Pólya-type polynomial inequalities in Orlicz spaces and best local approximation

Héctor H Cuenya ${ }^{1}$, Fabián E Levis ${ }^{1}$ and Claudia V Ridolfi ${ }^{2^{*}}$

* Correspondence: ridolfi@unsl.edu.
ar
${ }^{2}$ Department of Mathematics, UNSL, 5700, San Luis, Argentina Full list of author information is available at the end of the article

Abstract

We obtain an extension of Pólya-type inequalities for univariate real polynomials in Orlicz spaces. We also give an application to a best local approximation problem.
MSC 2010: 41A10; 41A17.
Keywords: algebraic polynomials, p?ó?lya-type inequalities, best local approximation, balanced integers

1 Introduction

Let X be a bounded open subset of \mathbb{R}. Consider the measure space (X, \mathcal{B}, μ), where μ is the Lebesgue measure, and denote $\mathcal{M}=\mathcal{M}(X)$ the system of all equivalence classes of Lebesgue measurable real valued functions on X. Let Φ be the set of convex functions $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, with $\varphi(x)>0$ for $x>0$, and $\varphi(0)=0$.

Given $\varphi \in \Phi$, we define

$$
L^{\phi}=L^{\phi}(X):=\left\{f \in \mathcal{M}: \int_{X} \phi(\alpha|f(x)|) d x<\infty, \text { for some } \alpha>0\right\} .
$$

The space L^{φ} is called the Orlicz space determined by φ. This space is endowed with the Luxemburg norm,

$$
\|f\|_{\phi, X}=\inf \left\{\lambda>0: \int_{X} \phi\left(\frac{|f(x)|}{\lambda}\right) \frac{d x}{\mu(X)} \leq 1\right\}
$$

The space L^{φ} with this norm is a Banach space (see [1]). If $E \in \mathcal{B}$ and $\mu(E)>0$, then $\|\cdot\|_{\varphi, E}$ is a seminorm on $L^{\varphi}(X)$. In the particular case, $\varphi(t)=t^{p}$, we will use the notation $\|\cdot\|_{p, E}$ instead of $\|\cdot\|_{\varphi, E}$.
Let $\Pi^{N} \subset \mathcal{M}, N \in \mathbb{N}$, be the class of all algebraic polynomials of degree at most N, with real coefficients.

Given $E \in \mathcal{B}$, we recall that a polynomial $g_{E} \in \Pi^{N}$ is a best approximation of $f \in L^{\varphi}$ (X) from Π^{N} respect to $\|\cdot\|_{\varphi, E}$, if

$$
\left\|f-g_{E}\right\|_{\phi, E}=\inf \left\{\|f-P\|_{\phi, E}: \quad P \in \prod^{N}\right\} .
$$

Let $x_{k}, 1 \leq k \leq n$, be n points in X. We consider a net of measurable sets $\{E\} \subset \mathcal{B}$ such that $E=\bigcup_{k=1}^{n} E_{k}$, with $\mu\left(E_{k}\right)>0$ and

$$
\sup _{1 \leq k \leq n} \sup _{y \in E_{k}}\left|x_{k}-\gamma\right| \rightarrow 0, \quad \text { as } \mu(E) \rightarrow 0 .
$$

Given $f \in L^{\varphi}(X)$ and Π^{N}, we consider a net of best approximation functions $\left\{g_{E}\right\}$. If it has a limit in Π^{N} as $\mu(E) \rightarrow 0$, this limit is called the best local approximation of f from Π^{N} on $\left\{x_{1}, \ldots, x_{n}\right\}$. If the points in our approximation problem have not the same importance the neighborhoods E_{k} can be adjusted to reflect it. In [2], Chui et al. introduced the balanced neighborhood concept and they studied existence and characterization of best local approximation in L^{p}-spaces for several points with different size neighborhoods. In [3,4], the last problem was considered for φ-approximation and $\|\cdot\|_{\varphi^{-}}$ approximation, respectively, in Orlicz spaces. Other results in these spaces about best local approximation with non balanced neighborhoods were considered in [5].

Polynomial inequalities on measurable sets have been studied extensively in the literature (see [6-8]). In [9], the authors proved the following extension of the Pólya inequality in L^{p}-spaces, $0<p \leq \infty$.

