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1 Introduction
The notion of ideal convergence was introduced first by Kostyrko et al. [] as a generaliza-
tion of statistical convergence [, ], which was further studied in topological spaces [].
More applications of ideals can be seen in [–].
The concepts of fuzzy sets and fuzzy set operations were first introduced by Zadeh [].

Subsequently, several authors have discussed various aspects of the theory and applica-
tions of fuzzy sets such as fuzzy topological spaces, similarity relations and fuzzy ordering,
fuzzy measures of fuzzy events, and fuzzy mathematical programming. In particular, the
concept of fuzzy topology has very important applications in quantum particle physics,
especially in connection with both string and ε∞ theory, which were given and studied by
El Naschie []. The theory of sequences of fuzzy numbers was first introduced byMatloka
[]. Matloka introduced bounded and convergent sequences of fuzzy numbers, studied
some of their properties, and showed that every convergent sequence of fuzzy numbers
is bounded. In [], Nanda studied sequences of fuzzy numbers and showed that the set
of all convergent sequences of fuzzy numbers forms a complete metric space. Different
classes of sequences of fuzzy real numbers have been discussed by Nuray and Savas [],
Altinok, Colak, and Et [], Savas [–], Savas and Mursaleen [], and many others.
The study of Orlicz sequence spaces was initiated with a certain specific purpose in

Banach space theory. Lindenstrauss and Tzafriri [] investigated Orlicz sequence spaces
in more detail, and they proved that every Orlicz sequence space lM contains a subspace
isomorphic to lp ( ≤ p < ∞). The Orlicz sequence spaces are the special cases of Orlicz
spaces studied in []. Orlicz spaces find a number of useful applications in the theory of
nonlinear integral equations. Although the Orlicz sequence spaces are the generalization
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of lp spaces, the lp-spaces find themselves enveloped in Orlicz spaces []. Recently, Savas
[] generalized c(�) and l∞(�) for a single sequence of fuzzy numbers by using theOrlicz
function and also established some inclusion theorems.
In the later stage, different classes ofOrlicz sequence spaceswere introduced and studied

by Parashar and Choudhary [], Savas [–], and many others.
Throughout the article, wF denotes the class of all fuzzy real-valued sequence spaces.

Also,N and R denote the set of positive integers and the set of real numbers, respectively.
The operator �n : wF → wF is defined by (�X)k = Xk ; (�X)k = �Xk = Xk – Xk+;

(�nX)k = �nXk = �n–Xk –�n–Xk+ (n ≥ ) for all n ∈ N. The generalized difference has
the following binomial expression for n≥ :

�nxk =
n∑

ν=

(
n
ν

)
(–)νxk+ν . ()

In this paper, we study somenew sequence spaces of fuzzy numbers using I-convergence,
the sequence of Orlicz functions, an infinite matrix, and the difference operator. We es-
tablish the inclusion relation between the sequence spaces wI(F)[A,M,�m,p], wI(F)[A,M,
�m,p], wF [A,M,�m,p]∞, and wI(F)[A,M,�m,p]∞, where p = (pk) denotes the sequence
of positive real numbers for all k ∈ N and M = (Mk) is a sequence of Orlicz functions. In
addition, we study some algebraic and topological properties of these new spaces.

2 Definitions and notations
Before continuing with this paper, we present some definitions and preliminaries which
we shall use throughout this paper.
LetX and Y be two nonempty subsets of the spacew of complex sequences. LetA = (ank)

(n,k = , , . . .) be an infinite matrix of complex numbers. We write Ax = (An(x)) if An(x) =∑
k ankxk converges for each n. (Throughout,

