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1 Introduction
Let X be a bounded open subset of ℝ. Consider the measure space (X, B , μ), where μ

is the Lebesgue measure, and denote M = M(X) the system of all equivalence classes

of Lebesgue measurable real valued functions on X. Let F be the set of convex func-

tions j : ℝ+ ® ℝ+, with j(x) > 0 for x > 0, and j(0) = 0.

Given j Î F, we define

Lφ = Lφ(X) :=

⎧⎨
⎩f ∈ M :

∫
X

φ
(
α
∣∣f (x)∣∣) dx < ∞, for some α > 0

⎫⎬
⎭ .

The space Lj is called the Orlicz space determined by j. This space is endowed with

the Luxemburg norm,

∥∥f∥∥
φ,X = inf

⎧⎨
⎩λ > 0 :

∫
X

φ

(∣∣f (x)∣∣
λ

)
dx

μ(X)
≤ 1

⎫⎬
⎭ .

The space Lj with this norm is a Banach space (see [1]). If E ∈ B and μ(E) > 0, then

∥ · ∥j,E is a seminorm on Lj(X). In the particular case, j (t) = tp, we will use the nota-

tion ∥ · ∥p,E instead of ∥ · ∥j,E.
Let �N ⊂ M , N Î N, be the class of all algebraic polynomials of degree at most N,

with real coefficients.

Given E ∈ B , we recall that a polynomial gE Î ΠN is a best approximation of f Î Lj

(X) from ΠN respect to ∥ · ∥j,E, if

∥∥f − gE
∥∥

φ,E = inf
{∥∥f − P

∥∥
φ,E : P ∈

∏N
}
.
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Let xk, 1 ≤ k ≤ n, be n points in X. We consider a net of measurable sets {E} ⊂ B
such that E =

⋃n
k=1 Ek , with μ(Ek) > 0 and

sup
1≤k≤n

sup
y∈Ek

∣∣xk − y
∣∣ → 0, as μ(E) → 0.

Given f Î Lj(X) and ΠN, we consider a net of best approximation functions {gE}. If it

has a limit in ΠN as μ(E) ® 0, this limit is called the best local approximation of f from

ΠN on {x1,..., xn}. If the points in our approximation problem have not the same impor-

tance the neighborhoods Ek can be adjusted to reflect it. In [2], Chui et al. introduced

the balanced neighborhood concept and they studied existence and characterization of

best local approximation in Lp-spaces for several points with different size neighbor-

hoods. In [3,4], the last problem was considered for j-approximation and ∥ · ∥j-
approximation, respectively, in Orlicz spaces. Other results in these spaces about best

local approximation with non balanced neighborhoods were considered in [5].

Polynomial inequalities on measurable sets have been studied extensively in the lit-

erature (see [6-8]). In [9], the authors proved the following extension of the Pólya

inequality in Lp-spaces, 0 <p ≤ ∞.

Theorem 1.1. Let 0 <p ≤ ∞ and n, N Î N. Let ik, 1 ≤ k ≤ n, be n positive integers

such that
∑n

k=1 ik = N + 1 . Let Bk, 1 ≤ k ≤ n, be disjoint pairwise compact intervals in

ℝ with 0 <μ(Bk) ≤ 1. Then there exists a constant K depending on p, ik and Bk, for 1 ≤

k ≤ n, such that

∣∣cj∣∣ ≤ K

min
1≤k≤n

μ(E ∩ Bk)
ik−1+1/p

‖P‖ p,E, 0 ≤ j ≤ N,

for all P(x) =
∑N

j=0 cjx
j, E ⊂ ⋃n

k=1 Bk, μ(E ∩ Bk) > 0, 1 ≤ k ≤ n. .

They gave an application of this theorem to the existence of the best multipoint local

approximation in Lp spaces, with balanced neighborhoods.

In this article, we generalize Theorem 1.1 and the balanced neighborhood concept to

Lj. As a consequence of this extension we prove the existence of the best local approx-

imation of a function from ΠN on {x1,..., xn}, with balanced neighborhoods, following

the pattern used in [9]. Moreover, we prove that the best local approximation polyno-

mial is the Hermite interpolating polynomial.

