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1 Introduction
If p > , 

p +

q = , an,bn ≥ , such that  <

∑∞
n= a

p
n < ∞ and  <

∑∞
n= b

q
n < ∞, then we have

the following famous Hilbert-type integral inequality (cf. []):

∞∑
n=

∞∑
m=

ln(m/n)
m – n

ambn <
[

π

sin(π/p)

]
{ ∞∑

n=

apn

} 
p
{ ∞∑

n=

bqn

} 
q

, ()

where the constant factor [π/ sin(π/p)] is the best possible. The integral analogue of in-
equality () is given as follows (cf. []). If p > , 

p +

q = , f (x) and g(x) are non-negative real

functions such that  <
∫ ∞
 f p(x)dx < ∞ and  <

∫ ∞
 gq(x)dx < ∞, then∫ ∞



∫ ∞



ln(x/y)
x – y

f (x)g(y)dxdy

<
[

π

sin(π/p)

]{∫ ∞


f p(x)dx

} 
p
{∫ ∞


gq(x)dx

} 
q
, ()

where the constant factor [π/ sin(π/p)] is the best possible. We named inequality ()
Hilbert-type integral inequality. In , Yang proved the following more accurate
Hilbert-type inequality (cf. []). If p > , 

p + 
q = , 

 ≤ α ≤ , an,bn ≥ , such that
 <

∑∞
n= a

p
n <∞ and  <

∑∞
n= b

q
n < ∞, then

∞∑
n=

∞∑
m=

ln(m+α
n+α

)
m – n

ambn <
[

π

sin(π/p)

]
{ ∞∑

n=

apn

} 
p
{ ∞∑

n=

bqn

} 
q

, ()

where the constant factor [π/ sin(π/p)] is still the best possible. Inequalities ()-() are
important in mathematical analysis and its applications []. There are lots of improve-
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ments, generalizations, and applications of inequalities ()-(); for more details, refer to
[–].
At present, the research into half-discrete Hilbert-type inequalities is a new direction

and has gradually heated up. We find a few results on the half-discrete Hilbert-type in-
equalities with the non-homogeneous kernel, which were published earlier (cf. [], Th. 
and []). Recently, Yang has given some half-discrete Hilbert-type inequalities (cf. [–
]). Zhong proved a half-discrete Hilbert-type inequality with the non-homogeneous
kernel as follows (cf. []). If p > , 

p +

q = ,  < λ ≤ , an, f (x) ≥ , f (x) is a measurable

function in (,∞) such that  <
∑∞

n= np(–
λ
 )–apn < ∞ and  <

∫ ∞
 xq(– λ

 )–f q(x)dx < ∞,
then

∞∑
n=

∫ ∞



ln(nx)
(nx)λ – 

f (x)an dx

<
(

π

λ

)
{ ∞∑

n=

np(–
λ
 )–apn

} 
p {∫ ∞


xq(–

λ
 )–f q(x)dx

} 
q
, ()

where the constant factor (π
λ
) is the best possible.

In this paper, by using the way of weight functions and the idea of introducing parame-
ters and bymeans of Hadamard’s inequality, we give a half-discreteHilbert-type inequality
with a best constant factor as follows:

∞∑
n=

an
∫ ∞



ln( xn )
x – n

f (x)dx < π

( ∞∑
n=

an
∫ ∞


f (x)dx

) 


. ()

The main objective of this paper is to consider its more accurate extension with parame-
ters, equivalent forms, operator expressions as well as some reverses.