Theorem 1.1. Let $0<p \leq \infty$ and $n, N \in \mathbb{N}$. Let $i_{k}, 1 \leq k \leq n$, be n positive integers such that $\sum_{k=1}^{n} i_{k}=N+1$. Let $B_{k}, 1 \leq k \leq n$, be disjoint pairwise compact intervals in \mathbb{R} with $0<\mu\left(B_{k}\right) \leq 1$. Then there exists a constant K depending on p, i_{k} and B_{k}, for $1 \leq$ $k \leq n$, such that

$$
\left|c_{j}\right| \leq \frac{K}{\min _{1 \leq k \leq n} \mu\left(E \cap B_{k}\right)^{i_{k}-1+1 / p}}\|P\|_{p, E,} \quad 0 \leq j \leq N,
$$

for all $P(x)=\sum_{j=0}^{N} c_{j} x^{j}, \quad E \subset \bigcup_{k=1}^{n} B_{k}, \mu\left(E \cap B_{k}\right)>0, \quad 1 \leq k \leq n$.
They gave an application of this theorem to the existence of the best multipoint local approximation in L^{p} spaces, with balanced neighborhoods.
In this article, we generalize Theorem 1.1 and the balanced neighborhood concept to L^{φ}. As a consequence of this extension we prove the existence of the best local approximation of a function from Π^{N} on $\left\{x_{1}, \ldots, x_{n}\right\}$, with balanced neighborhoods, following the pattern used in [9]. Moreover, we prove that the best local approximation polynomial is the Hermite interpolating polynomial.

We say that a function $\varphi \in \Phi$ satisfies the Δ_{2}-condition if there exists a constant $k>$ 0 such that $\varphi(2 x) \leq k \varphi(x)$, for $x \geq 0$, and we say that φ satisfies the Δ^{\prime}-condition if there exists a constant $c>0$ such that $\varphi(x y) \leq c \varphi(x) \varphi(y)$ for $x, y \geq 0$. We point out that the Δ^{\prime}-condition implies the Δ_{2}-condition. A detailed treatment about these subjects may be found in [1].

If φ satisfies the Δ^{\prime}-condition, it is easy to see that there exists a constant $K>0$ such that

$$
\begin{equation*}
\phi^{-1}(x) \phi^{-1}(y) \leq K \phi^{-1}(x y), \quad \text { for all } x, y \geq 0 \tag{1}
\end{equation*}
$$

We assume in this article that $\varphi \in \Phi$ and it satisfies the Δ^{\prime}-condition.

2 Preliminary results

Let \mathcal{X}_{A} denotes the characteristic function on the measurable set $A \subset X$.

Proposition 2.1. The family of all seminorms $\|\cdot\|_{\varphi \cdot E}$ with $\mu(E)>0$, has the following properties:
(a) $\left\|\mathcal{X}_{E}\right\|_{\phi, E}=\frac{1}{\phi^{-1}(1)}$.
(b) if $f, g \in L^{\varphi}(X)$ satisfy $|f| \leq|g|$ on E, then $\|f\|_{\varphi, E} \leq\|g\|_{\varphi, E}$. The inequality is strict if $|f|<|g|$ on some subset of E with positive measure.
(c) There exists a constant $M>0$ such that

$$
\begin{equation*}
\|f\|_{\phi, G} \leq \frac{M}{\phi^{-1}\left(\frac{\mu(G)}{\mu(D)}\right)}\|f\|_{\phi, D,} \quad f \in L^{\phi}(X), \tag{2}
\end{equation*}
$$

for all pair of measurable sets G, D, with $G \subset D$ and $\mu(G)>0$.
Proof (a) For $\lambda:=1 / \varphi^{-1}(1)$ we have

$$
\int_{E} \phi\left(\frac{\left|\mathcal{X}_{E}\right|}{\lambda}\right) \frac{d x}{\mu(E)}=\int_{E} \frac{d x}{\mu(E)}=1
$$

Now, the Δ_{2} - condition implies $\|\mathcal{X}\|_{\phi, E}=1 / \phi^{-1}(1)$.
(b) If $|f| \leq|g|$ on E, then

$$
\int_{E} \phi\left(\frac{|f|}{\lambda}\right) \frac{d x}{\mu(E)} \leq \int_{E} \phi\left(\frac{|g|}{\lambda}\right) \frac{d x}{\mu(E)}, \quad \lambda>0
$$

and so $\|f\|_{\varphi, E} \leq\|g\|_{\varphi, E}$. In addition, if $|f|<|g|$ on some subset of E with positive measure, the above inequality is strict. So, the Δ_{2}-condition implies the assertion.
(c) Given $G \subset D, \mu(G)>0$, and $f \in L^{\varphi}(X)$, for each $\lambda>0$, we denote

$$
\mathfrak{A}(\lambda):=\int_{G} \phi\left(\frac{|f|}{\lambda}\right) \frac{d x}{\mu(G)} \text { and } \mathfrak{B}(\lambda):=\int_{D} \phi\left(\frac{|f|}{\lambda}\right) \frac{d x}{\mu(D)} .
$$

We consider $\lambda>0$ such that $\mathfrak{B}(\lambda) \leq 1$. By the Δ^{\prime}-condition we obtain

$$
\mathfrak{A}\left(\frac{\lambda}{\phi^{-1}\left(\frac{\mu(G)}{c \mu(D)}\right)}\right) \leq \int_{D} c \frac{\mu(G)}{c \mu(D)} \phi\left(\frac{|f|}{\lambda}\right) \frac{d x}{\mu(G)}=\mathfrak{B}(\lambda) \leq 1
$$

Then $\|f\|_{\phi, G} \leq \frac{\lambda}{\phi^{-1}\left(\frac{\mu(G)}{c \mu(D) \mid}\right)}$, for all $\lambda>0$ with $\mathfrak{B}(\lambda) \leq 1$. So, the definition of $\|f\|_{\varphi, D}$ and (1) imply $\|f\|_{\phi, G} \leq \frac{M}{\phi^{-1}\left(\frac{\mu(G)}{\mu(D)}\right)}\|f\|_{\phi, D}$ with $M=\frac{K}{\phi^{-1}\left(c^{-1}\right)}$.