We say that a function j Î F satisfies the Δ2-condition if there exists a constant k >

0 such that j(2x) ≤ kj(x), for x ≥ 0, and we say that j satisfies the Δ’-condition if

there exists a constant c > 0 such that j(xy) ≤ cj(x)j (y) for x, y ≥ 0. We point out

that the Δ’-condition implies the Δ2-condition. A detailed treatment about these sub-

jects may be found in [1].

If j satisfies the Δ’-condition, it is easy to see that there exists a constant K > 0 such

that

φ−1(x)φ−1(y) ≤ Kφ−1(xy), for all x, y ≥ 0. (1)

We assume in this article that j Î F and it satisfies the Δ’-condition.

2 Preliminary results
Let XA denotes the characteristic function on the measurable set A ⊂ X.
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Proposition 2.1. The family of all seminorms ∥ · ∥j.E with μ(E) > 0, has the following

properties:

(a) ‖XE‖φ,E =
1

φ−1(1)
.

(b) if f, g Î Lj(X) satisfy |f| ≤ |g| on E, then ∥f∥j,E ≤ ∥g∥j,E. The inequality is strict if

|f| < |g| on some subset of E with positive measure.

(c) There exists a constant M > 0 such that

∥∥f∥∥
φ,G ≤ M

φ−1

(
μ(G)
μ(D)

)∥∥f∥∥
φ,D, f ∈ Lφ(X),

(2)

for all pair of measurable sets G, D, with G ⊂ D and μ(G) > 0.

Proof (a) For l := 1/j-1(1) we have∫
E

φ

( |XE|
λ

)
dx

μ(E)
=
∫
E

dx
μ(E)

= 1.

Now, the Δ2- condition implies ‖XE‖φ,E = 1/φ−1(1) .

(b) If |f| ≤ |g| on E, then

∫
E

φ

(∣∣f ∣∣
λ

)
dx

μ(E)
≤

∫
E

φ

(∣∣g∣∣
λ

)
dx

μ(E)
, λ > 0,

and so ∥f∥j,E ≤ ∥g∥j,E. In addition, if |f| < |g| on some subset of E with positive mea-

sure, the above inequality is strict. So, the Δ2-condition implies the assertion.

(c) Given G ⊂ D, μ(G) > 0, and f Î Lj(X), for each l > 0, we denote

A(λ) :=
∫
G

φ

(∣∣f ∣∣
λ

)
dx

μ(G)
and B(λ) :=

∫
D

φ

(∣∣f ∣∣
λ

)
dx

μ(D)
.

We consider l > 0 such that B(λ) ≤ 1 . By the Δ’-condition we obtain

A

⎛
⎜⎜⎝ λ

φ−1

(
μ(G)
c μ(D)

)
⎞
⎟⎟⎠ ≤

∫
D

c
μ(G)
c μ(D)

φ

(∣∣f ∣∣
λ

)
dx

μ(G)
= B(λ) ≤ 1.

Then

∥∥f∥∥
φ,G ≤ λ

φ−1

(
μ(G)

c μ(D)|
)
, for all l > 0 with B(λ) ≤ 1 . So, the definition of

∥f∥j,D and (1) imply

∥∥f∥∥
φ,G ≤ M

φ−1

(
μ(G)
μ(D)

)∥∥f∥∥
φ,D with M =

K
φ−1(c−1)

.

Lemma 2.2. There exists a constant M > 0 such that

∣∣∣P(j)(a)
∣∣∣ ≤ M

εj
‖P‖φ,[a−ε, a+ε],

Cuenya et al. Journal of Inequalities and Applications 2012, 2012:26
http://www.journalofinequalitiesandapplications.com/content/2012/1/26

Page 3 of 10



for all P Î ΠN, [a - �, a + �] ⊂ X, and 0 ≤ j ≤ N.

Proof. Given P Î ΠN and [a - �, a + �] ⊂ X, we divide that interval in 2(N + 1) close

subintervals with the same size. Let J� be one of them. From Proposition 2.1 (c), we

get ‖P‖φ,Jε ≤ M‖P‖φ,[a−ε, a+ε] , where M is independent on P, a, and �. In addition,

there exists y� Î J� such that
∣∣P(yε)∣∣ ≤ φ−1(1)‖P‖φ,Jε . In fact, if

φ−1(1)‖P‖φ,Jε <
∣∣P(y)∣∣ , for all y Î J�, then Proposition 2.1 (a) and (b) yield

‖P‖φ,Jε > ‖P‖φ,Jε . A contradiction.