2 Some lemmas
Lemma  If r > , 

r +

s = , define the following beta function (cf. []):

∫ ∞



lnu
u – 

u

s – du =

[
B
(

s
,

r

)]

=
(

π

sin π
s

)

. ()

Lemma  Suppose that r > , 
r +


s = ,  ≤ β ≤ 

 , ν ∈ (–∞,∞),  < λ ≤ . Define the
weight functions ω(n) and ω̃(x) as follows:

ωλ(n) := (n – β)
λ
r

∫ ∞

ν

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

(x – ν)
λ
s – dx (n ∈ N), ()

ω̃λ(x) := (x – ν)
λ
s

∞∑
n=

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

(n – β)
λ
r –

(
x ∈ (ν,∞)

)
. ()

Setting kλ(r) := [ π
λ sin( π

r )
], we have the following inequalities:

 < kλ(r)
(
 – θλ(x)

)
< ω̃λ(x) < ωλ(n) = kλ(r), ()

 < θλ(x) :=
[
sin(π

r )
π

] ∫ ( –β
x–ν )

λ



ln v
v – 

v

r – dv =O

(


(x – ν)λ/r

) (
x ∈ (ν,∞)

)
. ()
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Proof Putting u = ( x–ν
n–β

)λ in (), we have

ωλ(n) =

λ

∫ ∞



lnu
u – 

u

s – du =


λ

[
B
(

s
,

r

)]

=

λ

[
B
(

r
,

s

)]

=
[

π

λ sin(π
r )

]

= kλ(r). ()

For fixed x ∈ (ν,∞), setting

f (t) :=
(x – ν) λ

s ln( x–ν
t–β

)
(x – ν)λ – (t – β)λ

(t – β)
λ
r –

(
t ∈ (β ,∞)

)
, ()

in view of the conditions, we find f ′(t) <  and f ′′(t) >  (cf. []). By Hadamard’s inequality
(cf. []),

f (n) <
∫ n+ 



n– 


f (t)dt (n ∈N), ()

and putting v = ( t–β

x–ν
)λ, we obtain

ω̃λ(x) =
∞∑
n=

f (n) <
∞∑
n=

∫ n+ 


n– 


f (t)dt =
∫ ∞




f (t)dt

≤
∫ ∞

β

f (t)dt =

λ

∫ ∞



ln v
v – 

v

r – du = kλ(r),

ω̃λ(x) =
∞∑
n=

f (n) >
∫ ∞


f (t)dt =

∫ ∞

β

f (t)dt –
∫ 

β

f (t)dt

= kλ(r) –

λ

∫ ( –β
x–ν )

λ



ln v
v – 

v

r – dv = kλ(r)

(
 – θλ(x)

)
> ,

where,

 < θλ(x) :=
[
sin(π

r )
π

] ∫ ( –β
x–ν )

λ



ln v
v – 

v

r – dv

(
x ∈ (ν,∞)

)
.

Since limv→+
ln v
v–v


r = limv→∞ ln v

v–v

r =  and ln v

v–v

r |v== , in view of the bounded prop-

erties of a continuous function, there exists M >  such that  < ln v
v–v


r ≤ M (v ∈ (,∞)).

For x ∈ (ν,∞), we have

 <
∫ ( –β

x–ν )
λ



ln v
v – 

v

r – dv =

∫ ( –β
x–ν )

λ



ln v
v – 

v

r · v 

r – dv

≤ M
∫ ( –β

x–ν )
λ


v


r – dv =

Mr( – β)λ/r

(x – ν)λ/r
. ()

Hence, we proved that () and () are valid. �
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Lemma  Suppose that r > , 
r +


s = , 

p + 
q =  (p �= , ),  ≤ β ≤ 

 , ν ∈ (–∞,∞),  <
λ ≤ , an ≥ , and f (x) is a non-negative real measurable function in (ν,∞). Then
(i) for p > , we have the following inequalities:

J :=

{ ∞∑
n=

(n – β)
pλ
r –

[∫ ∞

ν

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

f (x)dx
]p

} 
p

≤ [
kλ(r)

] 
q

{∫ ∞

ν

ω̃λ(x)(x – ν)p(–
λ
s )–f p(x)dx

} 
p
, ()

L :=

{∫ ∞

ν

(x – ν)
qλ
s –

ω̃
q–
λ (x)

[ ∞∑
n=

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

an

]q

dx

} 
q

≤
{
kλ(r)

∞∑
n=

(n – β)q(–
λ
r )–aqn

} 
q

, ()

where ωλ(n) and ω̃λ(x) are defined by () and ().
(ii) for p <  (p �= ), we have the reverses of () and ().