Lemma 2.2. There exists a constant $M>0$ such that

$$
\left|P^{(j)}(a)\right| \leq \frac{M}{\varepsilon^{j}}\|P\|_{\phi,[a-\varepsilon, a+\varepsilon],}
$$

for all $P \in \Pi^{N},[a-\epsilon, a+\epsilon] \subset X$, and $0 \leq j \leq N$.
Proof. Given $P \in \Pi^{N}$ and $[a-\epsilon, a+\epsilon] \subset X$, we divide that interval in $2(N+1)$ close subintervals with the same size. Let J_{ϵ} be one of them. From Proposition 2.1 (c), we get $\|P\|_{\phi_{,} J_{\varepsilon}} \leq M\|P\|_{\phi,[a-\varepsilon, a+\varepsilon]}$, where M is independent on P, a, and ϵ. In addition, there exists $y_{\epsilon} \in J_{\epsilon}$ such that $\left|P\left(y_{\varepsilon}\right)\right| \leq \phi^{-1}(1)\|P\|_{\phi_{,} J_{\varepsilon}}$. In fact, if $\phi^{-1}(1)\|P\|_{\phi_{,} J_{\varepsilon}}<|P(y)|$, for all $y \in J_{\epsilon}$, then Proposition 2.1 (a) and (b) yield $\|P\|_{\phi, J_{\varepsilon}}>\|P\|_{\phi, J_{\varepsilon}}$. A contradiction.
From the family of intervals J_{ϵ}, we choose pairwise disjoint $(N+1)$ intervals, and we denote them with $J_{i, \epsilon}, 1 \leq i \leq N+1$. Let $y_{i, \epsilon} \in J_{i, \epsilon}$ be such that

$$
\begin{equation*}
\left|P\left(y_{i, \varepsilon}\right)\right| \leq M \phi^{-1}(1)\|P\|_{\phi,[a-\varepsilon, a+\varepsilon],} \quad 1 \leq i \leq N+1 \tag{3}
\end{equation*}
$$

If $t_{i, \varepsilon}:=\frac{y_{i, \varepsilon}-a}{\varepsilon} \in[-1,1]$, we have

$$
\begin{equation*}
P\left(y_{i, \varepsilon}\right)=\sum_{j=0}^{N} \frac{P^{(j)}(a)}{j!}\left(y_{i, \varepsilon}-a\right)^{j}=\sum_{j=0}^{N} \frac{P^{(j)}(a)}{j!} \varepsilon^{j} t_{i, \varepsilon}^{j}, \quad 1 \leq i \leq N+1 . \tag{4}
\end{equation*}
$$

The matrix of the linear system (4), $\left(t_{i, \varepsilon}^{j}\right)$, is a Vandermonde matrix whose determinant has a positive lower bound, because $t_{i, \epsilon}-t_{i, \epsilon} \geq 1 / N+1$ for $i>i$. Using Cramer's rule and (3), there is a constant which we again denote by M such that

$$
\left|P^{(j)}(a) \varepsilon^{j}\right| \leq M\|P\|_{\phi,[a, \varepsilon, a+\varepsilon]} \quad 0 \leq j \leq N .
$$

The proof of the following lemma is analogous to the one of Lemma 2.3 in [9], however we give it for sake of completeness.

Lemma 2.3. Let $C \subset X$ be an interval, $E \subset C, \mu(E)>0$. For all $P \in \Pi^{N}$, there exists an interval $F:=F(E, P) \subset C$ such that
a) $\mu(F) \geq \frac{\mu(E)}{2 N}$,
b) $\|P\|_{\varphi, F} \leq 2 N\|P\|_{\varphi, E}$.

Proof. Let $P \in \Pi^{N}, S=2 N$, and let $D_{a}:=\{x \in C:|P(x)|<a\}$. It easy to see that the function $G(a):=\mu\left(D_{a}\right)$ is continuous, $G(0)=0$ and $\lim _{a \rightarrow \infty} G(a)=\mu(C)$. Therefore, there exists a constant $a_{*} \in \mathbb{R}^{+}$such that $\mu\left(D_{a_{*}}\right)=\mu(E) / 2$. Since $\left\{x \in C:|P(x)|=a_{*}\right\}$ has at most $2 N$ elements, there exists $k, 1 \leq k \leq N$, and pairwise disjoint intervals $E_{j}, 1 \leq j \leq$ k, such that $D_{a_{*}}=\bigcup_{j=1}^{k} E_{j}$.

