# RESEARCH

# **Open Access**

# A new more accurate half-discrete Hilbert-type inequality

Aizhen Wang<sup>\*</sup> and Bicheng Yang

\*Correspondence: zhenmaths@gdei.edu.cn Department of Math., Guangdong University of Education Guangzhou, Guangdong, 510303, P.R. China

## Abstract

By using the way of weight functions and the idea of introducing parameters and by means of Hadamard's inequality, we give a more accurate half-discrete Hilbert-type inequality with a best constant factor. We also consider its best extension with parameters, equivalent forms, operator expressions as well as some reverses. **MSC:** 26D15; 47A07

**Keywords:** weight function; parameter; reverse; equivalent form; Hadamard's inequality; Hilbert-type inequality

# 1 Introduction

If p > 1,  $\frac{1}{p} + \frac{1}{q} = 1$ ,  $a_n, b_n \ge 0$ , such that  $0 < \sum_{n=1}^{\infty} a_n^p < \infty$  and  $0 < \sum_{n=1}^{\infty} b_n^q < \infty$ , then we have the following famous Hilbert-type integral inequality (*cf.* [1]):

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\ln(m/n)}{m-n} a_m b_n < \left[\frac{\pi}{\sin(\pi/p)}\right]^2 \left\{\sum_{n=1}^{\infty} a_n^p\right\}^{\frac{1}{p}} \left\{\sum_{n=1}^{\infty} b_n^q\right\}^{\frac{1}{q}},\tag{1}$$

where the constant factor  $[\pi / \sin(\pi / p)]^2$  is the best possible. The integral analogue of inequality (1) is given as follows (*cf.* [1]). If p > 1,  $\frac{1}{p} + \frac{1}{q} = 1$ , f(x) and g(x) are non-negative real functions such that  $0 < \int_0^\infty f^p(x) dx < \infty$  and  $0 < \int_0^\infty g^q(x) dx < \infty$ , then

$$\int_0^\infty \int_0^\infty \frac{\ln(x/y)}{x-y} f(x)g(y) \, dx \, dy$$
  
$$< \left[\frac{\pi}{\sin(\pi/p)}\right]^2 \left\{\int_0^\infty f^p(x) \, dx\right\}^{\frac{1}{p}} \left\{\int_0^\infty g^q(x) \, dx\right\}^{\frac{1}{q}}, \tag{2}$$

where the constant factor  $[\pi/\sin(\pi/p)]^2$  is the best possible. We named inequality (2) Hilbert-type integral inequality. In 2007, Yang proved the following more accurate Hilbert-type inequality (*cf.* [2]). If p > 1,  $\frac{1}{p} + \frac{1}{q} = 1$ ,  $\frac{1}{2} \le \alpha \le 1$ ,  $a_n, b_n \ge 0$ , such that  $0 < \sum_{n=0}^{\infty} a_n^p < \infty$  and  $0 < \sum_{n=0}^{\infty} b_n^q < \infty$ , then

$$\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}\frac{\ln(\frac{m+\alpha}{n+\alpha})}{m-n}a_{m}b_{n} < \left[\frac{\pi}{\sin(\pi/p)}\right]^{2} \left\{\sum_{n=0}^{\infty}a_{n}^{p}\right\}^{\frac{1}{p}} \left\{\sum_{n=0}^{\infty}b_{n}^{q}\right\}^{\frac{1}{q}},\tag{3}$$

where the constant factor  $[\pi/\sin(\pi/p)]^2$  is still the best possible. Inequalities (1)-(3) are important in mathematical analysis and its applications [3]. There are lots of improve-



© 2012 Wang and Yang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons. Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ments, generalizations, and applications of inequalities (1)-(3); for more details, refer to [4-17].

At present, the research into half-discrete Hilbert-type inequalities is a new direction and has gradually heated up. We find a few results on the half-discrete Hilbert-type inequalities with the non-homogeneous kernel, which were published earlier (*cf.* [1], Th. 351 and [18]). Recently, Yang has given some half-discrete Hilbert-type inequalities (*cf.* [19– 25]). Zhong proved a half-discrete Hilbert-type inequality with the non-homogeneous kernel as follows (*cf.* [26]). If p > 1,  $\frac{1}{p} + \frac{1}{q} = 1$ ,  $0 < \lambda \le 2$ ,  $a_n, f(x) \ge 0$ , f(x) is a measurable function in  $(0, \infty)$  such that  $0 < \sum_{n=1}^{\infty} n^{p(1-\frac{\lambda}{2})-1} a_n^p < \infty$  and  $0 < \int_0^\infty x^{q(1-\frac{\lambda}{2})-1} f^q(x) dx < \infty$ , then

$$\sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{\ln(nx)}{(nx)^{\lambda} - 1} f(x) a_{n} dx$$

$$< \left(\frac{\pi}{\lambda}\right)^{2} \left\{ \sum_{n=1}^{\infty} n^{p(1-\frac{\lambda}{2})-1} a_{n}^{p} \right\}^{\frac{1}{p}} \left\{ \int_{0}^{\infty} x^{q(1-\frac{\lambda}{2})-1} f^{q}(x) dx \right\}^{\frac{1}{q}},$$
(4)

where the constant factor  $(\frac{\pi}{\lambda})^2$  is the best possible.

In this paper, by using the way of weight functions and the idea of introducing parameters and by means of Hadamard's inequality, we give a half-discrete Hilbert-type inequality with a best constant factor as follows:

$$\sum_{n=1}^{\infty} a_n \int_0^\infty \frac{\ln(\frac{x}{n})}{x-n} f(x) \, dx < \pi^2 \left( \sum_{n=1}^\infty a_n^2 \int_0^\infty f^2(x) \, dx \right)^{\frac{1}{2}}.$$
(5)

The main objective of this paper is to consider its more accurate extension with parameters, equivalent forms, operator expressions as well as some reverses.

## 2 Some lemmas

**Lemma 1** If r > 1,  $\frac{1}{r} + \frac{1}{s} = 1$ , define the following beta function (cf. [1]):

$$\int_0^\infty \frac{\ln u}{u-1} u^{\frac{1}{s}-1} du = \left[ B\left(\frac{1}{s}, \frac{1}{r}\right) \right]^2 = \left(\frac{\pi}{\sin\frac{\pi}{s}}\right)^2.$$
(6)

**Lemma 2** Suppose that r > 1,  $\frac{1}{r} + \frac{1}{s} = 1$ ,  $0 \le \beta \le \frac{1}{2}$ ,  $\nu \in (-\infty, \infty)$ ,  $0 < \lambda \le 1$ . Define the weight functions  $\omega(n)$  and  $\tilde{\omega}(x)$  as follows:

$$\omega_{\lambda}(n) := (n-\beta)^{\frac{\lambda}{r}} \int_{\nu}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} (x-\nu)^{\frac{\lambda}{s}-1} dx \quad (n \in \mathbf{N}),$$
(7)

$$\tilde{\omega}_{\lambda}(x) := (x-\nu)^{\frac{\lambda}{s}} \sum_{n=1}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} (n-\beta)^{\frac{\lambda}{p}-1} \quad (x \in (\nu,\infty)).$$
(8)