From the family of intervals J�, we choose pairwise disjoint (N + 1) intervals, and we

denote them with Ji,�, 1 ≤ i ≤ N + 1. Let yi,� Î Ji,� be such that∣∣P(yi,ε)∣∣ ≤ Mφ−1(1)‖P‖φ,[a−ε, a+ε], 1 ≤ i ≤ N + 1. (3)

If ti,ε :=
yi,ε − a

ε
∈ [−1, 1] , we have

P(yi,ε) =
N∑
j=0

P(j)(a)
j!

(yi,ε − a)j =
N∑
j=0

P(j)(a)
j!

εjtji,ε, 1 ≤ i ≤ N + 1. (4)

The matrix of the linear system (4),
(
tji,ε

)
, is a Vandermonde matrix whose determi-

nant has a positive lower bound, because ti,� - ti’,� ≥ 1/N + 1 for i >i’. Using Cramer’s

rule and (3), there is a constant which we again denote by M such that∣∣∣P(j)(a)εj
∣∣∣ ≤ M‖P‖φ,[a,ε, a+ε] 0 ≤ j ≤ N.

The proof of the following lemma is analogous to the one of Lemma 2.3 in [9], how-

ever we give it for sake of completeness.

Lemma 2.3. Let C ⊂ X be an interval, E ⊂ C, μ(E) > 0. For all P Î ΠN, there exists

an interval F := F(E,P) ⊂ C such that

a) μ(F) ≥ μ(E)
2N

,

b) ∥P∥j,F ≤ 2N∥P∥j,E.

Proof. Let P Î ΠN, S = 2N, and let Da := {x Î C : |P(x)| <a}. It easy to see that the

function G(a): = μ(Da) is continuous, G(0) = 0 and lim
a→∞G(a) = μ(C) . Therefore, there

exists a constant a* Î ℝ+ such that μ(Da∗) = μ(E)/2. Since {x Î C : |P(x)| = a*} has at

most 2N elements, there exists k, 1 ≤ k ≤ N, and pairwise disjoint intervals Ej, 1 ≤ j ≤

k, such that Da∗ =
⋃k

j=1 Ej .

We denote A = C\A , for any set A. Then

μ(E ∩ Da∗) = μ(E) − μ(E ∩ Da∗) ≥ μ(E) − μ(Da∗) =
μ(E)
2

. (5)

There exists j, 1 ≤ j ≤ k, such that μ(Ej) ≥ μ(E)/S. In fact, if μ(Ej) <μ(E)/S for all j , 1 ≤

j ≤ k, we obtain μ(Da∗) < k/Sμ(E) ≤ μ(E)/2, which is a contradiction. So, we have

proved a) with F := Ej.
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Using (5), we obtain

μ(E ∩ Da∗) ≥ μ(E)
2

= μ(Da∗) ≥ μ(F)μ(F ∩ E).

Therefore

∫
F

φ

( |P|
λ

)
dx

μ(F)
≤

∫
F∩E

φ

( |P|
λ

)
dx

μ(F)
+ φ

(a∗
λ

) μ(E ∩ Da∗)
μ(F)

≤
∫

E∩Da∗

φ

( |P|
λ

)
dx

μ(F)
+

∫
E∩Da∗

φ

( |P|
λ

)
dx

μ(F)

=
∫
E

φ

( |P|
λ

)
dx

μ(F)
.

So, (a) implies

AF(λ) :=
∫
F

φ

( |P|
λ

)
dx

μ(F)
≤ S

∫
E

φ

( |P|
λ

)
dx

μ(E)
=: SAE(λ).

Let l be such that AE(λ) = 1 . The convexity of j implies AF(Sλ) ≤ 1. So, ∥P∥j,F ≤

S∥P∥j,E.