We denote $\bar{A}=C \backslash A$, for any set A. Then

$$
\begin{equation*}
\mu\left(E \cap \bar{D}_{a_{*}}\right)=\mu(E)-\mu\left(E \cap D_{a_{*}}\right) \geq \mu(E)-\mu\left(D_{a_{*}}\right)=\frac{\mu(E)}{2} \tag{5}
\end{equation*}
$$

There exists $j, 1 \leq j \leq k$, such that $\mu\left(E_{j}\right) \geq \mu(E) / S$. In fact, if $\mu\left(E_{j}\right)<\mu(E) / S$ for all $j, 1 \leq$ $j \leq k$, we obtain $\mu\left(D_{a_{*}}\right)<k / S \mu(E) \leq \mu(E) / 2$, which is a contradiction. So, we have proved a) with $F:=E_{j}$.

Using (5), we obtain

$$
\mu\left(E \cap \bar{D}_{a_{*}}\right) \geq \frac{\mu(E)}{2}=\mu\left(D_{a_{*}}\right) \geq \mu(F) \mu(F \cap \bar{E})
$$

Therefore

$$
\begin{aligned}
\int_{F} \phi\left(\frac{|P|}{\lambda}\right) \frac{d x}{\mu(F)} & \leq \int_{F \cap E} \phi\left(\frac{|P|}{\lambda}\right) \frac{d x}{\mu(F)}+\phi\left(\frac{a_{*}}{\lambda}\right) \frac{\mu\left(E \cap \bar{D}_{a_{*}}\right)}{\mu(F)} \\
& \leq \int_{E \cap D_{a_{*}}} \phi\left(\frac{|P|}{\lambda}\right) \frac{d x}{\mu(F)}+\int_{E \cap \bar{D}_{a_{*}}} \phi\left(\frac{|P|}{\lambda}\right) \frac{d x}{\mu(F)} \\
& =\int_{E} \phi\left(\frac{|P|}{\lambda}\right) \frac{d x}{\mu(F)}
\end{aligned}
$$

So, (a) implies

$$
\mathcal{A}_{F}(\lambda):=\int_{F} \phi\left(\frac{|P|}{\lambda}\right) \frac{d x}{\mu(F)} \leq S \int_{E} \phi\left(\frac{|P|}{\lambda}\right) \frac{d x}{\mu(E)}=: S \mathcal{A}_{E}(\lambda) .
$$

Let λ be such that $\mathcal{A}_{E}(\lambda)=1$. The convexity of φ implies $\mathcal{A}_{F}(S \lambda) \leq 1$. So, $\|P\|_{\varphi, F} \leq$ $S\|P\|_{\varphi, E}$.

3 Pólya inequality

Now, we present the main result concerning to Pólya inequality in L^{φ}.
Theorem 3.1. Let $\varphi \in \Phi$, and $n, N \in \mathbb{N}$. Let $i_{k}, 1 \leq k \leq n$, be n positive integers such that $\sum_{k=1}^{n} i_{k}=N+1$. Let $B_{k}, 1 \leq k \leq n$, be disjoint pairwise compact intervals in \mathbb{R}, with $0<\mu\left(B_{k}\right) \leq 1$. Then there exists a positive constant M depending on φ, i_{k}, and $B_{k}, 1$ $\leq k \leq n$, such that

$$
\begin{equation*}
\left|c_{j}\right| \leq \frac{M}{\min _{1 \leq k \leq n}\left\{\mu\left(E \cap B_{k}\right)^{i_{k}-1} \phi^{-1}\left(\frac{\mu\left(E \cap B_{k}\right)}{\mu(E)}\right)\right\}}\|P\|_{\phi, E,} \quad 0 \leq j \leq N, \tag{6}
\end{equation*}
$$

for all $P(x)=\sum_{j=0}^{N} c_{j} x^{j}, E \subset \bigcup_{k=1}^{n} B_{k}$ with $\mu\left(E \cap B_{k}\right)>0,1 \leq k \leq n$.
Proof. In the following proof, the constant M can be different in each occurrence. Let $P(x)=\sum_{j=0}^{N} c_{j} x^{j} \in \Pi^{N}$, and let $E \subset \bigcup_{k=1}^{n} B_{k}$ be a measurable set with $\mu\left(E \cap B_{k}\right)>0,1$ $\leq k \leq n$. By Lemma 2.3 for $C=B_{k}$, there exist n intervals $F_{k}=\left[a_{k}-r_{k}, a_{k}+r_{k}\right] \subset B_{k}, 1$ $\leq k \leq n$, such that $\mu\left(F_{k}\right) \geq \mu\left(E \cap B_{k}\right) / 2 N$ and $\|P\|_{\phi, F_{k}} \leq 2 N\|P\|_{\phi, E \cap B_{k}}$. From Lemma 2.2, there exists a positive constant M depending on p, i_{k}, and $B_{k}, 1 \leq k \leq n$, such that for all $j, 0 \leq j \leq i_{k}-1,1 \leq k \leq n$, it verifies