Setting  $k_{\lambda}(r) := \left[\frac{\pi}{\lambda \sin\left(\frac{\pi}{r}\right)}\right]^2$ , we have the following inequalities:

$$0 < k_{\lambda}(r) (1 - \theta_{\lambda}(x)) < \tilde{\omega}_{\lambda}(x) < \omega_{\lambda}(n) = k_{\lambda}(r),$$
(9)

$$0 < \theta_{\lambda}(x) := \left[\frac{\sin(\frac{\pi}{r})}{\pi}\right]^2 \int_0^{(\frac{1-\beta}{x-\nu})^{\lambda}} \frac{\ln\nu}{\nu-1} \nu^{\frac{1}{r}-1} d\nu = O\left(\frac{1}{(x-\nu)^{\lambda/2r}}\right) \quad (x \in (\nu,\infty)).$$
(10)

*Proof* Putting  $u = (\frac{x-v}{n-\beta})^{\lambda}$  in (8), we have

$$\omega_{\lambda}(n) = \frac{1}{\lambda^2} \int_0^\infty \frac{\ln u}{u-1} u^{\frac{1}{s}-1} du = \frac{1}{\lambda^2} \left[ B\left(\frac{1}{s}, \frac{1}{r}\right) \right]^2$$
$$= \frac{1}{\lambda^2} \left[ B\left(\frac{1}{r}, \frac{1}{s}\right) \right]^2 = \left[\frac{\pi}{\lambda \sin(\frac{\pi}{r})}\right]^2 = k_{\lambda}(r).$$
(11)

For fixed  $x \in (\nu, \infty)$ , setting

$$f(t) := \frac{(x-\nu)^{\frac{\lambda}{s}} \ln(\frac{x-\nu}{t-\beta})}{(x-\nu)^{\lambda} - (t-\beta)^{\lambda}} (t-\beta)^{\frac{\lambda}{r}-1} \quad (t \in (\beta,\infty)),$$
(12)

in view of the conditions, we find f'(t) < 0 and f''(t) > 0 (*cf.* [27]). By Hadamard's inequality (cf. [28]),

$$f(n) < \int_{n-\frac{1}{2}}^{n+\frac{1}{2}} f(t) dt \quad (n \in \mathbf{N}),$$
(13)

and putting  $\nu = (\frac{t-\beta}{x-\nu})^{\lambda}$ , we obtain

$$\begin{split} \tilde{\omega}_{\lambda}(x) &= \sum_{n=1}^{\infty} f(n) < \sum_{n=1}^{\infty} \int_{n-\frac{1}{2}}^{n+\frac{1}{2}} f(t) \, dt = \int_{\frac{1}{2}}^{\infty} f(t) \, dt \\ &\leq \int_{\beta}^{\infty} f(t) \, dt = \frac{1}{\lambda^2} \int_{0}^{\infty} \frac{\ln \nu}{\nu - 1} \nu^{\frac{1}{\nu} - 1} \, du = k_{\lambda}(r), \\ \tilde{\omega}_{\lambda}(x) &= \sum_{n=1}^{\infty} f(n) > \int_{1}^{\infty} f(t) \, dt = \int_{\beta}^{\infty} f(t) \, dt - \int_{\beta}^{1} f(t) \, dt \\ &= k_{\lambda}(r) - \frac{1}{\lambda^2} \int_{0}^{(\frac{1-\beta}{x-\nu})^{\lambda}} \frac{\ln \nu}{\nu - 1} \nu^{\frac{1}{\nu} - 1} \, d\nu = k_{\lambda}(r) (1 - \theta_{\lambda}(x)) > 0, \end{split}$$

where,

$$0 < \theta_{\lambda}(x) := \left[\frac{\sin(\frac{\pi}{r})}{\pi}\right]^2 \int_0^{(\frac{1-\beta}{x-\nu})^{\lambda}} \frac{\ln\nu}{\nu-1} \nu^{\frac{1}{r}-1} d\nu \quad (x \in (\nu,\infty)).$$

Since  $\lim_{\nu\to 0^+} \frac{\ln\nu}{\nu-1} \nu^{\frac{1}{2r}} = \lim_{\nu\to\infty} \frac{\ln\nu}{\nu-1} \nu^{\frac{1}{2r}} = 0$  and  $\frac{\ln\nu}{\nu-1} \nu^{\frac{1}{2r}} |_{\nu=1} = 1$ , in view of the bounded properties of a continuous function, there exists M > 0 such that  $0 < \frac{\ln\nu}{\nu-1} \nu^{\frac{1}{2r}} \le M$  ( $\nu \in (0, \infty)$ ). For  $x \in (\nu, \infty)$ , we have

$$0 < \int_{0}^{\left(\frac{1-\beta}{x-\nu}\right)^{\lambda}} \frac{\ln \nu}{\nu-1} \nu^{\frac{1}{r}-1} d\nu = \int_{0}^{\left(\frac{1-\beta}{x-\nu}\right)^{\lambda}} \frac{\ln \nu}{\nu-1} \nu^{\frac{1}{2r}} \cdot \nu^{\frac{1}{2r}-1} d\nu$$
$$\leq M \int_{0}^{\left(\frac{1-\beta}{x-\nu}\right)^{\lambda}} \nu^{\frac{1}{2r}-1} d\nu = \frac{2Mr(1-\beta)^{\lambda/2r}}{(x-\nu)^{\lambda/2r}}.$$
(14)

Hence, we proved that (9) and (10) are valid.

(i) for p > 1, we have the following inequalities:

$$J := \left\{ \sum_{n=1}^{\infty} (n-\beta)^{\frac{p\lambda}{r}-1} \left[ \int_{\nu}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} f(x) \, dx \right]^p \right\}^{\frac{1}{p}}$$

$$\leq \left[ k_{\lambda}(r) \right]^{\frac{1}{q}} \left\{ \int_{\nu}^{\infty} \tilde{\omega}_{\lambda}(x) (x-\nu)^{p(1-\frac{\lambda}{s})-1} f^p(x) \, dx \right\}^{\frac{1}{p}},$$

$$L_1 := \left\{ \int_{\nu}^{\infty} \frac{(x-\nu)^{\frac{q\lambda}{s}-1}}{(x-\nu)^{\frac{q\lambda}{s}-1}} \left[ \sum_{\nu=1}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\frac{q\lambda}{s}-1}} g^{\frac{q\lambda}{s}} dx \right]^{\frac{1}{q}} dx \right\}^{\frac{1}{q}}$$
(15)

$$\sum_{n=1}^{n-p} \frac{(x-p)^{n-p}}{\tilde{\omega}_{\lambda}^{q-1}(x)} \left[ \sum_{n=1}^{n-1} \frac{(x-p)^{\lambda}}{(x-p)^{\lambda} - (n-\beta)^{\lambda}} a_n \right] dx$$

$$\leq \left\{ k_{\lambda}(r) \sum_{n=1}^{\infty} (n-\beta)^{q(1-\frac{\lambda}{r})-1} a_n^q \right\}^{\frac{1}{q}},$$
(16)

where  $\omega_{\lambda}(n)$  and  $\tilde{\omega}_{\lambda}(x)$  are defined by (7) and (8).

(ii) for p < 1 ( $p \neq 0$ ), we have the reverses of (15) and (16).