∑
k denotes summation over k from k =  to

k = ∞). If x = (xk) ∈ X ⇒ Ax = (An(x)) ∈ Y , we say thatA defines a (matrix) transformation
from X to Y and we denote it by A : X → Y .
Let X be a nonempty set, then a family of sets I ⊂ X (the class of all subsets of X) is

called an ideal if and only if for each A,B ∈ I , we have A ∪ B ∈ I , and for each A ∈ I and
each B ⊂ A, we have B ∈ I . A nonempty family of sets F ⊂ X is a filter on X if and only if
� /∈ F , for each A,B ∈ F , we have A ∩ B ∈ F , and for each A ∈ F and each A ⊂ B, we have
B ∈ F . An ideal I is called non-trivial ideal if I �= � andX /∈ I . Clearly, I ⊂ X is a non-trivial
ideal if and only if F = F(I) = {X – A : A ∈ I} is a filter on X. A non-trivial ideal I ⊂ X is
called admissible if and only if {{x} : x ∈ X} ⊂ I . A non-trivial ideal I is maximal if there
cannot exist any non-trivial ideal J �= I containing I as a subset. Further details on ideals
of X can be found in Kostyrko et al. [].
Let D denote the set of all closed and bounded intervals X = [x,x] on the real line R.

For X,Y ∈D, we define X ≤ Y if and only if x ≤ y and x ≤ y,

d(X,Y ) =max
{|x – y|, |x – y|

}
, where X = [x,x] and Y = [y, y].

Then it can be easily seen that d defines a metric on D and (D,d) is a complete metric
space (see []). Also, the relation ‘≤’ is a partial order on D. A fuzzy number X is a fuzzy
subset of the real line R, i.e., a mapping X : R → J (= [, ]) associating each real number
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t with its grade of membership X(t). A fuzzy number X is convex if X(t) ≥ X(s) ∧ X(r) =
min{X(s),X(r)}, where s < t < r. If there exists t ∈ R such that X(t) = , then the fuzzy
number X is called normal. A fuzzy number X is said to be upper semicontinuous if for
each ε > ,X–([,a+ε)) for all a ∈ [, ] is open in the usual topology inR. LetR(J) denote
the set of all fuzzy numbers which are upper semicontinuous and have compact support,
i.e., if X ∈ R(J), then for any α ∈ [, ], [X]α is compact, where

[X]α =
{
t ∈ R : X(t)≥ α, if α ∈ [, ]

}
,

[X] = closure of
({
t ∈ R : X(t) > α, if α = 

})
.

The set R of real numbers can be embedded in R(J) if we define r ∈ R(J) by

r(t) =

⎧⎨
⎩, if t = r;

, if t �= r.

The additive identity and multiplicative identity of R(J) are defined by  and  respec-
tively.
The arithmetic operations on R(J) are defined as follows:

(X ⊕ Y )(t) = sup
{
X(s)∧ Y (t – s)

}
, t ∈ R,

(X � Y )(t) = sup
{
X(s)∧ Y (s – t)

}
, t ∈ R,

(X ⊗ Y )(t) = sup

{
X(s)∧ Y

(
t
s

)}
, t ∈ R,

(
X
Y

)
(t) = sup

{
X(st)∧ Y (s)

}
, t ∈ R.

Let X,Y ∈ R(J) and the α-level sets be [X]α = [xα
 ,xα

 ], [Y ]α = [yα
 , yα

 ], α ∈ [, ]. Then the
above operations can be defined in terms of α-level sets as follows:

[X ⊕ Y ]α =
[
xα
 + yα

 ,x
α
 + yα


]
,

[X � Y ]α =
[
xα
 – yα

 ,x
α
 – yα


]
,

[X ⊗ Y ]α =
[
min
i∈{,}x

α
i y

α
i , max

i∈{,}
xα
i y

α
i

]
,

[
X–]α =

[(
xα

)–, (xα


)–], xα

i > , for each  < α ≤ .

For r ∈ R and X ∈ R(J), the product rX is defined as follows:

rX(t) =

⎧⎨
⎩X(r–t), if r �= ;

, if r = .

The absolute value |X| of X ∈ R(J) is defined by

|X|(t) =
⎧⎨
⎩max{X(t),X(–t)}, if t ≥ ;

, if t < .
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Define a mapping d̄ : R(J)×R(J) → R+ ∪ {} by

d̄(X,Y ) = sup
≤α≤

d
(
[X]α , [Y ]α

)
.

A metric d̄ on R(J) is said to be a translation invariant if d̄(X + Z,Y + Z) = d̄(X,Y ) for
X,Y ,Z ∈ R(J).