$$
\begin{equation*}
\left|P^{(j)}\left(a_{k}\right)\right| \leq \frac{M}{\mu\left(F_{k}\right)^{j}}\|P\|_{\phi, F_{k}} \leq \frac{M}{\mu\left(F_{k}\right)^{i_{k}-1}}\|P\|_{\phi, F_{k}} \leq \frac{M}{\mu\left(E \cap B_{k}\right)^{i_{k}-1}}\|P\|_{\phi, E \cap B_{k}} . \tag{7}
\end{equation*}
$$

From (7) and (2), there is a constant M such that

$$
\left|P^{(j)}\left(a_{k}\right)\right| \leq \frac{M}{\mu\left(E \cap B_{k}\right)^{i_{k}-1} \phi^{-1}\left(\frac{\mu\left(E \cap B_{k}\right)}{\mu(E)}\right)}\|P\|_{\phi, E}
$$

for $0 \leq j \leq i_{k}-1,1 \leq k \leq n$. So

$$
\left|P^{(j)}\left(a_{k}\right)\right| \leq \frac{M}{\min _{1 \leq s \leq n}\left\{\mu\left(E \cap B_{s}\right)^{i_{s}-1} \phi^{-1}\left(\frac{\mu\left(E \cap B_{s}\right)}{\mu(E)}\right)\right\}}\|P\|_{\phi, E}
$$

for $0 \leq j \leq i_{k}-1,1 \leq k \leq n$. From the equivalence of the norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ on Π^{N},

$$
\|P\|_{1}=\max _{1 \leq k \leq n} \sup _{a_{k} \in B_{k}} \max _{0 \leq j \leq i_{k}-1}\left|P^{(j)}\left(a_{k}\right)\right| \text { and }\|P\|_{2}=\max _{0 \leq j \leq N}\left|c_{j}\right|,
$$

we obtain (6).

4 Best local approximation

In this section, we introduce a concept of balanced neighborhood in L^{φ} and we prove the existence of the best local approximation using the neighborhoods $E_{k}, 1 \leq k \leq n$, mentioned in the Section 1.
It is easy to see that $E_{k}=x_{k}+\mu\left(E_{k}\right) A_{k}$, where A_{k} is a measurable set with measure 1. Henceforward, we assume the sets A_{k} are uniformly bounded.

For each $\alpha \in \mathbb{R}$ and $k, 1 \leq k \leq n$, we denote

$$
\mathcal{A}_{k}(\alpha):=\frac{\mu\left(E_{k}\right)^{\alpha}}{\phi^{-1}\left(\frac{\mu(E)}{\mu\left(E_{k}\right)}\right)} .
$$

We assume the following condition, which allows us that $\mathcal{A}_{k}(\alpha)$ can be compared with each other as functions of α when $\mu(E) \rightarrow 0$.

For any nonnegative integers α and β, and any pair $j, k, 1 \leq j, k \leq n$,

$$
\begin{equation*}
\text { either } \mathcal{A}_{k}(\alpha)=O\left(\mathcal{A}_{j}(\beta)\right) \text { or } \mathcal{A}_{j}(\beta)=o\left(\mathcal{A}_{k}(\alpha)\right), \quad \text { as } \mu(E) \rightarrow 0 \tag{8}
\end{equation*}
$$

Let $\left\langle i_{k}\right\rangle$ be an ordered n-tuple of nonnegative integers. We say that $\mathcal{A}_{j}\left(i_{j}\right)$ is a maximal element of $<\mathcal{A}_{k}\left(i_{k}\right)>$ if $\mathcal{A}_{k}\left(i_{k}\right)=O\left(\mathcal{A}_{j}\left(i_{j}\right)\right)$ for all $1 \leq k \leq n$. We denote it by

$$
\mathcal{A}_{j}\left(i_{j}\right)=\max \left\{\mathcal{A}_{k}\left(i_{k}\right)\right\}
$$

Observe that $\sum_{k=1}^{n} \mathcal{A}_{k}\left(i_{k}\right)=O\left(\max \left\{\mathcal{A}_{k}\left(i_{k}\right)\right\}\right)$.
Definition 4.1. An n-tuple $<i_{k}>o f$ nonnegative integers is balanced if

$$
\sum_{k=1}^{n} \mathcal{A}_{k}\left(i_{k}\right)=o\left(\min _{1 \leq k \leq n}\left\{\mu\left(E_{k}\right)^{i_{k}-1} \phi^{-1}\left(\frac{\mu\left(E_{k}\right)}{\mu(E)}\right)\right\}\right)
$$

In this case, we say that $\sum_{k=1}^{n} i_{k}$ is a balanced integer, and $<E_{k}>$ are balanced neighborhoods.

