
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Step . Let � = {x ∈KerM :QNx = θ}, we shall prove that� is a bounded set. ∀x ∈ �,
then x = a, a ∈ R

n, we have gi(ai) =  for each i = , , . . . ,n. By assumption (H) we have
|ai| ≤ D and |a| ≤ √

nD. So, � is a bounded set.
Step . Let� = {x ∈ X : ‖x‖ < L}, then� ∪� ⊂ �, ∀(x,λ) ∈ ∂�× (, ). From the above

proof,Mx �=Nλx is satisfied. Obviously, condition (A) of Lemma . is also satisfied. Now,
we prove that condition (A) of Lemma . is satisfied. Take the homotopy

H(x,μ) = μx – ( –μ)JQNx, x ∈ �̄ ∩KerM,μ ∈ [, ],

where J : ImQ → KerM is a homeomorphism with Ja = a, a ∈ R
n. ∀x ∈ ∂� ∩ KerM, we

have x = a ∈R
n, |a| = L >D, then

H(x,μ) = aμ – ( –μ)

T

∫ T



(
–g(a) + e(t)

)
dt

= aμ + ( –μ)g(a),

then we have

a�
 H(x,μ) = a�

 aμ + ( –μ)a�
 g(a).

By using assumption (H), we have H(x,μ) �= . And then, by the degree theory,

deg{JQN ,� ∩KerM, } = deg
{
H(·, ),� ∩KerM, 

}
= deg

{
H(·, ),� ∩KerM, 

}
= deg{I,� ∩KerM, } �= .

Applying Lemma ., we complete the proof. �

Remark Assumption (H) guarantees that condition (A) of Lemma . is satisfied. Fur-
thermore, using assumptions (H)-(H), we can easily estimate prior boud of the solution
to Eq. (.).

As an application, we consider the following example:

(
ϕp
[(
x(t) – Bx(t – π )

)′])′ + f
(
x(t)

)
x′(t) + g

(
x(t – π )

)
= e(t), (.)

where

x(t) =

(
x(t)
x(t)

)
∈R

, g(x) =

(


x


x

)
, B =

(
– –
– 

)
,

e(t) = (sin t, cos t)�, τ = γ = π , p = ., T = π , f (x) = ( + sinx,  + cosx).
Obviously, λ =  �= ±, λ = – �= ±,

∫ π


e(t)dt =

(∫ π
 cos t dt∫ π
 sin t dt

)
=

(



)
.
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Since

xg(x) =



x >  for|x| >D > , xg(x) =




x >  for |x| >D > ,

so assumption (H) is satisfied. Take l = 
 , then

∣∣gi(u) – gi(u)
∣∣≤ 


|u – u|, u,u ∈ R, for each i = , ,

and assumption (H) is satisfied. Take σ = , then

∣∣f(x)∣∣ = | + sinx| ≥ ,
∣∣f(x)∣∣ = | + cosx| ≥ ,

and assumption (H) is satisfied. Hence, assumptions (H)-(H) are all satisfied. Take

U =

(
– 
 

)
, U– =

(
–











)

such that

UBU– =

(
 
 –

)
.

Take γ (t) = π , then

σ >
√
l max

t∈[,T]
∣∣γ (t)∣∣.

By using Theorem ., we know that Eq. (.) has at least one π-periodic solution.
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