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Abstract
In this paper, we present some upper bounds for the number of spanning trees of
graphs in terms of the number of vertices, the number of edges and the vertex
degrees.
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1 Introduction
Let G be a simple graph with n vertices and e edges. Let V (G) = {v, v, . . . , vn} be the
vertex set of G. If two vertices vi and vj are adjacent, then we use the notation vi ∼ vj.
For vi ∈ V (G), the degree of the vertex vi, denoted by di, is the number of vertices ad-
jacent to vi. Throughout this paper, we assume that the vertex degrees are ordered by
d ≥ d ≥ · · · ≥ dn.
The complete graph, the complete bipartite graph and the star of order n are denoted

by Kn, Kp,q (p + q = n) and Sn, respectively. Let G –m be the graph obtained by deleting
any edgem from the graph G and let G be the complement of G. Let G∪H be the vertex-
disjoint union of the graphs G and H and let G∨H be the graph obtained from G∪H by
adding all possible edges from vertices of G to vertices of H , i.e., G∨H =G∪H [].
Let L(G) = D(G) – A(G) be the Laplacian matrix of the graph G, where A(G) and D(G)

are the adjacency matrix and the diagonal matrix of the vertex degrees of G, respec-
tively. The normalized Laplacian matrix of G is defined as L =D(G)– 

 L(G)D(G)– 
 , where

D(G)– 
 is the matrix which is obtained by taking (– 

 )-power of each entry of D(G). The
Laplacian eigenvalues and the normalized Laplacian eigenvalues of G are the eigenval-
ues of L(G) and L, respectively. Let μ ≥ μ ≥ · · · ≥ μn be the Laplacian eigenvalues and
λ ≥ λ ≥ · · · ≥ λn be the normalized Laplacian eigenvalues of G. It is well known that
μn = , λn =  and the multiplicities of these zero eigenvalues are equal to the number of
connected components of G; see [, ].
The number of spanning trees (also known as complexity), t(G), of G is given by the

following formula in terms of the Laplacian eigenvalues (see [], p.):

t(G) =

n

n–∏
i=

μi. ()
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It is known that the number of spanning trees of G is also expressed by the normalized
Laplacian eigenvalues as follows (see [], p.):

t(G) =
(∏n

i= di
e

) n–∏
i=

λi. ()

Now we list some known upper bounds for t(G).
- Grimmett []:

t(G) ≤ 
n

(
e

n – 

)n–

. ()

- Grone and Merris []:

t(G) ≤
(

n
n – 

)n–(∏n
i= di
e

)
. ()

- Nosal []: For r-regular graphs,

t(G) ≤ nn–
(

r
n – 

)n–

. ()

- Kelmanns ([], p.):

t(G) ≤ nn–
(
 –


n

)e

, ()

where e is the number of edges of G.
- Das []:

t(G) ≤
(
e – d – 

n – 

)n–

. ()

- Zhang []:

t(G) ≤ (
 + (n – )a

)
( – a)n–


n

(
e

n – 

)n–

, ()

where a = ( n(n–)–een(n–) )
/.

- Feng et al. []:

t(G) ≤
(
d + 
n

)(
e – d – 

n – 

)n–

()

and

t(G) ≤
(∑n

i= d
i + e – (d + )

n – 

) n–

. ()
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- Li et al. []:

t(G) ≤ dn
(
e – d –  – dn

n – 

)n–

. ()

In [] Grimmett observed that () is the generalization of (). Grone and Merris []
stated that by the application of arithmetic-geometric mean inequality, () leads to (). In
[] Das indicated that () is sharp for Sn orKn, but (), (), () and () are sharp only forKn.
Li et al. [] pointed out that () is sharp for Sn, Kn, G ∼= K ∨ (K ∪ Kn–) or Kn –m, but
() is sharp only for Kn, () and () are sharp for Sn or Kn. In [, ] the authors showed that
() is always better than (), and () is always better than () and ().
This paper is organized as follows. In Section , we give some useful lemmas. In Sec-

tion , we obtain some upper bounds for the number of spanning trees of graphs in terms
of the number of vertices, the number of edges and the vertex degrees of graphs. We also
show that one of these upper bounds is always better than the upper bound ().

2 Preliminary lemmas
In this section, we give some lemmas which will be used later. Firstly, we introduce an
auxiliary quantity of a graph G on the vertex set V (G) = {v, v, . . . , vn} as

P =  +

√√√√ 
n(n – )

∑
vi∼vj


didj

,

where di is the degree of the vertex vi of G.

Lemma [] Let G be a graphwith n vertices and normalized Laplacianmatrix Lwithout
isolated vertices. Then

n∑
i=

λi = tr(L) = n

and

n∑
i=

λ
i = tr

(
L

)
= n + 

∑
vi∼vj


didj

.

Lemma  [] Let G be a graph with n vertices and normalized Laplacian eigenvalues λ ≥
λ ≥ · · · ≥ λn = . Then

 ≤ λi ≤ .

Moreover, λ =  if and only if a connected component of G is bipartite and nontrivial.

Lemma  [] Let G be a graph with n vertices and normalized Laplacian eigenvalues λ ≥
λ ≥ · · · ≥ λn = . Then

λ ≥ n
n – 

. ()

Moreover, the equality holds in () if and only if G is a complete graph Kn.
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Lemma  [] Let G be a graph with n vertices and normalized Laplacian eigenvalues
λ ≥ λ ≥ · · · ≥ λn = . Then

λ ≥ P. ()

Moreover, the equality holds in () if and only if G is a complete graph Kn.