Proposition . If d̄ is a translation invariant metric on R(J), then
(i) d̄(X + Z, ) ≤ d̄(X, ) + d̄(Y , ),
(ii) d̄(λX, )≤ |λ|d̄(X, ), |λ| > .

The proof is easy and so it is omitted.
A sequence X = (Xk) of fuzzy numbers is said to converge to a fuzzy number X if for

every ε > , there exists a positive integer n such that d̄(Xk ,X) < ε for all n≥ n.
A sequence X = (Xk) of fuzzy numbers is said to be bounded if the set {Xk : k ∈ N}

of fuzzy numbers is bounded. A sequence X = (Xk) of fuzzy numbers is said to be I-
convergent to a fuzzy number X if for each ε >  such that

A =
{
k ∈N : d̄(Xk ,X) ≥ ε

} ∈ I.

The fuzzy number X is called I-limit of the sequence (Xk) of fuzzy numbers, and we write
I- limXk = X.
A sequence X = (Xk) of fuzzy numbers is said to be I-bounded if there existsM >  such

that
{
k ∈N : d̄(Xk , ̄) >M

} ∈ I.

Example . If we take I = If = {A⊆N : A is a finite subset}, then If is a non-trivial admis-
sible ideal ofN, and the corresponding convergence coincides with the usual convergence.

Example . If we take I = Iδ = {A ⊆ N : δ(A) = }, where δ(A) denotes the asymptotic
density of the set A, then Iδ is a non-trivial admissible ideal of N, and the corresponding
convergence coincides with the statistical convergence.

Lemma . (Kostyrko, Salat, andWilczynski [], Lemma .) If I ⊂ N is a maximal ideal,
then for each A⊂N, we have either A ∈ I or N –A ∈ I .

Recall in [] that the Orlicz functionM : [,∞) → [,∞) is a continuous, convex, non-
decreasing function such thatM() =  andM(x) >  for x > , andM(x)→ ∞ as x → ∞.
If convexity of theOrlicz function is replaced byM(x+y) ≤ M(x)+M(y), then this function
is called the modulus function and characterized by Ruckle []. An Orlicz functionM is
said to satisfy the �-condition for all values of u, if there exists K >  such thatM(u) ≤
KM(u), u≥ .
The following well-known inequality will be used throughout the article. Let p = (pk) be

any sequence of positive real numbers with  ≤ pk ≤ supk pk =G, H =max{, G–}, then

|ak + bk|pk ≤ H
(|ak|pk + |bk|pk

)
for all k ∈N and ak ,bk ∈C. Also, |ak|pk ≤ max{, |a|G} for all a ∈C.

http://www.journalofinequalitiesandapplications.com/content/2012/1/261
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3 Some new sequence spaces of fuzzy numbers
In this section, using the sequence of Orlicz functions, an infinite matrix, the difference
operator �m, and I-convergence, we introduce the following new sequence spaces and
examine some properties of the resulting sequence spaces. Let I be an admissible ideal
of N, and let p = (pk) be a sequence of positive real numbers for all k ∈ N and A = (ank)
be an infinite matrix. Let M = (Mk) be a sequence of Orlicz functions and X = (Xk) be a
sequence of fuzzy numbers. We define the following new sequence spaces:

wI(F)[A,M,�m,p
]

=

{
(Xk) ∈ wF : ∀ε > ,

{
n ∈ N :

∞∑
k=

ank
[
Mk

(
d̄(�mXk ,X)

ρ

)]pk
≥ ε

}
∈ I,

for some ρ >  and X ∈ R(J)

}
,

wI(F)[A,M,�m,p
]


=

{
(Xk) ∈ wF : ∀ε > ,

{
n ∈ N :

∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρ

)]pk
≥ ε

}
∈ I,

for some ρ > 

}
,

wF[A,M,�m,p
]
∞

=

{
(Xk) ∈ wF : sup

n

∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρ

)]pk
< ∞, for some ρ > 

}
,

and

wI(F)[A,M,�m,p
]
∞

=

{
(Xk) ∈ wF : ∃K >  s.t.