Proof (i) By (7)-(10) and Hölder's inequality [28], we have

$$\begin{split} &\left[\int_{\nu}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} f(x) dx\right]^{p} \\ &= \left\{\int_{\nu}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} \left[\frac{(x-\nu)^{(1-\frac{\lambda}{s})/q}}{(n-\beta)^{(1-\frac{\lambda}{r})/p}} f(x)\right] \left[\frac{(n-\beta)^{(1-\frac{\lambda}{r})/p}}{(x-\nu)^{(1-\frac{\lambda}{s})/q}}\right] dx\right\}^{p} \\ &\leq \int_{\nu}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} \frac{(x-\nu)^{(1-\frac{\lambda}{s})(p-1)}}{(n-\beta)^{1-\frac{\lambda}{r}}} f^{p}(x) dx \\ &\times \left[\int_{\nu}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} \frac{(n-\beta)^{(1-\frac{\lambda}{r})(q-1)}}{(x-\nu)^{1-\frac{\lambda}{s}}} dx\right]^{p-1} \\ &= \int_{\nu}^{\infty} \frac{f^{p}(x)\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} \frac{(x-\nu)^{(1-\frac{\lambda}{s})(p-1)}}{(n-\beta)^{1-\frac{\lambda}{r}}} dx \Big[(n-\beta)^{q(1-\frac{\lambda}{r})-1}\omega_{\lambda}(n)\Big]^{p-1} \\ &= (n-\beta)^{1-\frac{p\lambda}{r}} k_{\lambda}^{p-1}(r) \int_{\nu}^{\infty} \frac{f^{p}(x)\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} \frac{(x-\nu)^{(1-\frac{\lambda}{s})(p-1)}}{(n-\beta)^{1-\frac{\lambda}{r}}} dx. \end{split}$$
(17)

By the Lebesgue term-by-term integration theorem  $\left[29\right]$  and (9), we obtain

$$J^{p} \leq k_{\lambda}^{p-1}(r) \sum_{n=1}^{\infty} \int_{\nu}^{\infty} \frac{f^{p}(x) \ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} \frac{(x-\nu)^{(1-\frac{\lambda}{s})(p-1)}}{(n-\beta)^{1-\frac{\lambda}{r}}} dx$$
$$= k_{\lambda}^{p-1}(r) \int_{\nu}^{\infty} \sum_{n=1}^{\infty} \frac{(n-\beta)^{\frac{\lambda}{r}-1} \ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} (x-\nu)^{\frac{\lambda}{s}+p(1-\frac{\lambda}{s})-1} f^{p}(x) dx$$
$$= k_{\lambda}^{p-1}(r) \int_{\nu}^{\infty} \tilde{\omega}_{\lambda}(x) (x-\nu)^{p(1-\frac{\lambda}{s})-1} f^{p}(x) dx.$$
(18)

Hence, (15) is valid. Using Hölder's inequality, the Lebesgue term-by-term integration theorem, and (9) again, we have

$$\begin{split} \left[\sum_{n=1}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} a_{n}\right]^{q} \\ &= \left\{\sum_{n=1}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} \left[\frac{(x-\nu)^{(1-\frac{\lambda}{s})/q}}{(n-\beta)^{(1-\frac{\lambda}{r})/p}}\right] \left[\frac{(n-\beta)^{(1-\frac{\lambda}{r})/p}}{(x-\nu)^{(1-\frac{\lambda}{s})/q}} a_{n}\right]\right\}^{q} \\ &\leq \left[\tilde{\omega}_{\lambda}(x)(x-\nu)^{p(1-\frac{\lambda}{s})-1}\right]^{q-1} \sum_{n=1}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} \frac{(n-\beta)^{(1-\frac{\lambda}{r})(q-1)} a_{n}^{q}}{(x-\nu)^{1-\frac{\lambda}{s}}} \\ &= \tilde{\omega}_{\lambda}^{q-1}(x)(x-\nu)^{1-\frac{q\lambda}{s}} \sum_{n=1}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} \frac{(n-\beta)^{(1-\frac{\lambda}{r})(q-1)}}{(x-\nu)^{1-\frac{\lambda}{s}}} a_{n}^{q}, \end{split}$$
(19)  
$$L_{1}^{q} \leq \int_{\nu}^{\infty} \sum_{n=1}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} \frac{(n-\beta)^{(1-\frac{\lambda}{r})(q-1)}}{(x-\nu)^{1-\frac{\lambda}{s}}} a_{n}^{q} dx \\ &= \sum_{n=1}^{\infty} \left[ (n-\beta)^{\frac{\lambda}{r}} \int_{\nu}^{\infty} \frac{(x-\nu)^{\frac{\lambda}{s}-1} \ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} dx \right] (n-\beta)^{q(1-\frac{\lambda}{r})-1} a_{n}^{q} \\ &= \sum_{n=1}^{\infty} \omega_{\lambda}(n)(n-\beta)^{q(1-\frac{\lambda}{r})-1} a_{n}^{q} = k_{\lambda}(r) \sum_{n=1}^{\infty} (n-\beta)^{q(1-\frac{\lambda}{r})-1} a_{n}^{q}. \end{cases}$$
(20)

Hence, (16) is valid.

(ii) For 0 (<math>q < 0) or p < 0 (0 < q < 1), using the reverse Hölder inequality, in the same way, we obtain the reverses of (15) and (16).

**Lemma 4** By the assumptions of Lemma 2 and Lemma 3, we set  $\phi(x) := (x - v)^{p(1-\frac{\lambda}{s})-1}$ ,  $\widetilde{\phi}(x) := (1 - \theta_{\lambda}(x))\phi(x), \psi(n) := (n - \beta)^{q(1-\frac{\lambda}{r})-1}$ ,

$$\begin{split} L_{p,\phi}(v,\infty) &:= \left\{ f; \|f\|_{p,\phi} = \left[ \int_{v}^{\infty} \phi(x) \left| f(x) \right|^{p} dx \right]^{1/p} < \infty \right\}, \\ l_{q,\psi} &:= \left\{ a = \{a_{n}\}; \|a\|_{q,\psi} = \left[ \sum_{n=1}^{\infty} \psi(n) |a_{n}|^{q} \right]^{1/q} < \infty \right\}. \end{split}$$

(Note If p > 1, then  $L_{p,\phi}(v, \infty)$  and  $l_{q,\psi}$  are normal spaces; if 0 or <math>p < 0, then both  $L_{p,\phi}(v,\infty)$  and  $l_{q,\psi}$  are not normal spaces, but we still use the formal symbols in the following.)