3 Pólya inequality
Now, we present the main result concerning to Pólya inequality in Lj.

Theorem 3.1. Let j Î F, and n, N Î N. Let ik, 1 ≤ k ≤ n, be n positive integers such

that
∑n

k=1 ik = N + 1 . Let Bk, 1 ≤ k ≤ n, be disjoint pairwise compact intervals in ℝ,

with 0 <μ(Bk) ≤ 1. Then there exists a positive constant M depending on j, ik, and Bk, 1

≤ k ≤ n, such that

∣∣cj∣∣ ≤ M

min1≤k≤n

{
μ(E ∩ Bk)

ik−1φ−1

(
μ(E ∩ Bk)

μ(E)

)}‖P‖φ,E, 0 ≤ j ≤ N,
(6)

for all P(x) =
∑N

j=0 cjx
j, E ⊂ ⋃n

k=1 Bkwith μ(E ∩ Bk) > 0, 1 ≤ k ≤ n.

Proof. In the following proof, the constant M can be different in each occurrence. Let

P(x) =
∑N

j=0 cjx
j ∈ �N , and let E ⊂ ⋃n

k=1 Bk be a measurable set with μ(E ∩ Bk) > 0, 1

≤ k ≤ n. By Lemma 2.3 for C = Bk, there exist n intervals Fk = [ak - rk, ak + rk] ⊂ Bk, 1

≤ k ≤ n, such that μ(Fk) ≥ μ(E ∩ Bk)/2N and ‖P‖φ,Fk ≤ 2N‖P‖φ,E∩Bk . From Lemma 2.2,

there exists a positive constant M depending on p, ik, and Bk, 1 ≤ k ≤ n, such that for

all j, 0 ≤ j ≤ ik - 1, 1 ≤ k ≤ n, it verifies

∣∣∣P(j)(ak)
∣∣∣ ≤ M

μ(Fk)
j
‖P‖φ,Fk ≤ M

μ(Fk)
ik−1

‖P‖φ,Fk ≤ M

μ(E ∩ Bk)
ik−1

‖P‖φ,E∩Bk
. (7)

From (7) and (2), there is a constant M such that

∣∣∣P(j)(ak)
∣∣∣ ≤ M

μ(E ∩ Bk)
ik−1φ−1

(
μ(E ∩ Bk)

μ(E)

)‖P‖φ,E
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for 0 ≤ j ≤ ik - 1, 1 ≤ k ≤ n. So

∣∣∣P(j)(ak)
∣∣∣ ≤ M

min1≤s≤n

{
μ(E ∩ Bs)

is−1φ−1

(
μ(E ∩ Bs)

μ(E)

)}‖P‖φ,E,

for 0 ≤ j ≤ ik - 1, 1 ≤ k ≤ n. From the equivalence of the norms ∥ ⋅ ∥1 and ∥ ⋅ ∥2 on

ΠN,

‖P‖1 = max
1≤k≤n

sup
ak∈Bk

max
0≤j≤ik−1

∣∣∣P(j)(ak)
∣∣∣ and ‖P‖2 = max

0≤j≤N

∣∣cj∣∣ ,
we obtain (6).

4 Best local approximation
In this section, we introduce a concept of balanced neighborhood in Lj and we prove

the existence of the best local approximation using the neighborhoods Ek, 1 ≤ k ≤ n,

mentioned in the Section 1.

It is easy to see that Ek = xk + μ(Ek)Ak, where Ak is a measurable set with measure 1.

Henceforward, we assume the sets Ak are uniformly bounded.

For each a Î ℝ and k, 1 ≤ k ≤ n, we denote

Ak(α) :=
μ(Ek)

α

φ−1

(
μ(E)
μ(Ek)

) .

We assume the following condition, which allows us that Ak(α) can be compared

with each other as functions of a when μ(E) ® 0.

For any nonnegative integers a and b, and any pair j, k, 1 ≤ j, k ≤ n,

either Ak(α) = O(Aj(β)) or Aj(β) = o(Ak(α)), as μ(E) → 0. (8)

Let <ik > be an ordered n-tuple of nonnegative integers. We say that Aj(ij) is a max-

imal element of < Ak(ik) > if Ak(ik) = O(Aj(ij)) for all 1 ≤ k ≤ n. We denote it by

Aj(ij) = max
{Ak(ik)

}
.