{
n ∈N :

∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρ

)]pk
≥ K

}
∈ I,

for some ρ > 

}
.

Let us consider a few special cases of the above sets.
(i) If m = , then the above classes of sequences are denoted by wI(F)[A,M,p],

wI(F)[A,M,p], wF [A,M,p]∞, and wI(F)[A,M,p]∞, respectively.
(ii) IfMk(x) = x for all k ∈N, then the above classes of sequences are denoted by

wI(F)[A,�m,p], wI(F)[A,�m,p], wF [A,�m,p]∞, and wI(F)[A,�m,p]∞, respectively.
(iii) If p = (pk) = (, , , . . .), then we denote the above spaces by wI(F)[A,M,�m],

wI(F)[A,M,�m], wF [A,M,�m]∞, and wI(F)[A,M,�m]∞.
(iv) If we take A = (C, ), i.e., the Cesàro matrix, then the above classes of sequences

are denoted by wI(F)[M,�m,p], wI(F)[M,�m,p], wF [M,�m,p]∞, and
wI(F)[M,�m,p]∞, respectively.

http://www.journalofinequalitiesandapplications.com/content/2012/1/261
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(v) If we take A = (ank) is a de la Valée Poussin mean, i.e.,

ank =

⎧⎨
⎩


λn
, if k ∈ In = [n – λn + ,n],

, otherwise,

where (λn) is a non-decreasing sequence of positive numbers tending to ∞ and
λn+ ≤ λn + , λ = , then the above classes of sequences are denoted by
wI(F)

λ [A,M,�m,p], wI(F)
λ [M,�m,p], wF

λ[M,�m,p]∞, and wI(F)
λ [M,�m,p]∞,

respectively (see []).
(vi) By a lacunary θ = (kr), r = , , , . . . where k = , we shall mean an increasing

sequence of non-negative integers with kr – kr– as r → ∞. The intervals
determined by θ will be denoted by Ir = (kr–,kr] and hr = kr – kr–. As a final
illustration, let

ank =

⎧⎨
⎩


hr , if kr– < k ≤ kr ,

, otherwise.

Then we denote the above classes of sequences by wI(F)
θ [M,�m,p],

wI(F)
θ [M,�m,p], wF

θ [M,�m,p]∞, and wI(F)
θ [M,�m,p]∞, respectively.

(vii) If I = If , then we obtain

wF[A,M,�m,p
]

=

{
(Xk) ∈ wF : lim

n→∞

∞∑
k=

ank
[
Mk

(
d̄(�mXk ,X)

ρ

)]pk
= ,

for some ρ >  and X ∈ R(J)

}
,

wF[A,M,�m,p
]


=

{
(Xk) ∈ wF : lim

n→∞

∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρ

)]pk
= , for some ρ > 

}
,

wF[A,M,�m,p
]
∞

=

{
(Xk) ∈ wF : sup

n

∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρ

)]pk
<∞, for some ρ > 

}
.

If X = (Xk) ∈ wF [A,M,�m,p], then we say that X = (Xk) is strongly A-convergent
with respect to the sequence of Orlicz functionsM.

(viii) If I = Iδ is an admissible ideal of N, then we obtain

wI(F)[A,M,�m,p
]

=

{
(Xk) ∈ wF : ∀ε > ,

{
n ∈N :

∞∑
k=

ank
[
Mk

(
d̄(�mXk ,X)

ρ

)]pk
≥ ε

}
∈ Iδ ,

for some ρ >  and X ∈ R(J)

}
,

http://www.journalofinequalitiesandapplications.com/content/2012/1/261


Savas Journal of Inequalities and Applications 2012, 2012:261 Page 7 of 13
http://www.journalofinequalitiesandapplications.com/content/2012/1/261

wI(F)[A,M,�m,p
]


=

{
(Xk) ∈ wF : ∀ε > ,

{
n ∈N :

∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρ

)]pk
≥ ε

}
∈ Iδ ,

for some ρ > 

}
,

and

wI(F)[A,M,�m,p
]
∞

=

{
(Xk) ∈ wF : ∃K > 

s.t.