For  $0 < \varepsilon < \frac{|p|\lambda}{s}$ , setting  $\widetilde{a} = \{\widetilde{a}_n\}_{n=1}^{\infty}$ , and  $\widetilde{f}(x)$  as follows:

$$\widetilde{a}_{n} = (n-\beta)^{\frac{\lambda}{p} - \frac{\varepsilon}{q} - 1}; \qquad \widetilde{f}(x) = \begin{cases} 0, & x \in (\nu, 1+\nu), \\ (x-\nu)^{\frac{\lambda}{s} - \frac{\varepsilon}{p} - 1}, & x \in [1+\nu, \infty), \end{cases}$$
(21)

(i) *if* p > 1, *there exists a constant* k > 0 *such that* 

$$\widetilde{I} := \sum_{n=1}^{\infty} \widetilde{a}_n \int_{\nu}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} \widetilde{f}(x) \, dx < k \|\widetilde{f}\|_{p,\phi} \|\widetilde{a}\|_{q,\psi},$$
(22)

then it follows

$$k \left[ \frac{\varepsilon + 1 - \beta}{(1 - \beta)^{\varepsilon + 1}} \right]^{1/q} > \frac{1}{\lambda^2 (1 - \beta)^{\varepsilon}} \int_0^{(1 - \beta)^{\lambda}} \frac{\ln t}{t - 1} t^{\frac{1}{r} + \frac{\varepsilon}{p\lambda} - 1} dt + \frac{1}{\lambda^2} \int_{(1 - \beta)^{\lambda}}^{\infty} \frac{\ln t}{t - 1} t^{\frac{1}{r} - \frac{\varepsilon}{q\lambda} - 1} dt;$$

$$(23)$$

(ii) if 0 , there exists a constant <math>k > 0 such that

$$\widetilde{I} = \sum_{n=1}^{\infty} \widetilde{a}_n \int_{\nu}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} \widetilde{f}(x) \, dx > k \|\widetilde{f}\|_{p,\widetilde{\phi}} \|\widetilde{a}\|_{q,\psi},$$
(24)

then it follows

$$k\left(1-\varepsilon O(1)\right)^{1/p} < \frac{1}{\lambda^2} \left[\frac{\varepsilon+1-\beta}{(1-\beta)^{\varepsilon+1}}\right]^{1/p} \left[B\left(\frac{1}{s}-\frac{\varepsilon}{p\lambda},\frac{1}{r}+\frac{\varepsilon}{p\lambda}\right)\right]^2;$$
(25)

(iii) if p < 0, there exists a constant k > 0 such that

$$\widetilde{I} = \sum_{n=1}^{\infty} \widetilde{a}_n \int_{\nu}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} \widetilde{f}(x) \, dx > k \|\widetilde{f}\|_{p,\phi} \|\widetilde{a}\|_{q,\psi},\tag{26}$$

then it follows

$$k \left[ \frac{1}{(1-\beta)^{\varepsilon}} \right]^{1/q} < \frac{\varepsilon + 1 - \beta}{\lambda^2 (1-\beta)^{\varepsilon+1}} \left[ B\left( \frac{1}{s} - \frac{\varepsilon}{p\lambda}, \frac{1}{r} + \frac{\varepsilon}{p\lambda} \right) \right]^2.$$
(27)

Proof We can obtain

$$\|\widetilde{f}\|_{p,\phi} = \left\{\int_{\nu}^{\infty} (x-\nu)^{p(1-\frac{\lambda}{s})-1} \widetilde{f}^p(x) \, dx\right\}^{1/p} = \left\{\int_{1+\nu}^{\infty} (x-\nu)^{-1-\varepsilon} \, dx\right\}^{1/p} = \left(\frac{1}{\varepsilon}\right)^{1/p}, \tag{28}$$

$$\|\widetilde{a}\|_{q,\psi}^{q} = \sum_{n=1}^{\infty} (n-\beta)^{q(1-\frac{\lambda}{r})-1} \widetilde{a}_{n}^{q} = \sum_{n=1}^{\infty} (n-\beta)^{-1-\varepsilon}$$
$$< (1-\beta)^{-1-\varepsilon} + \int_{1}^{\infty} (x-\beta)^{-1-\varepsilon} dx = \frac{\varepsilon+1-\beta}{\varepsilon(1-\beta)^{\varepsilon+1}},$$
(29)

$$\|\widetilde{a}\|_{q,\psi}^{q} = \sum_{n=1}^{\infty} (n-\beta)^{-1-\varepsilon} > \int_{1}^{\infty} (x-\beta)^{-1-\varepsilon} dx = \frac{1}{\varepsilon(1-\beta)^{\varepsilon}}.$$
(30)

(i) For p > 1, then q > 1,  $\frac{\lambda}{r} - \frac{\varepsilon}{q} - 1 < 0$ , by (22), (28), and (29), we find

$$\widetilde{I} < k \left(\frac{1}{\varepsilon}\right)^{1/p} \left[\frac{\varepsilon + 1 - \beta}{\varepsilon(1 - \beta)^{\varepsilon + 1}}\right]^{1/q} = \frac{k}{\varepsilon} \left[\frac{\varepsilon + 1 - \beta}{(1 - \beta)^{\varepsilon + 1}}\right]^{1/q},$$
(31)  

$$\widetilde{I} = \int_{1+\nu}^{\infty} (x - \nu)^{\frac{\lambda}{s} - \frac{\varepsilon}{p} - 1} \left[\sum_{n=1}^{\infty} \frac{\ln(\frac{x - \nu}{n - \beta})}{(x - \nu)^{\lambda} - (n - \beta)^{\lambda}} (n - \beta)^{\frac{\lambda}{p} - \frac{\varepsilon}{q} - 1}\right] dx$$

$$\geq \int_{1+\nu}^{\infty} (x - \nu)^{\frac{\lambda}{s} - \frac{\varepsilon}{p} - 1} \left[\int_{1}^{\infty} \frac{\ln(\frac{x - \nu}{\nu - \beta})}{(x - \nu)^{\lambda} - (y - \beta)^{\lambda}} (y - \beta)^{\frac{\lambda}{p} - \frac{\varepsilon}{q} - 1} dy\right] dx.$$

Setting  $t = (\frac{y-\beta}{x-\nu})^{\lambda}$ ,  $z = x - \nu$  in the above integral, we have

$$\widetilde{I} \ge \frac{1}{\lambda^2} \int_1^\infty z^{-1-\varepsilon} \left[ \int_{(\frac{1-\beta}{z})^{\lambda}}^\infty \frac{\ln t}{t-1} t^{\frac{1}{r} - \frac{\varepsilon}{q\lambda} - 1} dt \right] dz = I_1 + I_2,$$
(32)

and by the Fubini theorem [30], it follows

$$\begin{split} I_{1} &:= \frac{1}{\lambda^{2}} \int_{1}^{\infty} z^{-1-\varepsilon} \bigg[ \int_{(\frac{1-\beta}{z})^{\lambda}}^{(1-\beta)^{\lambda}} \frac{\ln t}{t-1} t^{\frac{1}{r} - \frac{\varepsilon}{q\lambda} - 1} dt \bigg] dz \\ &= \frac{1}{\lambda^{2}} \int_{0}^{(1-\beta)^{\lambda}} \frac{\ln t}{t-1} \bigg[ \int_{(1-\beta)t^{-1/\lambda}}^{\infty} z^{-1-\varepsilon} dz \bigg] t^{\frac{1}{r} - \frac{\varepsilon}{q\lambda} - 1} dt \\ &= \frac{1}{\varepsilon \lambda^{2} (1-\beta)^{\varepsilon}} \int_{0}^{(1-\beta)^{\lambda}} \frac{\ln t}{t-1} t^{\frac{1}{r} + \frac{\varepsilon}{p\lambda} - 1} dt, \end{split}$$
(33)  
$$I_{2} := \frac{1}{\lambda^{2}} \int_{1}^{\infty} z^{-1-\varepsilon} \bigg[ \int_{(1-\beta)^{\lambda}}^{\infty} \frac{\ln t}{t-1} t^{\frac{1}{r} - \frac{\varepsilon}{q\lambda} - 1} dt \bigg] dz \\ &= \frac{1}{\varepsilon \lambda^{2}} \int_{(1-\beta)^{\lambda}}^{\infty} \frac{\ln t}{t-1} t^{\frac{1}{r} - \frac{\varepsilon}{q\lambda} - 1} dt.$$
(34)

In view of (33) and (34), it follows that

$$\widetilde{I} \geq \frac{1}{\varepsilon \lambda^2 (1-\beta)^{\varepsilon}} \int_0^{(1-\beta)^{\lambda}} \frac{\ln t}{t-1} t^{\frac{1}{r} + \frac{\varepsilon}{p\lambda} - 1} dt + \frac{1}{\varepsilon \lambda^2} \int_{(1-\beta)^{\lambda}}^{\infty} \frac{\ln t}{t-1} t^{\frac{1}{r} - \frac{\varepsilon}{q\lambda} - 1} dt.$$
(35)

Then by (31) and (35), (23) is valid.