Observe that
∑n

k=1 Ak(ik) = O(max{Ak(ik)}). .
Definition 4.1. An n-tuple <ik >of nonnegative integers is balanced if

n∑
k=1

Ak(ik) = o
(
min
1≤k≤n

{
μ(Ek)

ik−1φ−1
(

μ(Ek)
μ(E)

)})
.

In this case, we say that
∑n

k=1 ik is a balanced integer, and < Ek >are balanced

neighborhoods.

Lemma 4.2. To each balanced integer there corresponds exactly one balanced n-tuple.

Proof. Let <ik > be a balanced n-tuple. If < i′k > is distinct from <ik > and∑n
k=1 ik =

∑n
k=1 i

′
k , there exist indices j and s such that ij ≥ i′j + 1 and i′s ≥ is + 1 . From

definition of balanced neighborhood, we have

A :=
n∑

k=1

Ak(ik) = o
(

μ(Ej)
ij−1φ−1

(
μ(Ej)

μ(E)

))
.
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In addition, by (1) we get μ(Ej)ij−1φ−1
(

μ(Ej)

μ(E)

)
≤ μ(Ej)i

′
jφ−1

(
μ(Ej)

μ(E)

)
≤ Kφ−1(1)Aj(i′j).

So, A = o
(

n∑
k=1

Ak(i′k)
)
. Again, by (1) we get

n∑
k=1

Ak(i′k)

μ(Es)
i′ s−1

φ−1

(
μ(Es)
μ(E)

) ≥

n∑
k=1

Ak(i′k)

μ(Es)
isφ−1

(
μ(Es)
μ(E)

) ≥

n∑
k=1

Ak(i′k)

Kφ−1(1)As(is)
→ ∞.

Then < i′k > cannot be balanced.

The following lemma allows us to state an algorithm to compute all the balanced

integers greater than a given balanced integer.

Lemma 4.3. Let <ik >and < i′k > be two balanced n-tuples with
∑n

k=1 ik <
∑n

k=1 i
′
k .

Let A = A(< ik >) := {j : Aj(ij) = max{Ak(ik)}}and B = B(<ik>):= {1,2,...,n}\ A. Then

(a) for j Î A i′j ≥ ij + 1 .

(b) for j Î A i′j ≥ ij .

Proof. (a) Suppose i′j ≤ ij for some j Î A. For any l Î B, from (8) we get

Al(il) = o
(Aj(ij)

)
. Assume now i′l ≥ il + 1 for some l Î B. By (1), there exists a con-

stant M > 0 such that

Aj(i′j)

μ(El)
i′ l−1φ−1

(
μ(El)
μ(E)

) ≥ Aj(ij)

μ(El)
ilφ−1

(
μ(El)
μ(E)

) ≥ Aj(ij)

MAl(il)
→ ∞,

as μ(E) ® 0. Thus < i′k > cannot be balanced, a contradiction. Therefore, either

B = ∅ or i′l ≤ il , for all l Î B. On the other hand, since
∑n

k=1 ik <
∑n

k=1 i
′
k , there is s Î

A such that i′s ≥ is + 1 . According to (1) and the definition of A we obtain

Aj(i′j)

μ(Es)
i′s−1φ−1

(
μ(Es)
μ(E)

) ≥ Aj(ij)

μ(Es)
isφ−1

(
μ(Es)
μ(E)

) ≥ Aj(ij)

MAs(is)
≥ M′,

as μ(E) ® 0, for some constant M’ > 0. Therefore, < i′k > cannot be balanced.

(b) Suppose i′j < ij for some j Î B. From (a), (1) and the definition of balanced n-

tuple, we obtain for each l Î A,

Aj(i′j)

μ(El)
i′ l−1φ−1

(
μ(El)
μ(E)

) ≥ Aj(ij − 1)

MAl(il)
≥ M′

μ(Ej)
il−1

φ−1

(
μ(Ej)

μ(E)

)
Al(il)

→ ∞,

as μ(E) ® 0. Therefore < i′k > cannot be balanced.