Proof (i) By ()-() and Hölder’s inequality [], we have

[∫ ∞

ν

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

f (x)dx
]p

=
{∫ ∞

ν

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

[
(x – ν)(– λ

s )/q

(n – β)(– λ
r )/p

f (x)
][

(n – β)(– λ
r )/p

(x – ν)(– λ
s )/q

]
dx

}p

≤
∫ ∞

ν

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

(x – ν)(– λ
s )(p–)

(n – β)– λ
r

f p(x)dx

×
[∫ ∞

ν

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

(n – β)(– λ
r )(q–)

(x – ν)– λ
s

dx
]p–

=
∫ ∞

ν

f p(x) ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

(x – ν)(– λ
s )(p–)

(n – β)– λ
r

dx
[
(n – β)q(–

λ
r )–ωλ(n)

]p–
= (n – β)–

pλ
r kp–λ (r)

∫ ∞

ν

f p(x) ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

(x – ν)(– λ
s )(p–)

(n – β)– λ
r

dx. ()

By the Lebesgue term-by-term integration theorem [] and (), we obtain

Jp ≤ kp–λ (r)
∞∑
n=

∫ ∞

ν

f p(x) ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

(x – ν)(– λ
s )(p–)

(n – β)– λ
r

dx

= kp–λ (r)
∫ ∞

ν

∞∑
n=

(n – β) λ
r – ln( x–ν

n–β
)

(x – ν)λ – (n – β)λ
(x – ν)

λ
s +p(–

λ
s )–f p(x)dx

= kp–λ (r)
∫ ∞

ν

ω̃λ(x)(x – ν)p(–
λ
s )–f p(x)dx. ()
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Hence, () is valid. UsingHölder’s inequality, the Lebesgue term-by-term integration the-
orem, and () again, we have

[ ∞∑
n=

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

an

]q

=

{ ∞∑
n=

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

[
(x – ν)(– λ

s )/q

(n – β)(– λ
r )/p

][
(n – β)(– λ

r )/p

(x – ν)(– λ
s )/q

an
]}q

≤ [
ω̃λ(x)(x – ν)p(–

λ
s )–

]q– ∞∑
n=

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

(n – β)(– λ
r )(q–)aqn

(x – ν)– λ
s

= ω̃
q–
λ (x)(x – ν)–

qλ
s

∞∑
n=

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

(n – β)(– λ
r )(q–)

(x – ν)– λ
s

aqn, ()

Lq ≤
∫ ∞

ν

∞∑
n=

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

(n – β)(– λ
r )(q–)

(x – ν)– λ
s

aqn dx

=
∞∑
n=

[
(n – β)

λ
r

∫ ∞

ν

(x – ν) λ
s – ln( x–ν

n–β
)

(x – ν)λ – (n – β)λ
dx

]
(n – β)q(–

λ
r )–aqn

=
∞∑
n=

ωλ(n)(n – β)q(–
λ
r )–aqn = kλ(r)

∞∑
n=

(n – β)q(–
λ
r )–aqn. ()

Hence, () is valid.
(ii) For  < p <  (q < ) or p <  ( < q < ), using the reverse Hölder inequality, in the

same way, we obtain the reverses of () and (). �

Lemma  By the assumptions of Lemma  and Lemma , we set φ(x) := (x – ν)p(– λ
s )–,

φ̃(x) := ( – θλ(x))φ(x), ψ(n) := (n – β)q(– λ
r )–,

Lp,φ(ν,∞) :=
{
f ;‖f ‖p,φ =

[∫ ∞

ν

φ(x)
∣∣f (x)∣∣p dx]/p

<∞
}
,

lq,ψ :=

{
a = {an};‖a‖q,ψ =

[ ∞∑
n=

ψ(n)|an|q
]/q

< ∞
}
.