(ii) For 0 , by (24) and (29), we find (notice that <math>q < 0)

$$\begin{split} \widetilde{I} > k \|\widetilde{f}\|_{p,\widetilde{\phi}} \|\widetilde{a}_{n}\|_{q,\psi} &= k \left\{ \int_{\nu}^{\infty} \widetilde{\phi}(x) |\widetilde{f}(x)|^{p} dx \right\}^{1/p} \|\widetilde{a}\|_{q,\psi} \\ &= k \left\{ \int_{1+\nu}^{\infty} \left[ 1 - O\left(\frac{1}{(x-\nu)^{\lambda/2r}}\right) \right] (x-\nu)^{-1-\varepsilon} dx \right\}^{1/p} \|\widetilde{a}\|_{q,\psi} \\ &= k \left[ \frac{1}{\varepsilon} - \int_{1+\nu}^{\infty} O\left(\frac{1}{(x-\nu)^{\frac{\lambda}{2r}+\varepsilon+1}}\right) dx \right]^{1/p} \|\widetilde{a}\|_{q,\psi} \\ &> k \left[ \frac{1}{\varepsilon} - O(1) \right]^{1/p} \left[ \frac{\varepsilon+1-\beta}{\varepsilon(1-\beta)^{\varepsilon+1}} \right]^{1/q} \\ &= \frac{k}{\varepsilon} \left[ 1 - \varepsilon O(1) \right]^{1/p} \left[ \frac{\varepsilon+1-\beta}{(1-\beta)^{\varepsilon+1}} \right]^{1/q}. \end{split}$$
(36)

On the other hand, setting  $t = (\frac{x-v}{n-\beta})^{\lambda}$  in  $\widetilde{I}$ , we have

$$\begin{split} \widetilde{I} &= \sum_{n=1}^{\infty} (n-\beta)^{\frac{\lambda}{p} - \frac{\varepsilon}{q} - 1} \int_{1+\nu}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} (x-\nu)^{\frac{\lambda}{s} - \frac{\varepsilon}{p} - 1} dx \\ &= \frac{1}{\lambda^2} \sum_{n=1}^{\infty} (n-\beta)^{-1-\varepsilon} \int_{\frac{1}{(n-\beta)^{\lambda}}}^{\infty} \frac{\ln t}{t-1} t^{\frac{1}{s} - \frac{\varepsilon}{p\lambda} - 1} dt \end{split}$$

By virtue of (36) and (37), (25) is valid.

(iii) For *p* < 0, then 0 < *q* < 1, by (26) and (30), we find

$$\widetilde{I} > k \left\{ \int_{\nu}^{\infty} \phi(x) \widetilde{f}^{p}(x) dx \right\}^{1/p} \|\widetilde{a}\|_{q,\psi} = k \left\{ \int_{1+\nu}^{\infty} (x-\nu)^{-1-\varepsilon} dx \right\}^{1/p} \|\widetilde{a}\|_{q,\psi}$$
$$> \frac{k}{\varepsilon} \left[ \frac{1}{(1-\beta)^{\varepsilon}} \right]^{1/q}.$$
(38)

Then by (37) and (38), (27) is valid.

### 3 Main results and applications

**Theorem 5** Suppose that p > 1,  $\frac{1}{p} + \frac{1}{q} = 1$ , r > 1,  $\frac{1}{r} + \frac{1}{s} = 1$ ,  $0 < \lambda \le 1$ ,  $0 \le \beta \le \frac{1}{2}$ ,  $v \in (-\infty, +\infty)$ ,  $\phi(x) := (x - v)^{p(1-\frac{\lambda}{s})-1}$ ,  $\psi(n) := (n - \beta)^{q(1-\frac{\lambda}{r})-1}$ ,  $f(x), a_n \ge 0$ , satisfying  $f \in L_{p,\phi}(v,\infty)$ ,  $a = \{a_n\}_{n=1}^{\infty} \in l_{q,\psi}$ ,  $||f||_{p,\phi} > 0$ ,  $||a||_{q,\psi} > 0$ , then we have the following equivalent inequalities:

$$I := \sum_{n=1}^{\infty} a_n \int_{\nu}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} f(x) dx$$
$$= \int_{\nu}^{\infty} f(x) \sum_{n=1}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} a_n dx < k_{\lambda}(r) \|f\|_{p,\phi} \|a\|_{q,\psi},$$
(39)

$$J = \left\{ \sum_{n=1}^{\infty} (n-\beta)^{\frac{p\lambda}{r}-1} \left[ \int_{\nu}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})f(x)}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} dx \right]^{p} \right\}^{\frac{1}{p}} < k_{\lambda}(r) \|f\|_{p,\phi},$$
(40)

$$L := \left\{ \int_{\nu}^{\infty} (x-\nu)^{\frac{q\lambda}{s}-1} \left[ \sum_{n=1}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})a_n}{(x-\nu)^{\lambda}-(n-\beta)^{\lambda}} \right]^q dx \right\}^{\frac{1}{q}} < k_{\lambda}(r) \|a\|_{q,\psi},$$
(41)

where the constant factor  $k_{\lambda}(r) = \left[\frac{\pi}{\lambda \sin(\frac{\pi}{r})}\right]^2$  is the best possible.

*Proof* By the Lebesgue term-by-term integration theorem [29], we find that there are two expressions of *I* in (39). By (9), (15), and  $0 < ||f||_{p,\phi} < \infty$ , we have (40). By Hölder's inequality, we find

$$I = \sum_{n=1}^{\infty} \left[ (n-\beta)^{\frac{\lambda}{r} - \frac{1}{p}} \int_{\nu}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})f(x)}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} dx \right] \left[ (n-\beta)^{\frac{1}{p} - \frac{\lambda}{r}} a_n \right]$$
  
$$\leq J \left\{ \sum_{n=1}^{\infty} [(n-\beta)^{q(1-\frac{\lambda}{r})-1} a_n^q \right\}^{1/q} = J \|a\|_{q,\psi}.$$
(42)

Then by (40), (39) is valid. On the other hand, assuming that (39) is valid, set

$$a_{n} := (n-\beta)^{\frac{p\lambda}{r}-1} \left[ \int_{\nu}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} f(x) \, dx \right]^{p-1} \quad (n \in \mathbf{N}).$$

$$\tag{43}$$

Then by (39), we have

$$\|a\|_{q,\psi}^{q} = \sum_{n=1}^{\infty} (n-\beta)^{q(1-\frac{\lambda}{r})-1} a_{n}^{q} = J^{p} = I \le k_{\lambda}(r) \|f\|_{p,\phi} \|a\|_{q,\psi}.$$
(44)

By (9), (15), and  $0 < \|f\|_{p,\phi} < \infty$ , it follows that  $J < \infty$ . If J = 0, then (40) is trivially valid; if J > 0, then  $0 < \|a\|_{q,\psi} = J^{p-1} < \infty$ . Thus, the conditions of applying (39) are fulfilled, and by (39), (44) takes a strict sign inequality. Thus, we find

$$J = \|a\|_{q,\psi}^{q-1} < k_{\lambda}(r) \|f\|_{p,\phi}.$$
(45)

Hence, (40) is valid, which is equivalent to (39).

