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Abstract
Let f = h + g be a harmonic function in the unit disc D. We will give some properties
of f under the condition the second dilatation is α-spiral.
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1 Introduction
A planar harmonic mapping in the unit disc D = {z ∈ C||z| < } is a complex-valued har-
monic function f which maps D onto some planar domain f (D). Since D is simply con-
nected, the mapping f has a canonical decomposition f = h+ g , where h and g are analytic
in D. As usual, we call h the analytic part of f and g the co-analytic part of f . An ele-
gant and complete account of the theory of planar harmonic mapping is given in Duren’s
monograph [].
Lewy [] proved in  that the harmonic function f is locally univalent in a simply

connected domain D if and only if its Jacobian

Jf (z) =
∣∣h′(z)

∣∣ – ∣∣g ′(z)
∣∣ > 

is different from zero in D. In view of this result, locally univalent harmonic mappings in
the unit disc are either sense-reversing if

∣∣g ′(z)
∣∣ > ∣∣h′(z)

∣∣
in D or sense-preserving if

∣∣g ′(z)
∣∣ < ∣∣h′(z)

∣∣
in D. Throughout this paper, we will restrict ourselves to the study of sense-preserving
harmonic mappings. However, since f is sense-preserving if and only if f is sense-
reserving, all the results obtained in this article regarding sense-preserving harmonic
mappings can be adapted to sense-reversing ones. Note that f = h + g is sense-preserving
in D if and only if h′(z) does not vanish in the unit disc and the second-complex dilatation
w(z) = g′(z)

h′(z) has the property |w(z)| <  in D; therefore, we can take h(z) = z + az + · · · ,
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g(z) = bz + bz + · · · . Thus, the class of all harmonic mappings being sense-preserving
in the unit disc can be defined by

SH =
{
f = h(z) + g(z)|h(z) = z + az + · · · ,
g(z) = bz + bz + · · · , f sense-preserving}.

Let � be the family of functions φ(z) which are regular in D and satisfy the conditions
φ() = , |φ(z)| <  for all z ∈D. Denote by P the family of functions p(z) =  + pz + pz +
· · · which are regular in D such that

p(z) =
 + φ(z)
 – φ(z)

(.)

for some function φ(z) ∈ � for all z ∈D.
Next, let S* denote the family of functions s(z) = z + cz + cz + · · · which are regular

in D such that

z
s′(z)
s(z)

= p(z) (.)

for some p(z) ∈ P for all z ∈ D.
Let s(z) = z + αz + αz + · · · and s(z) = z + βz + βz + · · · be analytic functions

in D. If there exists φ(z) ∈ � such that s(z) = s(φ(z)) for all z ∈D, then we say that s(z) is
subordinate to s(z) and we write s(z) ≺ s(z), then s(D) ⊂ s(D).
Now, we consider the following class of harmonic mappings in the plane:

S*HPST(α) =
{
f = h(z) + g(z)|f ∈ SH ,h(z) ∈ S*,

Re
(
eiαw(z)

)
= Re

(
eiα

g ′(z)
h′(z)

)
> , |α| < π



}
. (.)

In the present paper, we will investigate the class S*HPST(α).
We will need the following lemma and theorem in the sequel.

Theorem . ([, ]) Let h(z) be an element of S*, then

r
( + r)

≤ ∣∣h(z)∣∣ ≤ r
( – r)

,

for all |z| = r < .

 – r
( + r)

≤ ∣∣h′(z)
∣∣ ≤  + r

( – r)
.

These inequalities are sharp because the extremal function is h(z) = z
(–z) .

Lemma . ([, ]) Let h(z) and g(z) be regular in D, h(z)map |z| <  onto a many-sheeted
starlike region, Re(eiα g′(z)

h′(z) ) > , |α| < π
 for |z| < . h() = g() = . Then Re(eiα g(z)

h(z) ) >  for
|z| < .
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2 Main results
Lemma . Let f = h(z) + g(z) be an element of S*HPST(α) then

|b| – r
 – |b|r ≤

∣∣∣∣ g ′(z)
h′(z)

∣∣∣∣ ≤ |b| + r
 + |b|r (.)

for all |z| = r < . This inequality is sharp because the extremal function is

eiα
g ′(z)
h′(z)

=
z + b
 + bz

,

where b = eiαb.

Proof Since

w(z) =
g ′(z)
h′(z)

=
(bz + bz + · · · )′
(z + az + · · · )′ =

b + bz + · · ·
 + az + · · · ,

W (z) = eiαw(z) = eiα
g ′(z)
h′(z)

=
eiαb + eiαbz + · · ·

 + az + · · · ⇒ W () = eiαb = b,
∣∣W (z)

∣∣ = ∣∣eiαw(z)∣∣ = ∣∣eiα∣∣∣∣w(z)∣∣ = ∣∣w(z)∣∣ < ,

then the function

φ(z) =
W (z) –W ()
 –W ()W (z)

=
W () – b
 – bW ()

=
b – b
 – b

= 

satisfies the condition of the Schwarz lemma. Using the definition of subordination, we
have

W (z) = eiαw(z) = eiα
g ′(z)
h′(z)

=
b + φ(z)
 + bφ(z)

⇔ eiα
g ′(z)
h′(z)

≺ b + z
 + bz

.

On the other hand, the transformation ( b+z
+bz ) maps |z| <  onto the disc with the center

C(r) =
(

α( – r)
 – |b|r ,

α( – r)
 – |b|r

)
, b = α + iα

and the radius

ρ(r) =
( – |b|)r
 – |b|r .