{
n ∈N :

∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρ

)]pk
≥ K

}
∈ Iδ , for some ρ > 

}
.

4 Main results
In this section, we examine the basic topological and algebraic properties of the new se-
quence spaces and obtain the inclusion relation related to these spaces.

Theorem. Let (pk) be a bounded sequence.Then the sequence spaces wI(F)[A,M,�m,p],
wI(F)[A,M,�m,p], and wI(F)[A,M,�m,p]∞ are linear spaces.

Proof Wewill prove the result for the spacewI(F)
θ [M,�m,p] only and others can be proved

in a similar way.
Let X = (Xk) and Y = (Yk) be two elements in wI(F)

θ [M,�m,p]. Then there exist ρ > 
and ρ >  such that

A ε

=

{
r ∈N :

∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρ

)]pk
≥ ε



}
∈ I

and

B ε

=

{
r ∈N :

∞∑
k=

ank
[
Mk

(
d̄(�mYk , ̄)

ρ

)]pk
≥ ε



}
∈ I.

Let α, β be two scalars. By the continuity of the function M = (Mk), the following in-
equality holds:

∞∑
k=

ank
[
Mk

(
d̄(�m(αXk + βYk , ̄))

|α|ρ + |β|ρ

)]pk

≤ D
∞∑
k=

ank
[ |α|

|α|ρ + |β|ρ
Mk

(
d̄(�mXk , ̄)

ρ

)]pk

+D
∞∑
k=

ank
[ |β|

|α|ρ + |β|ρ
Mk

(
d̄(�mYk , ̄)

ρ

)]pk

http://www.journalofinequalitiesandapplications.com/content/2012/1/261
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≤ DK
∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρ

)]pk

+DK
∞∑
k=

ank
[
Mk

(
d̄(�mYk , ̄)

ρ

)]pk
,

where K =max{, ( |α|
|α|ρ+|β|ρ )

G, ( |α|
|β|ρ+|β|ρ )

G}.
From the above relation, we obtain the following:

{
n ∈ N :

∞∑
k=

ank
[
Mk

(
d̄(�m(αXk + βYk , ̄))

|α|ρ + |β|ρ

)]pk
≥ ε

}

⊆
{
n ∈N :DK

∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρ

)]pk
≥ ε



}

∪
{
n ∈N :DK

∞∑
k=

ank
[
Mk

(
d̄(�mYk , ̄)

ρ

)]pk
≥ ε



}
∈ I.

This completes the proof. �

Theorem . wI(F)[A,M,�m,p], wI(F)[A,M,�m,p], and wI(F)[A,M,�m,p]∞ are linear
topological spaces with the paranorm g� defined by

g�(X) = inf

{
ρ

pn
H :

( ∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρ

)]pk
)/H

≤ ,

for some ρ > ,n = , , , . . .

}
,

where H =max{, supk pk}.

Proof Clearly, g�(–X) = g�(X) and g�(θ ) = . Let X = (Xk) and Y = (Yk) be two elements
in wI(F)[A,M,�m,p]∞. Then for every ρ > , we write

A =

{
ρ >  :

( ∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρ

)]pk
) 

H

≤ 

}

and

A =

{
ρ >  :

( ∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρ

)]pk
) 

H

≤ 

}
.

Let ρ ∈ A and ρ ∈ A. If ρ = ρ + ρ, then we get the following:

( ∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρ

)])
≤ ρ

ρ + ρ

( ∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρ

)])

+
ρ

ρ + ρ

( ∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρ

)])
.

http://www.journalofinequalitiesandapplications.com/content/2012/1/261
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Hence, we obtain

∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρ

)]pk
≤ 

and

g(x + y) = inf
{
(ρ + ρ)

pn
H : ρ ∈ A,ρ ∈ A

}
≤ inf

{
(ρ)

pn
H : ρ ∈ A

}
+ inf

{
(ρ)

pn
H : ρ ∈ A

}
= g(x) + g(y). �

Let umk → t, where umk , u ∈C, and let g(Xm
k –Xk)→  asm → ∞. To prove that g(umk X

m
k –

uXk) →  asm → ∞, let uk → u, where uk ,u ∈ C and g(Xm
k –Xk) →  asm → ∞.