Cuenya et al. Journal of Inequalities and Applications 2012, 2012:26
http://www.journalofinequalitiesandapplications.com/content/2012/1/26

Page 7 of 10



Given a balanced integer, the above lemma gives us a necessary condition which

must satisfy the next balanced integer. The following example shows that the condi-

tions of Lemma 4.3 are not sufficient to get a balanced n-tuple.

Example 4.4. Define j (x) = x3(1 + |ln x|), x > 0, and j(0) = 0. Consider two points

x1, x2 with μ(E1) = δ4/3, μ (E2) = δ1/3, and A1 = A2 = [0,1]. The 2-tuple < 0,1 > is

balanced. Here, the set A(< 0,1 >) = {0}, however < 1,1 > is not a balanced 2-tuple. In

fact, if <ik >=< 0,1 > we obtain

min
1≤k≤2

{
μ(Ek)

ik−1
(

μ(Ek)
μ(E)

)}
= min

{
φ−1(δ)

δ4/3
,φ−1(1)

}
+ o(1) → φ−1(1),

as δ ® 0. Since A2(i2) = o(A1(i1)) and A1(i1) = o(1) , as δ ® 0, we have

∑2
k=1 Ak(ik)

min
1≤k≤2

{
μ(Ek)

ik−1φ−1

(
μ(Ek)
μ(E)

)} = o(1), as δ − 0.

So < 0,1 > is a balanced 2-tuple, A(< 0,1 >) = {0}, and < 1,1 > is the next 2-tuple gen-

erated by the algorithm. For <ik > = < 1,1 > we have

A2(i2)

min
1≤k≤2

{
μ(Ek)

ik−1φ−1

(
μ(Ek)
μ(E)

)} ≥ A2(i2)

φ−1

(
μ(E1)
μ(E)

) → ∞, as δ → 0.

Thus < 1,1 > is not a balanced 2-tuple.

Next, we establish an algorithm which gives all balanced n-tuples. First, we observe

that < 0 > is a balanced n-tuple. In fact, since j-1 is a concave positive function on ℝ+

with j-1(0) = 0, we have j-1(x) ≥ j-1(1)x, for x ≤ 1. This yields

μ(Ej)

φ−1

(
μ(E)
μ(Ek)

)
φ−1

(
μ(Ej)

μ(E)

) ≤ μ(E)

(φ−1(1))2
, 1 ≤ j, k ≤ n.

Algorithm. Let vq be a balanced integer and let < i(vq)k > be the corresponding

balanced n-tuple. To build the next n-tuple, < i(vq+1)k > , put i(vq+1)k = i(vq)k + 1 for

k ∈ A
(
< i(vq)k >

)
and i

(vq+1)
k = i

(vq)
k

for k ∈ B
(
< i(vq)k >

)
.

The following lemma shows that all balanced n-tuples are contained in the set of n-

tuples generated by the algorithm.

Lemma 4.5. if <ik >is a balanced n-tuple with
∑n

k=1 ik = q , then the algorithm gener-

ates all the balanced n-tuple < i∗k >with
∑n

k=1 i
∗
k > q .

Proof. Suppose < i∗k > is a balanced n-tuple with
∑n

k=1
i∗k = m > q , and the n-tuple

< i(m)
k > is not balanced. Since

n∑
k=1

i∗k =
n∑

k=1
i(m)
k , there exist r and s such that i(m)

r > i∗r

and i∗s > i(m)
s . By definition of balanced integer we have

Ar

(
i(m)
r − 1

)
= O

(Ar
(
i∗r
))

= o
(

μ(Es)
i∗s −1φ−1

(
μ(Es)
μ(E)

))
, (9)
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and (1) implies μ(Es)i
∗
s −1φ−1

(
μ(Es)
μ(E)

)
≤ Kφ−1(1)As

(
i∗s − 1

)
. So,

Ar

(
i(m)
r − 1

)
= o

(
As

(
i(m)
s

))
.

On the other hand, since m >q, Lemma 4.3 implies i∗r ≥ ir , so i(m)
r > ir . Therefore

Ar

(
i(m)
r − 1

)
is maximal in a previous step of the algorithm, i.e., there exists m’, q ≤

m’ <m, such that Ar

(
i(m)
r − 1

)
is maximal of < Ak

(
i(m

′)
k

)
> . Since the exponents

i(m)
k

are nondecreasing,

As

(
i(m)
s

)
= O

(
As

(
i(m

′)
s

))
= O

(
Ar

(
i(m)
r − 1

))
,

which contradicts (9).