By (9), (16), and  $0 < ||a||_{q,\psi} < \infty$ , we obtain (41). By Hölder's inequality again, we have

$$I = \int_{\nu}^{\infty} \left[ (x-\nu)^{\frac{\lambda}{s} - \frac{1}{q}} \sum_{n=1}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} a_n \right] \left[ (x-\nu)^{\frac{1}{q} - \frac{\lambda}{s}} f(x) \right] dx$$
  
$$\leq L \left\{ \int_{\nu}^{\infty} (x-\nu)^{p(1-\frac{\lambda}{s}) - 1} f^p(x) \, dx \right\}^{1/p} = L \|f\|_{p,\phi}.$$
(46)

Hence, (39) is valid by using (41). On the other hand, assuming that (39) is valid, set

$$f(x) := (x-\nu)^{\frac{q\lambda}{s}-1} \left[ \sum_{n=1}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} a_n \right]^{q-1} \quad (x \in (\nu,\infty)).$$

$$(47)$$

Then by (39), we find

$$\|f\|_{p,\phi}^{p} = \int_{\nu}^{\infty} (x-\nu)^{p(1-\frac{\lambda}{s})-1} f^{p}(x) \, dx = L^{q} = I \le k_{\lambda}(r) \|f\|_{p,\phi} \|a\|_{q,\psi}.$$
(48)

By (9), (16), and  $0 < ||a||_{q,\psi} < \infty$ , it follows that  $L < \infty$ . If L = 0, then (41) is trivially valid; if L > 0, then  $0 < ||f||_{p,\phi} = L^{q-1} < \infty$ , *i.e.*, the conditions of applying (39) are fulfilled and by (48), we still have

$$\begin{split} \|f\|_{p,\phi}^{p} &= L^{q} = I < k_{\lambda}(r) \|f\|_{p,\phi} \|a\|_{q,\psi}, \quad i.e., \\ L &= \|f\|_{p,\phi}^{p-1} < k_{\lambda}(r) \|a\|_{q,\psi}. \end{split}$$

Hence, (41) is valid, which is equivalent to (39). It follows that (39), (40), and (41) are equivalent.

If there exits a positive number  $k \le k_{\lambda}(r)$  such that (39) is still valid as we replace  $k_{\lambda}(r)$  by k, then, in particular, (22) is valid ( $\tilde{a}_n, \tilde{f}(x)$  are taken as (21)). Then we have (23). By (11), the Fatou lemma [30], and (23), we have

$$\begin{split} k_{\lambda}(r) &= \frac{1}{\lambda^2} \int_0^\infty \frac{\ln t}{t-1} t^{\frac{1}{r}-1} dt \\ &= \int_0^{(1-\beta)^{\lambda}} \lim_{\varepsilon \to 0^+} \frac{\ln t}{t-1} t^{\frac{1}{r}+\frac{\varepsilon}{p\lambda}-1} dt + \int_{(1-\beta)^{\lambda}}^\infty \lim_{\varepsilon \to 0^+} \frac{\ln t}{t-1} t^{\frac{1}{r}-\frac{\varepsilon}{q\lambda}-1} dt \end{split}$$

$$\leq \lim_{\varepsilon \to 0^+} \left[ \int_0^{(1-\beta)^{\lambda}} \frac{\ln t}{t-1} t^{\frac{1}{r} + \frac{\varepsilon}{p\lambda} - 1} dt + \int_{(1-\beta)^{\lambda}}^{\infty} \frac{\ln t}{t-1} t^{\frac{1}{r} - \frac{\varepsilon}{q\lambda} - 1} dt \right]$$
  
$$\leq \lim_{\varepsilon \to 0^+} k \left[ \frac{\varepsilon + 1 - \beta}{(1-\beta)^{\varepsilon+1}} \right]^{1/q} = k.$$

Hence,  $k = k_{\lambda}(r)$  is the best value of (39). We confirm that the constant factor  $k_{\lambda}(r)$  in (40) ((41)) is the best possible. Otherwise, we can get a contradiction by (42) ((46)) that the constant factor in (39) is not the best possible.

**Remark 6** (i) Define a half-discrete Hilbert operator  $T : L_{p,\phi}(\nu, \infty) \to l_{p,\psi^{1-p}}$  as follows. For  $f \in L_{p,\phi}(\nu, \infty)$ , we define  $Tf \in l_{p,\psi^{1-p}}$  satisfying

$$Tf(n) = \int_{\nu}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} f(x) \, dx \quad (n \in \mathbf{N}).$$

Then by (40), it follows  $||Tf||_{p,\psi^{1-p}} \le k_{\lambda}(r)||f||_{p,\phi}$ , *i.e.*, *T* is the bounded operator with  $||T|| \le k_{\lambda}(r)$ . Since the constant factor  $k_{\lambda}(r)$  in (40) is the best possible, we have  $||T|| = k_{\lambda}(r)$ .

(ii) Define a half-discrete Hilbert operator  $\widetilde{T}: l_{q,\psi} \to L_{q,\phi^{1-q}}(\nu,\infty)$  in the following way. For  $a \in l_{q,\psi}$ , we define  $\widetilde{T}a \in L_{q,\phi^{1-q}}(\nu,\infty)$  satisfying

$$\widetilde{T}a(x) = \sum_{n=1}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} a_n \quad \big(x \in (\nu,\infty)\big).$$

Then by (41), it follows  $\|\widetilde{T}a\|_{q,\phi^{1-q}} \leq k_{\lambda}(r)\|a\|_{q,\psi}$ , *i.e.*,  $\widetilde{T}$  is the bounded operator with  $\|\widetilde{T}\| \leq k_{\lambda}(r)$ . Since the constant factor  $k_{\lambda}(r)$  in (41) is the best possible, we have  $\|\widetilde{T}\| = k_{\lambda}(r)$ .