Lemma 4.2. To each balanced integer there corresponds exactly one balanced n-tuple.
Proof. Let $\left\langle i_{k}\right\rangle$ be a balanced n-tuple. If $\left\langle i_{k}^{\prime}\right\rangle$ is distinct from $\left.<i_{k}\right\rangle$ and $\sum_{k=1}^{n} i_{k}=\sum_{k=1}^{n} i^{\prime}{ }_{k}$, there exist indices j and s such that $i_{j} \geq i_{j}^{\prime}+1$ and $i_{s}^{\prime} \geq i_{s}+1$. From definition of balanced neighborhood, we have

$$
\mathcal{A}:=\sum_{k=1}^{n} \mathcal{A}_{k}\left(i_{k}\right)=o\left(\mu\left(E_{j}\right)^{i_{j}-1} \phi^{-1}\left(\frac{\mu\left(E_{j}\right)}{\mu(E)}\right)\right) .
$$

In addition, by (1) we get $\mu\left(E_{j}\right)^{i_{j}-1} \phi^{-1}\left(\frac{\mu\left(E_{j}\right)}{\mu(E)}\right) \leq \mu\left(E_{j}\right)^{i_{j}} \phi^{-1}\left(\frac{\mu\left(E_{j}\right)}{\mu(E)}\right) \leq K \phi^{-1}(1) \mathcal{A}_{j}\left(i_{j}^{\prime}\right)$.
So, $\mathcal{A}=o\left(\sum_{k=1}^{n} \mathcal{A}_{k}\left(i^{\prime} k\right)\right)$. Again, by (1) we get

$$
\frac{\sum_{k=1}^{n} \mathcal{A}_{k}\left(i^{\prime}{ }_{k}\right)}{\mu\left(E_{s}\right)^{i_{s}^{\prime}-1} \phi^{-1}\left(\frac{\mu\left(E_{s}\right)}{\mu(E)}\right)} \geq \frac{\sum_{k=1}^{n} \mathcal{A}_{k}\left(i^{\prime}{ }_{k}\right)}{\mu\left(E_{s}\right)^{i_{s}} \phi^{-1}\left(\frac{\mu\left(E_{s}\right)}{\mu(E)}\right)} \geq \frac{\sum_{k=1}^{n} \mathcal{A}_{k}\left(i^{\prime}{ }_{k}\right)}{K \phi^{-1}(1) \mathcal{A}_{s}\left(i_{s}\right)} \rightarrow \infty
$$

Then $<i_{k}^{\prime}>$ cannot be balanced.
The following lemma allows us to state an algorithm to compute all the balanced integers greater than a given balanced integer.
Lemma 4.3. Let $<i_{k}>a n d<i_{k}^{\prime}>$ be two balanced n-tuples with $\sum_{k=1}^{n} i_{k}<\sum_{k=1}^{n} i^{\prime}{ }_{k}$. Let $A=A\left(<i_{k}>\right):=\left\{j: \mathcal{A}_{j}\left(i_{j}\right)=\max \left\{\mathcal{A}_{k}\left(i_{k}\right)\right\}\right\}$ and $B=B\left(<i_{k}>\right):=\{1,2, \ldots, n\} \backslash$. Then
(a) for $j \in A i_{j}^{\prime} \geq i_{j}+1$.
(b) for $j \in A i_{j}^{\prime} \geq i_{j}$.

Proof. (a) Suppose $i_{j}^{\prime} \leq i_{j}$ for some $j \in A$. For any $l \in B$, from (8) we get $\mathcal{A}_{l}\left(i_{l}\right)=o\left(\mathcal{A}_{j}\left(i_{j}\right)\right)$. Assume now $i_{l}^{\prime} \geq i_{l}+1$ for some $l \in B$. By (1), there exists a constant $M>0$ such that

$$
\frac{\mathcal{A}_{j}\left(i_{j}^{\prime}\right)}{\mu\left(E_{l}\right)^{i_{l}^{\prime}-1} \phi^{-1}\left(\frac{\mu\left(E_{l}\right)}{\mu(E)}\right)} \geq \frac{\mathcal{A}_{j}\left(i_{j}\right)}{\mu\left(E_{l}\right)^{i_{l}} \phi^{-1}\left(\frac{\mu\left(E_{l}\right)}{\mu(E)}\right)} \geq \frac{\mathcal{A}_{j}\left(i_{j}\right)}{M \mathcal{A}_{l}\left(i_{l}\right)} \rightarrow \infty
$$