We have

A =

{
ρk >  :

∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρk

)]pk
≤ 

}

and

A =

{
ρ ′
k >  :

∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρ ′
k

)]pk
≤ 

}
.

If ρk ∈ A and ρ ′
k ∈ A and by continuity of the functionM =Mk , we have that

Mk

(
d̄(�m(umXm

k – uX), ̄)
|um – u|ρk + |u|ρ ′

k

)

≤ Mk

(
d̄(�m(umXm

k – uXk), ̄)
|um – u|ρk + |u|ρ ′

k

)
+Mk

(
d̄(�m(uXk – uX), ̄)
|um – u|ρk + |u|ρ ′

k

)

≤ |um – u|ρk

|um – u|ρk + |u|ρ ′
k
Mk

(
d̄(�mXm

k , ̄)
ρk

)

+
|u|ρ ′

k
|um – u|ρk + |u|ρ ′

k
Mk

(
d̄(�m(Xm

k –Xk), ̄)
ρ ′
k

)
.

From the above inequality, it follows that

∞∑
k=

ank
[
Mk

(
d̄(�m(umXm

k – uX), ̄)
|um – u|ρk + |u|ρ ′

k

)]pk
≤ ,

and consequently

g
(
umk xk – uxk

)
= inf

{(∣∣umk – u
∣∣ρk + |u|ρ ′

k
) pn

G : ρk ∈ A,ρ ′
k ∈ A

}
≤ ∣∣umk – u

∣∣ pnG inf
{
(ρk)

pn
G : ρk ∈ A

}
+ |u| pnG inf

{(
ρ ′
k
) pn

G : ρ ′
k ∈ A

}
≤ max

{|u|, |u| pnG }
g
(
xmk – xk

)
.

Note that g(xm) ≤ g(x) + g(xm – x) for allm ∈N.
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Hence, by our assumption, the right-hand side tends to  as m → ∞. This completes
the proof of the theorem.

Theorem. Let I be an admissible ideal andM = (Mk) be a sequence of Orlicz functions.
Then the following hold:

wI(F)[A,M,�m–,p] ⊂ wI(F)[A,M,�m,p]; wI(F)[A,M,�m–,p] ⊂ wI(F)[A,M,�m,p];
wI(F)[A,M,�m–,p]∞ ⊂ wI(F)[A,M,�m,p]∞ for m ≥  and the inclusions are strict.

In general, for all i = , , , . . . ,m – , the following hold:
wI(F)[A,M,�i,p] ⊂ wI(F)[A,M,�m,p]; wI(F)[A,M,�i,p] ⊂ wI(F)[A,M,�m,p];
wI(F)[A,M,�i,p]∞ ⊂ wI(F)[A,M,�m,p]∞ and the inclusions are strict.

Proof Let X = (Xk) be an element in wI(F)[A,M,�m–,p]∞. Then there exists K > , and
for given ε > , ρ > , we have

{
n ∈ N :

∞∑
k=

ank
[
Mk

(
d̄(�m–Xk , ̄)

ρ

)]pk
≥ K

}
∈ I.

SinceM = (Mk) is non-decreasing and convex, it follows that

∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρ

)]pk

≤
∞∑
k=

ank
[
Mk

(
d̄(�m–Xk+ –�m–Xk , ̄)

ρ

)]pk

≤ D
∞∑
k=

ank
[


Mk

(
d̄(�m–Xk+, ̄)

ρ

)]pk

+D
∞∑
k=

ank
[


Mk

(
d̄(�m–Xk , ̄)

ρ

)]pk

≤ D
∞∑
k=

ank
[
Mk

(
d̄(�m–Xk+, ̄)

ρ

)]pk
+D

∞∑
k=

ank
[
Mk

(
d̄(�m–Xk , ̄)

ρ

)]pk
.