**Theorem 7** Suppose that  $0 , <math>\frac{1}{p} + \frac{1}{q} = 1$ , r > 1,  $\frac{1}{r} + \frac{1}{s} = 1$ ,  $0 < \lambda \le 1$ ,  $0 \le \beta \le \frac{1}{2}$ ,  $\nu \in (-\infty, +\infty)$ ,  $\psi(n) := (n - \beta)^{q(1-\frac{\lambda}{r})-1}$ ,  $\tilde{\phi}(x) = (1 - \theta_{\lambda}(x))(x - \nu)^{p(1-\frac{\lambda}{s})-1}(\theta_{\lambda}(x) = [\frac{\sin(\frac{\pi}{r})}{\pi}]^2 \times \int_0^{(\frac{1-\beta}{x-\nu})^{\lambda}} \frac{\ln\nu}{\nu-1} v^{\frac{1}{r}-1} d\nu \in (0,1)$ ,  $f(x), a_n \ge 0$ , satisfying  $f \in L_{p,\tilde{\phi}}(\nu,\infty)$ ,  $a = \{a_n\}_{n=1}^{\infty} \in l_{q,\psi}$ ,  $||f||_{p,\tilde{\phi}} > 0$ ,  $||a||_{q,\psi} > 0$ , then we have the following equivalent inequalities:

$$I = \sum_{n=1}^{\infty} a_n \int_{\nu}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} f(x) dx$$
  
$$= \int_{\nu}^{\infty} f(x) \sum_{n=1}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} a_n dx > k_{\lambda}(r) \|f\|_{p,\widetilde{\phi}} \|a\|_{q,\psi},$$
(49)

$$J = \left\{ \sum_{n=1}^{\infty} (n-\beta)^{\frac{p\lambda}{r}-1} \left[ \int_{\nu}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})f(x) \, dx}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} \right]^p \right\}^{\frac{1}{p}} > k_{\lambda}(r) \|f\|_{p,\widetilde{\phi}}, \tag{50}$$

$$\widetilde{L} := \left\{ \int_{\nu}^{\infty} \frac{(x-\nu)^{\frac{q\lambda}{s}-1}}{[(1-\theta_{\lambda}(x)]^{q-1}} \left[ \sum_{n=1}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})a_n}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} \right]^q dx \right\}^{\frac{1}{q}} > k_{\lambda}(r) \|a\|_{q,\psi},$$
(51)

where the constant factor  $k_{\lambda}(r) = \left[\frac{\pi}{\lambda \sin(\frac{\pi}{r})}\right]^2$  is the best possible.

*Proof* By (9), the reverse of (15), and  $0 < ||f||_{p,\tilde{\phi}} < \infty$ , we have (50). Using the reverse Hölder inequality, we obtain the reverse form of (42) as follows:

$$I \ge J \|a\|_{q,\psi}. \tag{52}$$

Then by (50), (49) is valid.

On the other hand, if (49) is valid, set  $a_n$  as (43), then (44) still holds with 0 . By (49), we have

$$\|a\|_{q,\psi}^{q} = \sum_{n=1}^{\infty} (n-\beta)^{q(1-\frac{\lambda}{r})-1} a_{n}^{q} = J^{p} = I \ge k_{\lambda}(r) \|f\|_{p,\widetilde{\phi}} \|a\|_{q,\psi}.$$
(53)

Then by (9), the reverse of (18), and  $0 < \|f\|_{p,\tilde{\phi}} < \infty$ , it follows that  $J = \{\sum_{n=1}^{\infty} (n - \beta)^{q(1-\frac{\lambda}{r})-1} a_n^q\}^{1/p} > 0$ . If  $J = \infty$ , then (50) is trivially valid; if  $J < \infty$ , then  $0 < \|a\|_{q,\psi} = J^{p-1} < \infty$ , *i.e.*, the conditions of applying (49) are fulfilled, and by (53), we still have

$$\|a\|_{q,\psi}^{q} = J^{p} = I > k_{\lambda}(r) \|f\|_{p,\widetilde{\phi}} \|a\|_{q,\psi}, \quad i.e., J = \|a\|_{q,\psi}^{q-1} > k_{\lambda}(r) \|f\|_{p,\widetilde{\phi}}.$$

Hence, (50) is valid, which is equivalent to (49).

By the reverse of (16), in view of  $\tilde{\omega}_{\lambda}(x) > k_{\lambda}(r)(1 - \theta_{\lambda}(x))$  and q < 0, we have

$$\widetilde{L} > k_{\lambda}^{\frac{q-1}{q}}(r)L_1 \ge k_{\lambda}^{\frac{q-1}{q}}(r) \left\{ k_{\lambda}(r) \sum_{n=1}^{\infty} (n-\beta)^{q(1-\frac{\lambda}{r})-1} a_n^q \right\}^{\frac{1}{q}} = k_{\lambda}(r) \|a\|_{q,\psi}.$$

Then (51) is valid. By the reverse Hölder inequality again, we have

$$I = \int_{\nu}^{\infty} \left[ \frac{(x-\nu)^{\frac{\lambda}{s}-\frac{1}{q}}}{(1-\theta_{\lambda}(x))^{\frac{1}{p}}} \sum_{n=1}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda}-(n-\beta)^{\lambda}} a_n \right] \\ \times \left[ (1-\theta_{\lambda}(x))^{\frac{1}{p}} (x-\nu)^{\frac{1}{q}-\frac{\lambda}{s}} f(x) \right] dx \ge \widetilde{L} \|f\|_{p,\widetilde{\phi}}.$$
(54)

Hence, (49) is valid by (51). On the other hand, if (49) is valid, set

$$f(x) = \frac{(x-\nu)^{\frac{q\lambda}{s}-1}}{[1-\theta_{\lambda}(x)]^{q-1}} \left[ \sum_{n=1}^{\infty} \frac{\ln(\frac{x-\nu}{n-\beta})}{(x-\nu)^{\lambda} - (n-\beta)^{\lambda}} a_n \right]^{q-1} \quad (x \in (\nu,\infty)).$$

Then by the reverse of (16) and  $0 < ||a||_{q,\psi} < \infty$ , it follows that  $\widetilde{L} = \{\int_{\nu}^{\infty} [1 - \theta_{\lambda}(x)]^{\frac{1}{p}} (x - \nu)^{p(1-\frac{\lambda}{s})-1} f^{p}(x) dx \}^{\frac{1}{q}} = ||f||_{p,\widetilde{\phi}}^{p-1} > 0$ . If  $\widetilde{L} = \infty$ , then (51) is trivially valid; if  $\widetilde{L} < \infty$ , then  $0 < ||f||_{p,\widetilde{\phi}} = \widetilde{L}^{q-1} < \infty$ , *i.e.*, the conditions of applying (49) are fulfilled, and we have

$$\|f\|_{p,\widetilde{\phi}}^{p} = \widetilde{L}^{q} = I > k_{\lambda}(r) \|f\|_{p,\widetilde{\phi}} \|a\|_{q,\psi}, \quad i.e., \widetilde{L} = \|f\|_{p,\widetilde{\phi}}^{p-1} > k_{\lambda}(r) \|a\|_{q,\psi}.$$

Hence, (51) is valid, which is equivalent to (49). It follows that (49), (50), and (51) are equivalent.

If there exists a positive number  $k \ge k_{\lambda}(r)$  such that (49) is still valid as we replace  $k_{\lambda}(r)$  by k, then, in particular, (24) is valid. Hence, we have (25). For  $\varepsilon \to 0^+$  in (25), we obtain  $k \le$ 

 $\frac{1}{\lambda^2} [B(\frac{1}{s},\frac{1}{r})]^2 = k_{\lambda}(r). \text{ Hence, } k = k_{\lambda}(r) \text{ is the best value of (49). We confirm that the constant factor <math>k_{\lambda}(r)$  in (50) ((51)) is the best possible. Otherwise, we can get a contradiction by (52) ((54)) that the constant factor in (49) is not the best possible.  $\Box$ 

**Theorem 8** If the assumption of p > 1 in Theorem 5 is replaced by p < 0, then the reverses of (39), (40), and (41) are valid and equivalent. Moreover, the same constant factor is the best possible.

*Proof* In a similar way as in Theorem 7, we can obtain that the reverses of (39), (40), and (41) are valid and equivalent.