as $\mu(E) \rightarrow 0$. Thus $<i_{k}^{\prime}>$ cannot be balanced, a contradiction. Therefore, either $B=\emptyset$ or $i_{l}^{\prime} \leq i_{l}$, for all $l \in B$. On the other hand, since $\sum_{k=1}^{n} i_{k}<\sum_{k=1}^{n} i^{\prime}{ }_{k}$, there is $s \in$ A such that $i_{s}^{\prime} \geq i_{s}+1$. According to (1) and the definition of A we obtain

$$
\frac{\mathcal{A}_{j}\left(i_{j}^{\prime}\right)}{\mu\left(E_{s}\right)^{i_{s}^{\prime}-1} \phi^{-1}\left(\frac{\mu\left(E_{s}\right)}{\mu(E)}\right)} \geq \frac{\mathcal{A}_{j}\left(i_{j}\right)}{\mu\left(E_{s}\right)^{i_{s}} \phi^{-1}\left(\frac{\mu\left(E_{s}\right)}{\mu(E)}\right)} \geq \frac{\mathcal{A}_{j}\left(i_{j}\right)}{M \mathcal{A}_{s}\left(i_{s}\right)} \geq M^{\prime}
$$

as $\mu(E) \rightarrow 0$, for some constant $\left.M^{\prime}\right\rangle 0$. Therefore, $\left\langle i_{k}^{\prime}\right\rangle$ cannot be balanced.
(b) Suppose $i_{j}^{\prime}<i_{j}$ for some $j \in B$. From (a), (1) and the definition of balanced n tuple, we obtain for each $l \in A$,

$$
\frac{\mathcal{A}_{j}\left(i_{j}^{\prime}\right)}{\mu\left(E_{l}\right)^{i_{l}^{\prime}-1} \phi^{-1}\left(\frac{\mu\left(E_{l}\right)}{\mu(E)}\right)} \geq \frac{\mathcal{A}_{j}\left(i_{j}-1\right)}{M \mathcal{A}_{l}\left(i_{l}\right)} \geq M^{\prime} \frac{\mu\left(E_{j}\right)^{i_{l}-1} \phi^{-1}\left(\frac{\mu\left(E_{j}\right)}{\mu(E)}\right)}{\mathcal{A}_{l}\left(i_{l}\right)} \rightarrow \infty
$$

as $\mu(E) \rightarrow 0$. Therefore $<i_{k}^{\prime}>$ cannot be balanced.

Given a balanced integer, the above lemma gives us a necessary condition which must satisfy the next balanced integer. The following example shows that the conditions of Lemma 4.3 are not sufficient to get a balanced n-tuple.
Example 4.4. Define $\varphi(x)=x^{3}(1+|\ln x|), x>0$, and $\varphi(0)=0$. Consider two points x_{1}, x_{2} with $\mu\left(E_{1}\right)=\delta^{4 / 3}, \mu\left(E_{2}\right)=\delta^{1 / 3}$, and $A_{1}=A_{2}=[0,1]$. The 2-tuple $<0,1>$ is balanced. Here, the set $A(<0,1>)=\{0\}$, however $<1,1>$ is not a balanced 2-tuple. In fact, if $\left\langle i_{k}>=<0,1>\right.$ we obtain

$$
\min _{1 \leq k \leq 2}\left\{\mu\left(E_{k}\right)^{i_{k}-1}\left(\frac{\mu\left(E_{k}\right)}{\mu(E)}\right)\right\}=\min \left\{\frac{\phi^{-1}(\delta)}{\delta^{4 / 3}}, \phi^{-1}(1)\right\}+o(1) \rightarrow \phi^{-1}(1)
$$

as $\delta \rightarrow 0$. Since $\mathcal{A}_{2}\left(i_{2}\right)=o\left(\mathcal{A}_{1}\left(i_{1}\right)\right)$ and $\mathcal{A}_{1}\left(i_{1}\right)=o(1)$, as $\delta \rightarrow 0$, we have

$$
\frac{\sum_{k=1}^{2} \mathcal{A}_{k}\left(i_{k}\right)}{\min _{1 \leq k \leq 2}\left\{\mu\left(E_{k}\right)^{i_{k}-1} \phi^{-1}\left(\frac{\mu\left(E_{k}\right)}{\mu(E)}\right)\right\}}=o(1), \quad \text { as } \delta-0 .
$$

So $<0,1>$ is a balanced 2-tuple, $A(<0,1>)=\{0\}$, and $<1,1>$ is the next 2-tuple generated by the algorithm. For $\left\langle i_{k}\right\rangle=\langle 1,1\rangle$ we have

$$
\frac{\mathcal{A}_{2}\left(i_{2}\right)}{\min _{1 \leq k \leq 2}\left\{\mu\left(E_{k}\right)^{i_{k}-1} \phi^{-1}\left(\frac{\mu\left(E_{k}\right)}{\mu(E)}\right)\right\}} \geq \frac{\mathcal{A}_{2}\left(i_{2}\right)}{\phi^{-1}\left(\frac{\mu\left(E_{1}\right)}{\mu(E)}\right)} \rightarrow \infty, \text { as } \delta \rightarrow 0
$$