Lemma  [] The lower bound () is always better than the lower bound ().

Lemma  [] Let G be a connected graph with n >  vertices. Then λ = λ = · · · = λn– if
and only if G ∼= Kn or G ∼= Kp,q.

Lemma  [] Let G be a graph with n vertices and without isolated vertices. Suppose G
has the maximum vertex degree equal to d. Then

∑
vi∼vj


didj

≥ n
d

. ()

Moreover, the equality holds in () if and only if G is a regular graph.

Lemma  [] Let xi > – for  ≤ i ≤ n. If
∑n

i= xi =  and
∑n

i= xi ≥ c( – n–), then

n∑
i=

ln( + xi) ≤ ln
(
 + c – cn–

)
+ (n – ) ln

(
 – cn–

)
.

3 Main results
Now we present the main results of this paper following the ideas in [] and []. Note that
P was defined earlier in the previous section.

Theorem  Let G be a graph with n vertices and without isolated vertices. Then

t(G) ≤ (
 + (n – )b

)
( – b)n–

(
n

n – 

)n–(∏n
i= di
e

)
, ()

where b = ( n––d
n(n–)d

)/.

Proof If G is disconnected, then t(G) =  and () follows. Now we assume that G is con-
nected. From (), we have

 < t(G) =
(∏n

i= di
e

)
λ · · ·λn–

since λn– > . Let q = n
n– and xi = λi

q –  for  ≤ i ≤ n – . Then xi > –. Moreover, by
Lemma  and Lemma , we get

n–∑
i=

xi =
n–∑
i=

(
λi

q
– 

)
= 
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and

n–∑
i=

xi =
n–∑
i=

(
λi

q
– 

)

= (n – ) –

∑n–

i= λi

q
+

∑n–
i= λ

i
q

≥ (n – ) – (n – ) +
(
n – 
n

)(
n +

n
d

)

=
(n – )

nd
–

(
n – 
n

)

=
(n – )(n –  – d)

n(n – )d

(
 –


n – 

)

=
(
(n – )b

)( – 
n – 

)
.

Then by Lemma , we obtain

n–∏
i=

( + xi) ≤
(
 + (n – )b –

(n – )b
n – 

)
( – b)n–.

Therefore, we arrive at

n–∏
i=

λi ≤
(
 + (n – )b

)
( – b)n–

(
n

n – 

)n–

and

t(G) ≤ (
 + (n – )b

)
( – b)n–

(
n

n – 

)n–(∏n
i= di
e

)
.

Hence, the result holds. �

Remark  Let f (b) = ( + (n – )b)( – b)n–. Then

f ′(b) = –(n – )(n – )b( – b)n– ≤ 

for  ≤ b ≤ . Therefore, f (b) ≤ f () = ; see []. Hence, we conclude that the upper bound
() is always better than the upper bound (). Moreover, if G is the complete graph Kn,
then the equality holds in ().

Theorem  Let G be a connected graph with n >  vertices. Then

t(G) ≤ P
(
n – P
n – 

)n–(∏n
i= di
e

)
. ()

Moreover, the equality holds in () if and only if G is the complete graph Kn.
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Proof From () and Lemma , we get

t(G) =
(∏n

i= di
e

) n–∏
i=

λi =
(∏n

i= di
e

)
λ

n–∏
i=

λi

≤
(∏n

i= di
e

)
λ

(∑n–
i= λi

n – 

)n–

=
(∏n

i= di
e

)
λ

(∑n–
i= λi – λ

n – 

)n–

=
(∏n

i= di
e

)
λ

(
n – λ

n – 

)n–

.

For P ≤ x ≤ , let

f (x) = x(n – x)n–.

By Lemma  and Lemma , we have that

λ ≥ P ≥ n
n – 

and

f ′(x) = f (x)
n – (n – )x
x(n – x)

≤ 

for P ≤ x≤ . Hence, f (x) takes its maximum value at x = P and () follows.
If the equality holds in (), then all inequalities in the above argument must be equali-

ties. Hence, we have

λ = P and λ = · · · = λn–.

Then by Lemma  and Lemma , we conclude that G is the complete graph Kn.
Conversely, we can easily see that the equality holds in () for the complete graph Kn.

�

Now we consider the bipartite graph case of the above theorem.

Theorem  Let G be a connected bipartite graph with n >  vertices. Then

t(G) ≤
∏n

i= di
e

. ()

Moreover, the equality holds in () if and only if G ∼= Kp,q.

Proof Since G is a connected bipartite graph, by Lemma , we have λ = . Considering
this, () and Lemma , we obtain

t(G) =
(∏n

i= di
e

) n–∏
i=

λi =
(∏n

i= di
e

)
λ

n–∏
i=

λi

≤
(∏n

i= di
e

)(∑n–
i= λi

n – 

)n–

=
(∏n

i= di
e

)(
n – λ

n – 

)n–

=
∏n

i= di
e

.
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Moreover, the equality holds in () if and only if λ = · · · = λn–, by Lemma , i.e., if and
only if G ∼= Kp,q. �
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