If there exists a positive number  $k \ge k_{\lambda}(r)$  such that the reverse of (39) is still valid as we replace  $k_{\lambda}(r)$  by k, then, in particular, (26) is valid. Hence, we have (27). For  $\varepsilon \to 0^+$  in (27), we obtain  $k \le \frac{1}{\lambda^2} [B(\frac{1}{s}, \frac{1}{r})]^2 = k_{\lambda}(r)$ . Hence,  $k = k_{\lambda}(r)$  is the best value of the reverse of (39). We confirm that the constant factor  $k_{\lambda}(r)$  in the reverse of (40) ((41)) is the best possible. Otherwise, we can get a contradiction by the reverse of (42) ((46)) that the constant factor in the reverse of (39) is not the best possible.

**Remark 9** (i) For  $\beta = \nu = 0$  in (39), it follows

$$\sum_{n=1}^{\infty} a_n \int_0^\infty \frac{\ln(\frac{x}{n})}{x^{\lambda} - n^{\lambda}} f(x) dx$$
  
$$< \left[\frac{\pi}{\lambda \sin(\frac{\pi}{r})}\right]^2 \left\{ \int_0^\infty x^{p(1-\frac{\lambda}{s})-1} f^p(x) dx \right\}^{\frac{1}{p}} \left\{ \sum_{n=1}^\infty n^{q(1-\frac{\lambda}{r})-1} a_n^q \right\}^{\frac{1}{q}}.$$
 (55)

In particular, for  $\lambda = 1$ , p = q = r = s = 2, (55) reduces to (5). (ii) For  $\nu = \beta$  in (39), we have

$$\sum_{n=1}^{\infty} a_n \int_{\beta}^{\infty} \frac{\ln(\frac{x-\beta}{n-\beta})}{x^{\lambda} - n^{\lambda}} f(x) dx$$

$$< \left[\frac{\pi}{\lambda \sin(\frac{\pi}{r})}\right]^2 \left\{ \int_{\beta}^{\infty} (x-\beta)^{p(1-\frac{\lambda}{s})-1} f^p(x) dx \right\}^{\frac{1}{p}} \left\{ \sum_{n=1}^{\infty} (n-\beta)^{q(1-\frac{\lambda}{r})-1} a_n^q \right\}^{\frac{1}{q}}, \tag{56}$$

which is more accurate than (55).

#### **Competing interests**

The authors declare that they have no competing interests.

#### Authors' contributions

AW carried out the study, and wrote the manuscript. BY participated in its design and coordination. All authors read and approved the final manuscript.

#### Acknowledgements

This work is supported by the Emphases Natural Science Foundation of Guangdong Institution, Higher Learning, College and University (No. 05Z026), and Guangdong Natural Science Foundation (No. 7004344).

Received: 6 April 2012 Accepted: 15 October 2012 Published: 6 November 2012

#### References

- 1. Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1952)
- Yang, B: On a more accurate Hardy-Hilbert's type inequality and its applications. Acta Math. Sin. Chinese Ser. 49(2), 363-368 (2006)
- 3. Mitrinović, DS, Pečarić, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991)
- 4. Pachpatte, BG: On some new inequalities similar to Hilbert's inequality. J. Math. Anal. Appl. 226, 166-179 (1998)
- 5. Gao, M, Yang, B: On the extended Hilbert's inequality. Proc. Am. Math. Soc. 126(3), 751-759 (1998)
- 6. Hu, K: On Hardy-Littlewood-Polya inequality. Acta Math. Tcientia 20, 684-687 (2000)
- 7. Lu, Zh: Some new generalizations of Hilbert's integral inequalities. Indian J. Pure Appl. Math. 33(5), 691-704 (2002)
- 8. Yang, B, Rassias, TM: On the way of weight coefficient and research for the Hilbert-type inequalities. Math. Inequal. Appl. 6(4), 625-658 (2003)
- 9. Kuang, J, Debnath, L: On new generalizations of Hilbert's inequality and their applications. J. Math. Anal. Appl. 245, 248-265 (2000)
- 10. Sulaiman, WT: On Hardy-Hilbert's integral inequality. JIPAM. J. Inequal. Pure Appl. Math. 5(2), Article 25 (2004)
- Yang, B: An extension of the Hilbert's type integral inequality and its applications. Journal of Mathematics (PRC), 27(3), 285-290 (2007)
- 12. Zhong, W, Yang, B: A reverse Hilbert's type integral inequality with some parameters and the equivalent forms. Pure Appl. Math. 24(2), 401-407 (2008)
- 13. Yang, B: On a relation to two basic Hilbert-type integral inequalities. Tamkang J. Math. 40(3), 217-223 (2009)
- 14. Yang, B: A strengthened Hardy-Hilbert's type inequality. Aust. J. Math. Anal. Appl. 3(2), Article 17 (2006)
- Yang, B: On a Hilbert-type operator with a symmetric homogeneous kernel of -1-order and applications. J. Inequal. Appl. 2007, Article ID 47812 (2007)
- 16. Zhong, J, Yang, B: On a relation to four basic Hilbert-type integral inequalities. Appl. Math. Sci. 4(19), 923-930 (2010)
- 17. Yang, B: A Hilbert-type inequality with the homogeneous kernel of real number-degree and the reverse. Journal of Guangdong Education Institute **30**(5), 1-6 (2010)
- 18. Yang, B: A mixed Hilbert-type inequality with a best constant factor. Int. J. Pure Appl. Math. 20(3), 319-328 (2005)
- 19. Yang, B: A half-discrete Hilbert's inequality. Journal of Guangdong University of Education 31(3), 1-8 (2011)
- Yang, B: On a half-discrete Hilbert-type inequality. Journal of Shantou University (Natural Science), 26(4), 5-10 (2011)
   Yang, B: On a half-discrete reverse Hilbert-type inequality with a non-homogeneous kernel. Journal of Inner
- Mongolia Normal University (Natural Science Edition), **40**(5), 433-436 (2011)
- Yang, B: A half-discrete reverse Hilbert-type inequality with a non-homogeneous kernel. Journal of Hunan Institute of Science and Technology Natural Sciences 24(3), 1-4 (2011)
- Xie, Z, Zeng, Z: A new half-discrete Hilbert's inequality with the homogeneous kernel of degree –4µ. Journal of Zhanjiang Normal College 32(6), 13-19 (2011)
- 24. Yang, B: A new half-discrete Mulholland-type inequality with parameters. Ann. Funct. Anal. 3(1), 142-150 (2012)
- Chen, Q, Yang, B: On a more accurate half-discrete Mulholland's inequality and an extension. J. Inequal. Appl. 2012, 70 (2012). doi:10.1186/1029-242X-2012-70
- Zhong, W: A mixed Hilbert-type inequality and its equivalent forms. Journal of Guangdong University of Education 31(5), 18-22 (2011)
- 27. Yang, B: the Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009)
- 28. Kuang, J: Applied Inequalities. Shandong Science Technic Press, Jinan (2010)
- 29. Kuang, J: Real and Functional Analysis. Higher Education Press, Beijing (2002)
- 30. Kuang, J: Introduction to Real Analysis. Hunan Education Press, Changsha (1996)

#### doi:10.1186/1029-242X-2012-260

Cite this article as: Wang and Yang: A new more accurate half-discrete Hilbert-type inequality. Journal of Inequalities and Applications 2012 2012:260.

## Submit your manuscript to a SpringerOpen<sup>®</sup> journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at springeropen.com