(Note If p > , then Lp,φ(ν,∞) and lq,ψ are normal spaces; if  < p <  or p < , then both
Lp,φ(ν,∞) and lq,ψ are not normal spaces, but we still use the formal symbols in the follow-
ing.)
For  < ε < |p|λ

s , setting ã = {̃an}∞n=, and f̃ (x) as follows:

ãn = (n – β)
λ
r –

ε
q–; f̃ (x) =

⎧⎨⎩, x ∈ (ν,  + ν),

(x – ν)
λ
s –

ε
p–, x ∈ [ + ν,∞),

()

(i) if p > , there exists a constant k >  such that

Ĩ :=
∞∑
n=

ãn
∫ ∞

ν

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

f̃ (x)dx < k‖̃f ‖p,φ ‖̃a‖q,ψ , ()
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then it follows

k
[

ε +  – β

( – β)ε+

]/q

>


λ( – β)ε

∫ (–β)λ



ln t
t – 

t

r +

ε
pλ– dt

+

λ

∫ ∞

(–β)λ

ln t
t – 

t

r –

ε
qλ– dt; ()

(ii) if  < p < , there exists a constant k >  such that

Ĩ =
∞∑
n=

ãn
∫ ∞

ν

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

f̃ (x)dx > k‖̃f ‖p,φ̃ ‖̃a‖q,ψ , ()

then it follows

k
(
 – εO()

)/p < 
λ

[
ε +  – β

( – β)ε+

]/p[
B
(

s
–

ε

pλ
,

r
+

ε

pλ

)]

; ()

(iii) if p < , there exists a constant k >  such that

Ĩ =
∞∑
n=

ãn
∫ ∞

ν

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

f̃ (x)dx > k‖̃f ‖p,φ ‖̃a‖q,ψ , ()

then it follows

k
[


( – β)ε

]/q

<
ε +  – β

λ( – β)ε+

[
B
(

s
–

ε

pλ
,

r
+

ε

pλ

)]

. ()

Proof We can obtain

‖̃f ‖p,φ =
{∫ ∞

ν

(x – ν)p(–
λ
s )–̃f p(x)dx

}/p

=
{∫ ∞

+ν

(x – ν)––ε dx
}/p

=
(

ε

)/p

, ()

‖̃a‖qq,ψ =
∞∑
n=

(n – β)q(–
λ
r )–̃aqn =

∞∑
n=

(n – β)––ε

< ( – β)––ε +
∫ ∞


(x – β)––ε dx =

ε +  – β

ε( – β)ε+
, ()

‖̃a‖qq,ψ =
∞∑
n=

(n – β)––ε >
∫ ∞


(x – β)––ε dx =


ε( – β)ε

. ()

(i) For p > , then q > , λ
r –

ε
q –  < , by (), (), and (), we find

Ĩ < k
(

ε

)/p[
ε +  – β

ε( – β)ε+

]/q

=
k
ε

[
ε +  – β

( – β)ε+

]/q

, ()

Ĩ =
∫ ∞

+ν

(x – ν)
λ
s –

ε
p–

[ ∞∑
n=

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

(n – β)
λ
r –

ε
q–

]
dx

≥
∫ ∞

+ν

(x – ν)
λ
s –

ε
p–

[∫ ∞



ln( x–ν
y–β

)
(x – ν)λ – (y – β)λ

(y – β)
λ
r –

ε
q– dy

]
dx.
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Setting t = ( y–β

x–ν
)λ, z = x – v in the above integral, we have

Ĩ ≥ 
λ

∫ ∞


z––ε

[∫ ∞

( –β
z )λ

ln t
t – 

t

r –

ε
qλ– dt

]
dz = I + I, ()

and by the Fubini theorem [], it follows

I :=

λ

∫ ∞


z––ε

[∫ (–β)λ

( –β
z )λ

ln t
t – 

t

r –

ε
qλ– dt

]
dz

=

λ

∫ (–β)λ



ln t
t – 

[∫ ∞

(–β)t–/λ
z––ε dz

]
t

r –

ε
qλ– dt

=


ελ( – β)ε

∫ (–β)λ



ln t
t – 

t

r +

ε
pλ– dt, ()