Remark 4.6. If we assume the additional condition j-1(x)j-1 (1/x) ≥ c > 0 for x > 0,

given a balanced n-tuple <ik >, it is easy to see that the n-tuple < i′k > defined by

i′k = ik + 1 for k ∈ A
(
< i(vq)k >

)
, and i′k = ik for k ∈ B

(
< i(vq)k >

)
, is balanced. It give

us an algorithm that generates the infinite sequences of all balanced n-tuples.

Let PCm(X) be the class of functions with derivatives up to order m - 1 and with

bounded piecewise continuous mth derivative on X.

Next, we prove the following auxiliary lemma.

Lemma 4.7. Let <ik >be an ordered n-tuple of nonnegative integers. Suppose h Î PCm

(X), where m = max{ik} and h(j)(xk) = 0, 0 ≤ j ≤ ik - 1, 1 ≤ k ≤ n. Then

‖h‖φ,E = O
(
max{Ak(ik)}

)
.

Proof. Expanding h by the Taylor polynomial at xk up to the order n, we obtain

h(x) =
n∑

k=1

h(ik)(ξk)
(x − xk)

ik

ik!
χEk(x), x ∈ E,

where ξk is between x and xk. The change of variable x - xk = �y, y Î Ak, yields

‖h‖φ,E = inf

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ > 0 :
n∑

k=1

∫
Ak

μ(Ek)φ

⎛
⎜⎜⎜⎝
∣∣h(ik)(ξk)∣∣ μ(Ek)

ik
∣∣yik∣∣

ik!
λ

⎞
⎟⎟⎟⎠ dy

μ(E)
≤ 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

For

λ := M
n∑
j=1

μ(Ej)
ij

φ−1

(
μ(E)

n μ(Ej)

) ,

where M = max
1≤k≤n

{
1
ik!

max
x∈X

{∣∣∣h(ik)(x)∣∣∣}max
y∈Ak

{∣∣y∣∣ik}} , we obtain

n∑
k=1

∫
Ak

μ(Ek)φ

⎛
⎜⎜⎜⎝
∣∣h(ik)(ξk)∣∣ μ(Ek)

ik
∣∣yik∣∣

ik!
λ

⎞
⎟⎟⎟⎠ dy

μ(E)
≤ 1.
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Therefore ‖h‖φ,E = O

⎛
⎜⎜⎝∑n

k=1
μ(Ek)

ik

φ−1

(
μ(E)

n μ(Ek)

)
⎞
⎟⎟⎠ . Using the convexity of j, we have

φ−1(x)
n

≤ φ−1
( x
n

)
, x ≥ 0. So, ‖h‖φ,E = O

(
max{Ak(ik)}

)
.

If a polynomial P Î ΠN, N + 1 =
∑n

k=1 ik , satisfies P
(j)(xk) = f(j)(xk), 1 ≤ j ≤ ik - 1, 1 ≤

k ≤ n, we call it the Hermite interpolating polynomial of the function f on {x1,...,xn}.

Now, we are in condition to prove the main result in this Section.

Theorem 4.8. Let <ik>be a balanced n-tuple and N + 1 =
∑n

k=1 ik . If m = max{ik}

and f Î PCm(X), then the best local approximation of f from ΠN on {x1,...,xk} is the Her-

mite interpolating polynomial of f on {x1,...,xn}.

Proof Let H Î ΠN be the Hermite interpolating polynomial and let {gE} be a net of

best approximations of f from ΠN respect to ∥ · ∥j,E. From Lemma 4.7,∥∥gE − H
∥∥

φ,E = O
(
max{Ak(ik)}

)
.

Using Theorem 3.1 and the equivalence of the norms in ΠN, we get

∥∥gE − H
∥∥

∞ ≤ K

min
1≤k≤n

{
μ(Ek)

ik−1φ−1

(
μ(Ek)
μ(E)

)}∥∥gE − H
∥∥

φ,E.

So, the definition of balanced n-tuple implies gE ® H, as μ(E) ® 0.
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