Therefore, we can write

∣∣∣∣eiα g ′(z)
h′(z)

–
b( – r)
 – |b|r

∣∣∣∣ ≤ ( – |b|)r
 – |b|r (.)

which gives (.). �
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Corollary . Let f ∈ S*HPST(α), then

r(|b| – r)
( + r)( – |b|r) ≤ ∣∣g(z)∣∣ ≤ r(|b| + r)

( – r)( + |b|r) , (.)

( – r)(|b| – r)
( + r)( – |b|r) ≤ ∣∣g ′(z)

∣∣ ≤ ( + r)(|b| + r)
( – r)( + |b|r) (.)

for all |z| = r < .

Proof Using Lemma . and Lemma ., then we can write

∣∣h(z)∣∣ |b| – r
 – |b|r ≤ ∣∣g(z)∣∣ ≤ ∣∣h(z)∣∣ |b| + r

 + |b|r , (.)

∣∣h′(z)
∣∣ |b| – r
 – |b|r ≤ ∣∣g ′(z)

∣∣ ≤ ∣∣h′(z)
∣∣ |b| + r
 + |b|r . (.)

If we use Theorem . in the inequalities (.) and (.), we get (.) and (.). �

Corollary . Let f = h(z) + g(z) be an element of S*HPTS(α), then

( – |b|)( – r)

( + r)( + |b|r) ≤ Jf (z) ≤ ( – |b|)( + r)

( – r)( + |b|r) (.)

for all |z| = r < .

Proof Since

Jf (z) =
∣∣h′(z)

∣∣ – ∣∣g ′(z)
∣∣ = ∣∣h′(z)

∣∣( – ∣∣w(z)∣∣), (.)

using Lemma . and Theorem . in the equality (.) and after simple calculations, we
get (.). �

Corollary . If f = h(z) + g(z) is an element of S*HPTS(α), then


( + a)(– + r)

(
( + a)

(
a(– + r) – r

)
r + (– + a)(– + r) log( – r)

– (– + a)(– + r) log( + ar)
) ≤ ∣∣f (z)∣∣ ≤ 

( + a)(– + r)(
–r

(
– + r + ar + r + r – a

(
– + r

(
– + r + r

)))
+ (– + a)

(
– + r

)
log( – r) – (– + a)

(
– + r

)
log( + ar)

)
, (.)

where a = |b| for all |z| = r < .

Proof Using Corollary . and Theorem ., we obtain

(∣∣h′(z)
∣∣ – ∣∣g ′(z)

∣∣) ≥ ( – r)( + |b|r) – ( + r)(|b| + r)
( – r)( + r)( + |b|r) ,
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and

(∣∣h′(z)
∣∣ + ∣∣g ′(z)

∣∣) ≤ ( + r)( + |b|)
( – r)( + |b|r) .

Therefore, we have

(∣∣h′(z)
∣∣ – ∣∣g ′(z)

∣∣)|dz| ≤ |df | ≤ (∣∣h′(z)
∣∣ + ∣∣g ′(z)

∣∣)|dz|
⇒ ( – r)( + |b|r) – ( + r)(|b| + r)

( – r)( + r)( + |b|r) dr ≤ |df | ≤ ( + r)( + |b|)
( – r)( + |b|r) dr. (.)

Integrating the last inequality (.), we get (.). �

Theorem . Let f = h(z) + g(z) be an element of S*HPTS(α), then

n∑
k=

|Ak| ≤ |t + | +
n∑
k=

|Bk| (.)

where Ak = (k + )( bk+b
– ak+); Bk = (k + )( bk+b

+ tak+); ak and bk are the coefficients of the
functions h(z) and g(z); k = , , , . . . ,n; t = s – ; s = e–iα cosα.

Proof Since

g(z) = bz + bz + bz + · · · ⇒ g ′(z) = b + bz + bz + · · · .

We denote by G(z) = 
b
g(z)

G′(z) =

b
g ′(z) =  + 

b
b

z + 
b
b

z + · · · , h(z) = z + az + az + · · · ,

h′(z) =  + az + az + · · · ,

then we have

⎧⎨
⎩


cosα (e

iα

b

g′(z)
h′(z) – i sinα) = p(z) ⇔ eiα


b

g′(z)
h′(z) = cosαp(z) + i sinα,

⇔

b

g′(z)
h′(z) =  + e–iα cosα(p(z) – ).

(.)

Since p(z) is in P, there is a function φ(z) satisfying the conditions of the Schwarz lemma
such that

p(z) =
 + φ(z)
 – φ(z)

⇔ p(z) –  =
φ(z)
 – φ(z)

. (.)

Using this equation in (.) and after the following calculations given above


b
g ′(z)
h′(z)

=  + e–iα cosα
(
p(z) – 

)
=  + s

(
φ(z)
 – φ(z)

)
⇒,
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we get the following equality:


b
g ′(z) – h′(z) =

(
th′(z) +


b
g ′(z)

)
. (.)

If φ(z) = cz + cz + cz + · · · , we have
n∑
k=

Akzk +
∞∑

k=n+

Dkzk =

[
( + t) +

n∑
k=

Bkzk
]
φ(z), (.)

where

∞∑
k=n+

Dkzk =
∞∑

k=n+

Akzk –
(
cBnzn+ + cBn+zn+ + · · · ).

Therefore, the equality (.) can be considered in the following form:

F(z) =G(z)φ(z). (.)

Using the Clunie method [], then we can write


π

∫ π



∣∣F(
reiθ

)∣∣dθ ≤ 
π

∫ π



∣∣G(
reiθ

)∣∣ dθ ,

which gives

n∑
k=

|Ak|rk +
∞∑

k=n+

|Dk|rk ≤
(

|t + | +
n∑
k=

|Bk|rk
)
. (.)

Eventually, we will let r → –, then we have

n∑
k=

|Ak| ≤ |t + | +
n∑
k=

|Bk|. �
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