I :=

λ

∫ ∞


z––ε

[∫ ∞

(–β)λ

ln t
t – 

t

r –

ε
qλ– dt

]
dz

=


ελ

∫ ∞

(–β)λ

ln t
t – 

t

r –

ε
qλ– dt. ()

In view of () and (), it follows that

Ĩ ≥ 
ελ( – β)ε

∫ (–β)λ



ln t
t – 

t

r +

ε
pλ– dt

+


ελ

∫ ∞

(–β)λ

ln t
t – 

t

r –

ε
qλ– dt. ()

Then by () and (), () is valid.
(ii) For  < p < , by () and (), we find (notice that q < )

Ĩ > k‖̃f ‖p,φ̃ ‖̃an‖q,ψ = k
{∫ ∞

ν

φ̃(x)
∣∣̃f (x)∣∣p dx}/p

‖̃a‖q,ψ

= k
{∫ ∞

+ν

[
 –O

(


(x – ν)λ/r

)]
(x – ν)––ε dx

}/p

‖̃a‖q,ψ

= k
[

ε
–

∫ ∞

+ν

O
(


(x – ν) λ

r +ε+

)
dx

]/p

‖̃a‖q,ψ

> k
[

ε
–O()

]/p[
ε +  – β

ε( – β)ε+

]/q

=
k
ε

[
 – εO()

]/p[ ε +  – β

( – β)ε+

]/q

. ()

On the other hand, setting t = ( x–ν
n–β

)λ in Ĩ , we have

Ĩ =
∞∑
n=

(n – β)
λ
r –

ε
q–

∫ ∞

+ν

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

(x – ν)
λ
s –

ε
p– dx

=

λ

∞∑
n=

(n – β)––ε

∫ ∞


(n–β)λ

ln t
t – 

t

s –

ε
pλ– dt

http://www.journalofinequalitiesandapplications.com/content/2012/1/260
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<

λ

∞∑
n=

(n – β)––ε

∫ ∞



ln t
t – 

t

s –

ε
pλ– dt

<
ε +  – β

λε( – β)ε+

[
B
(

s
–

ε

pλ
,

r
+

ε

pλ

)]

. ()

By virtue of () and (), () is valid.
(iii) For p < , then  < q < , by () and (), we find

Ĩ > k
{∫ ∞

ν

φ(x)̃f p(x)dx
}/p

‖̃a‖q,ψ = k
{∫ ∞

+ν

(x – ν)––ε dx
}/p

‖̃a‖q,ψ

>
k
ε

[


( – β)ε

]/q

. ()

Then by () and (), () is valid. �

3 Main results and applications
Theorem  Suppose that p > , 

p + 
q = , r > , 

r + 
s = ,  < λ ≤ ,  ≤ β ≤ 

 ,
ν ∈ (–∞, +∞), φ(x) := (x – ν)p(– λ

s )–, ψ(n) := (n – β)q(– λ
r )–, f (x),an ≥ , satisfying f ∈

Lp,φ(ν,∞), a = {an}∞n= ∈ lq,ψ , ‖f ‖p,φ > , ‖a‖q,ψ > , then we have the following equivalent
inequalities:

I :=
∞∑
n=

an
∫ ∞

ν

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

f (x)dx

=
∫ ∞

ν

f (x)
∞∑
n=

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

an dx < kλ(r)‖f ‖p,φ‖a‖q,ψ , ()

J =

{ ∞∑
n=

(n – β)
pλ
r –

[∫ ∞

ν

ln( x–ν
n–β

)f (x)
(x – ν)λ – (n – β)λ

dx
]p

} 
p

< kλ(r)‖f ‖p,φ , ()

L :=

{∫ ∞

ν

(x – ν)
qλ
s –

[ ∞∑
n=

ln( x–ν
n–β

)an
(x – ν)λ – (n – β)λ

]q

dx

} 
q

< kλ(r)‖a‖q,ψ , ()

where the constant factor kλ(r) = [ π
λ sin( π

r )
] is the best possible.