Hence, we have

{
n ∈ N :

∞∑
k=

ank
[
Mk

(
d̄(�mXk , ̄)

ρ

)]pk
≥ K

}

⊆
{
n ∈N :D

∞∑
k=

ank
[
Mk

(
d̄(�m–Xk+, ̄)

ρ

)]pk
≥ K



}

∪
{
n ∈N :D

∞∑
k=

ank
[
Mk

(
d̄(�m–Xk , ̄)

ρ

)]pk
≥ K



}
∈ I. �

The inclusion is strict, it follows from the following example.
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Example . Let Mk(x) = x, pk =  for all k ∈ N and A = (C, ), i.e., the Cesàro matrix,
m = . Consider the sequence X = (Xk) of fuzzy numbers as follows:

Xk(t) =

⎧⎪⎪⎨
⎪⎪⎩
– t

k– – , for k –  ≤ t ≤ ;

– t
k+ – , for  < t ≤ k + ;

, otherwise.

For α ∈ (, ], α-level sets of Xk , �Xk , �Xk , and �Xk are

[Xk]α =
[
( – α)

(
k – 

)
, ( – α)

(
k + 

)]
,

[�Xk]α =
[
( – α)

(
–k – k – 

)
, ( – α)

(
–k – k + 

)]
,[

�Xk
]α =

[
( – α)(k + ), ( – α)(k + )

]
,[

�Xk
]α =

[
–( – α), ( – α)

]
,

respectively. It is easy to see that the sequence [�Xk]α is not I-bounded although [�Xk]α

is I-bounded.

Theorem . (a) Let  < infpk ≤ pk ≤ . Then
wI(F)[A,M,�m,p] ⊆ wI(F)[A,M,�m]; wI(F)[A,M,�m,p] ⊆ wI(F)[A,M,�m].

(b) Let  ≤ pk ≤ suppk < ∞. Then
wI(F)[A,M,�m] ⊆ wI(F)[A,M,�m,p]; wI(F)[A,M,�m] ⊆ wI(F)[A,M,�m,p].

Proof (a) Let X = (Xk) be an element in wI(F)[A,M,�m,p]. Since  < infpk ≤ pk ≤ , we
have

∞∑
k=

ank
[
Mk

(
d̄(�mXk ,X)

ρ

)]
≤

∞∑
k=

ank
[
Mk

(
d̄(�mXk ,X)

ρ

)]pk
.

Therefore,
{
n ∈ N :

∞∑
k=

ank
[
Mk

(
d̄(�mXk ,X)

ρ

)]
≥ ε

}

⊆
{
n ∈N :

∞∑
k=

ank
[
Mk

(
d̄(�mXk ,X)

ρ

)]pk
≥ ε

}
∈ I.

The other part can be proved in a similar way.
(b) Let X = (Xk) be an element in wI(F)[A,M,�m,p]. Since  ≤ pk ≤ suppk < ∞, then for

each  < ε < , there exists a positive integer n such that

∞∑
k=

ank
[
Mk

(
d̄(�mXk ,X)

ρ

)]
≤ ε <  for all n≥ n.

This implies that

∞∑
k=

ank
[
Mk

(
d̄(�mXk ,X)

ρ

)]pk
≤

∞∑
k=

ank
[
Mk

(
d̄(�mXk ,X)

ρ

)]
.
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Therefore, we have

{
n ∈ N :

∞∑
k=

ank
[
Mk

(
d̄(�mXk ,X)

ρ

)]pk
≥ ε

}

⊆
{
n ∈N :

∞∑
k=

ank
[
Mk

(
d̄(�mXk ,X)

ρ

)]
≥ ε

}
∈ I. �

The other part can be proved in a similar way.
The following corollary follows immediately from the above theorem.

Corollary . Let A = (C, ), i.e., the Cesàro matrix, andM = (Mk) be a sequence of Orlicz
functions.
(a) Let  < infpk ≤ pk ≤ . Then
wI(F)[M,�m,p] ⊆ wI(F)[M,�m]; wI(F)[M,�m,p] ⊆ wI(F)[M,�m].

(b) Let  ≤ pk ≤ suppk < ∞. Then
wI(F)[M,�m] ⊆ wI(F)[M,�m,p]; wI(F)[M,�m] ⊆ wI(F)[M,�m,p].
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