Proof By the Lebesgue term-by-term integration theorem [], we find that there are two
expressions of I in (). By (), (), and  < ‖f ‖p,φ < ∞, we have (). By Hölder’s inequal-
ity, we find

I =
∞∑
n=

[
(n – β)

λ
r –


p

∫ ∞

ν

ln( x–ν
n–β

)f (x)
(x – ν)λ – (n – β)λ

dx
][
(n – β)


p–

λ
r an

]

≤ J

{ ∞∑
n=

[(n – β)q(–
λ
r )–aqn

}/q

= J‖a‖q,ψ . ()

Then by (), () is valid. On the other hand, assuming that () is valid, set

an := (n – β)
pλ
r –

[∫ ∞

ν

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

f (x)dx
]p–

(n ∈N). ()
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Then by (), we have

‖a‖qq,ψ =
∞∑
n=

(n – β)q(–
λ
r )–aqn = Jp = I ≤ kλ(r)‖f ‖p,φ‖a‖q,ψ . ()

By (), (), and  < ‖f ‖p,φ < ∞, it follows that J < ∞. If J = , then () is trivially valid;
if J > , then  < ‖a‖q,ψ = Jp– < ∞. Thus, the conditions of applying () are fulfilled, and
by (), () takes a strict sign inequality. Thus, we find

J = ‖a‖q–q,ψ < kλ(r)‖f ‖p,φ . ()

Hence, () is valid, which is equivalent to ().
By (), (), and  < ‖a‖q,ψ < ∞, we obtain (). By Hölder’s inequality again, we have

I =
∫ ∞

ν

[
(x – ν)

λ
s –


q

∞∑
n=

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

an

][
(x – ν)


q–

λ
s f (x)

]
dx

≤ L
{∫ ∞

ν

(x – ν)p(–
λ
s )–f p(x)dx

}/p

= L‖f ‖p,φ . ()

Hence, () is valid by using (). On the other hand, assuming that () is valid, set

f (x) := (x – ν)
qλ
s –

[ ∞∑
n=

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

an

]q– (
x ∈ (ν,∞)

)
. ()

Then by (), we find

‖f ‖pp,φ =
∫ ∞

ν

(x – ν)p(–
λ
s )–f p(x)dx = Lq = I ≤ kλ(r)‖f ‖p,φ‖a‖q,ψ . ()

By (), (), and  < ‖a‖q,ψ < ∞, it follows that L < ∞. If L = , then () is trivially valid;
if L > , then  < ‖f ‖p,φ = Lq– <∞, i.e., the conditions of applying () are fulfilled and by
(), we still have

‖f ‖pp,φ = Lq = I < kλ(r)‖f ‖p,φ‖a‖q,ψ , i.e.,

L = ‖f ‖p–p,φ < kλ(r)‖a‖q,ψ .

Hence, () is valid, which is equivalent to (). It follows that (), (), and () are
equivalent.
If there exits a positive number k ≤ kλ(r) such that () is still valid as we replace kλ(r)

by k, then, in particular, () is valid (̃an, f̃ (x) are taken as ()). Then we have (). By (),
the Fatou lemma [], and (), we have

kλ(r) =

λ

∫ ∞



ln t
t – 

t

r – dt

=
∫ (–β)λ


lim

ε→+
ln t
t – 

t

r +

ε
pλ– dt +

∫ ∞

(–β)λ
lim

ε→+
ln t
t – 

t

r –

ε
qλ– dt

http://www.journalofinequalitiesandapplications.com/content/2012/1/260
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≤ lim
ε→+

[∫ (–β)λ



ln t
t – 

t

r +

ε
pλ– dt +

∫ ∞

(–β)λ

ln t
t – 

t

r –

ε
qλ– dt

]

≤ lim
ε→+

k
[

ε +  – β

( – β)ε+

]/q

= k.

Hence, k = kλ(r) is the best value of (). We confirm that the constant factor kλ(r) in ()
(()) is the best possible. Otherwise, we can get a contradiction by () (()) that the
constant factor in () is not the best possible. �

Remark  (i) Define a half-discrete Hilbert operator T : Lp,φ(ν,∞) → lp,ψ–p as follows.
For f ∈ Lp,φ(ν,∞), we define Tf ∈ lp,ψ–p satisfying

Tf (n) =
∫ ∞

ν

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

f (x)dx (n ∈N).

Then by (), it follows ‖Tf ‖p,ψ–p ≤ kλ(r)‖f ‖p,φ , i.e., T is the bounded operator with
‖T‖ ≤ kλ(r). Since the constant factor kλ(r) in () is the best possible, we have ‖T‖ = kλ(r).
(ii) Define a half-discrete Hilbert operator T̃ : lq,ψ → Lq,φ–q (ν,∞) in the following way.

For a ∈ lq,ψ , we define T̃a ∈ Lq,φ–q (ν,∞) satisfying

T̃a(x) =
∞∑
n=

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

an
(
x ∈ (ν,∞)

)
.

Then by (), it follows ‖T̃a‖q,φ–q ≤ kλ(r)‖a‖q,ψ , i.e., T̃ is the bounded operator with
‖T̃‖ ≤ kλ(r). Since the constant factor kλ(r) in () is the best possible, we have ‖T̃‖ = kλ(r).

Theorem  Suppose that  < p < , 
p + 

q = , r > , 
r +


s = ,  < λ ≤ ,  ≤ β ≤ 

 ,

ν ∈ (–∞, +∞), ψ(n) := (n – β)q(– λ
r )–, φ̃(x) = ( – θλ(x))(x – ν)p(– λ

s )–(θλ(x) = [ sin(
π
r )

π
] ×∫ ( –β

x–ν )
λ


ln v
v–v


r – dv ∈ (, )), f (x),an ≥ , satisfying f ∈ Lp,φ̃(ν,∞), a = {an}∞n= ∈ lq,ψ , ‖f ‖p,φ̃ >

, ‖a‖q,ψ > , then we have the following equivalent inequalities:

I =
∞∑
n=

an
∫ ∞

ν

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

f (x)dx

=
∫ ∞

ν

f (x)
∞∑
n=

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

an dx > kλ(r)‖f ‖p,φ̃‖a‖q,ψ , ()

J =

{ ∞∑
n=

(n – β)
pλ
r –

[∫ ∞

ν

ln( x–ν
n–β

)f (x)dx
(x – ν)λ – (n – β)λ

]p
} 

p

> kλ(r)‖f ‖p,φ̃ , ()

L̃ :=

{∫ ∞

ν

(x – ν)
qλ
s –

[( – θλ(x)]q–

[ ∞∑
n=

ln( x–ν
n–β

)an
(x – ν)λ – (n – β)λ

]q

dx

} 
q

> kλ(r)‖a‖q,ψ , ()

where the constant factor kλ(r) = [ π
λ sin( π

r )
] is the best possible.
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Proof By (), the reverse of (), and  < ‖f ‖p,φ̃ <∞, we have (). Using the reverseHölder
inequality, we obtain the reverse form of () as follows:

I ≥ J‖a‖q,ψ . ()

Then by (), () is valid.
On the other hand, if () is valid, set an as (), then () still holds with  < p < . By

(), we have

‖a‖qq,ψ =
∞∑
n=

(n – β)q(–
λ
r )–aqn = Jp = I ≥ kλ(r)‖f ‖p,φ̃‖a‖q,ψ . ()

Then by (), the reverse of (), and  < ‖f ‖p,φ̃ < ∞, it follows that J = {∑∞
n=(n –

β)q(– λ
r )–aqn}/p > . If J = ∞, then () is trivially valid; if J <∞, then  < ‖a‖q,ψ = Jp– < ∞,

i.e., the conditions of applying () are fulfilled, and by (), we still have

‖a‖qq,ψ = Jp = I > kλ(r)‖f ‖p,φ̃‖a‖q,ψ , i.e., J = ‖a‖q–q,ψ > kλ(r)‖f ‖p,φ̃ .

Hence, () is valid, which is equivalent to ().
By the reverse of (), in view of ω̃λ(x) > kλ(r)( – θλ(x)) and q < , we have

L̃ > k
q–
q

λ (r)L ≥ k
q–
q

λ (r)

{
kλ(r)

∞∑
n=

(n – β)q(–
λ
r )–aqn

} 
q

= kλ(r)‖a‖q,ψ .

Then () is valid. By the reverse Hölder inequality again, we have

I =
∫ ∞

ν

[
(x – ν)

λ
s –


q

( – θλ(x))

p

∞∑
n=

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

an

]

× [(
 – θλ(x)

) 
p (x – ν)


q–

λ
s f (x)

]
dx≥ L̃‖f ‖p,φ̃ . ()

Hence, () is valid by (). On the other hand, if () is valid, set

f (x) =
(x – ν)

qλ
s –

[ – θλ(x)]q–

[ ∞∑
n=

ln( x–ν
n–β

)
(x – ν)λ – (n – β)λ

an

]q– (
x ∈ (ν,∞)

)
.

Then by the reverse of () and  < ‖a‖q,ψ < ∞, it follows that L̃ = {∫ ∞
ν
[ – θλ(x)]


p (x –

ν)p(– λ
s )–f p(x)dx} 

q = ‖f ‖p–p,φ̃ > . If L̃ = ∞, then () is trivially valid; if L̃ < ∞, then  <
‖f ‖p,φ̃ = L̃q– < ∞, i.e., the conditions of applying () are fulfilled, and we have

‖f ‖pp,φ̃ = L̃q = I > kλ(r)‖f ‖p,φ̃‖a‖q,ψ , i.e., L̃ = ‖f ‖p–p,φ̃ > kλ(r)‖a‖q,ψ .

Hence, () is valid, which is equivalent to (). It follows that (), (), and () are
equivalent.
If there exists a positive number k ≥ kλ(r) such that () is still valid as we replace kλ(r)

by k, then, in particular, () is valid.Hence, we have (). For ε → + in (), we obtain k ≤
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λ
[B( s ,


r )]

 = kλ(r). Hence, k = kλ(r) is the best value of ().We confirm that the constant
factor kλ(r) in () (()) is the best possible. Otherwise, we can get a contradiction by ()
(()) that the constant factor in () is not the best possible. �

Theorem  If the assumption of p >  in Theorem  is replaced by p < , then the reverses
of (), (), and () are valid and equivalent. Moreover, the same constant factor is the
best possible.

Proof In a similar way as in Theorem , we can obtain that the reverses of (), (), and
() are valid and equivalent.
If there exists a positive number k ≥ kλ(r) such that the reverse of () is still valid as we

replace kλ(r) by k, then, in particular, () is valid. Hence, we have (). For ε → + in (),
we obtain k ≤ 

λ
[B( s ,


r )]

 = kλ(r). Hence, k = kλ(r) is the best value of the reverse of ().
We confirm that the constant factor kλ(r) in the reverse of () (()) is the best possible.
Otherwise, we can get a contradiction by the reverse of () (()) that the constant factor
in the reverse of () is not the best possible. �

Remark  (i) For β = ν =  in (), it follows

∞∑
n=

an
∫ ∞



ln( xn )
xλ – nλ

f (x)dx

<
[

π

λ sin(π
r )

]{∫ ∞


xp(–

λ
s )–f p(x)dx

} 
p
{ ∞∑

n=

nq(–
λ
r )–aqn

} 
q

. ()

In particular, for λ = , p = q = r = s = , () reduces to ().
(ii) For ν = β in (), we have

∞∑
n=

an
∫ ∞

β

ln( x–β

n–β
)

xλ – nλ
f (x)dx

<
[

π

λ sin(π
r )

]{∫ ∞

β

(x – β)p(–
λ
s )–f p(x)dx

} 
p
{ ∞∑

n=

(n – β)q(–
λ
r )–aqn

} 
q

, ()

which is more accurate than ().
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