Thus $<1,1>$ is not a balanced 2-tuple.
Next, we establish an algorithm which gives all balanced n-tuples. First, we observe that $<0>$ is a balanced n-tuple. In fact, since φ^{-1} is a concave positive function on \mathbb{R}_{+} with $\varphi^{-1}(0)=0$, we have $\varphi^{-1}(x) \geq \varphi^{-1}(1) x$, for $x \leq 1$. This yields

$$
\frac{\mu\left(E_{j}\right)}{\phi^{-1}\left(\frac{\mu(E)}{\mu\left(E_{k}\right)}\right) \phi^{-1}\left(\frac{\mu\left(E_{j}\right)}{\mu(E)}\right)} \leq \frac{\mu(E)}{\left(\phi^{-1}(1)\right)^{2}}, \quad 1 \leq j, k \leq n .
$$

Algorithm. Let v_{q} be a balanced integer and let $\left\langle i_{k}^{(v q)}\right\rangle$ be the corresponding balanced n-tuple. To build the next n-tuple, $\left\langle i_{k}^{(v q+1)}\right\rangle$, put $i_{k}^{(v q+1)}=i_{k}^{(v q)}+1$ for $k \in A\left(<i_{k}^{(v q)}>\right)$ and $i_{k}^{\left(v_{q}+1\right)}=i_{k}^{\left(v_{q}\right)}$ for $k \in B\left(\left\langle i_{k}^{(v q)}\right\rangle\right)$.

The following lemma shows that all balanced n-tuples are contained in the set of n tuples generated by the algorithm.
Lemma 4.5. if $<i_{k}>i$ is a balanced n-tuple with $\sum_{k=1}^{n} i_{k}=q$, then the algorithm generates all the balanced n-tuple $<i_{k}^{*}>$ with $\sum_{k=1}^{n} i_{k}^{*}>q$.
Proof. Suppose $<i_{k}^{*}>$ is a balanced n-tuple with $\sum_{k=1}^{n} i_{k}^{*}=m>q$, and the n-tuple $<i_{k}^{(m)}>$ is not balanced. Since $\sum_{k=1}^{n} i_{k}^{*}=\sum_{k=1}^{n} i_{k}^{(m)}$, there exist r and s such that $i_{r}^{(m)}>i_{r}^{*}$ and $i_{s}^{*}>i_{s}^{(m)}$. By definition of balanced integer we have

$$
\begin{equation*}
\mathcal{A}_{r}\left(i_{r}^{(m)}-1\right)=O\left(\mathcal{A}_{r}\left(i_{r}^{*}\right)\right)=o\left(\mu\left(E_{s}\right)^{i_{s}^{*}-1} \phi^{-1}\left(\frac{\mu\left(E_{s}\right)}{\mu(E)}\right)\right) \tag{9}
\end{equation*}
$$

and (1) implies $\quad \mu\left(E_{s}\right)^{i_{s}^{*}-1} \phi^{-1}\left(\frac{\mu\left(E_{s}\right)}{\mu(E)}\right) \leq K \phi^{-1}(1) \mathcal{A}_{s}\left(i_{s}^{*}-1\right) . \quad$ So, $\mathcal{A}_{r}\left(i_{r}^{(m)}-1\right)=o\left(\mathcal{A}_{s}\left(i_{s}^{(m)}\right)\right)$.

On the other hand, since $m>q$, Lemma 4.3 implies $i_{r}^{*} \geq i_{r}$, so $i_{r}^{(m)}>i_{r}$. Therefore $\mathcal{A}_{r}\left(i_{r}^{(m)}-1\right)$ is maximal in a previous step of the algorithm, i.e., there exists $m^{\prime}, q \leq$ $m^{\prime}<m$, such that $\mathcal{A}_{r}\left(i_{r}^{(m)}-1\right)$ is maximal of $<\mathcal{A}_{k}\left(i_{k}^{\left(m^{\prime}\right)}\right)>$. Since the exponents $i_{k}^{(m)}$ are nondecreasing,

$$
\mathcal{A}_{s}\left(i_{s}^{(m)}\right)=O\left(\mathcal{A}_{s}\left(i_{s}^{\left(m^{\prime}\right)}\right)\right)=O\left(\mathcal{A}_{r}\left(i_{r}^{(m)}-1\right)\right)
$$

which contradicts (9).
Remark 4.6. If we assume the additional condition $\varphi^{-1}(x) \varphi^{-1}(1 / x) \geq c>0$ for $x>0$, given a balanced n-tuple $\left\langle i_{k}\right\rangle$, it is easy to see that the n-tuple $<i_{k}^{\prime}>$ defined by $i_{k}^{\prime}=i_{k}+1$ for $k \in A\left(<i_{k}^{(v q)}>\right)$, and $i_{k}^{\prime}=i_{k}$ for $k \in B\left(<i_{k}^{(v q)}>\right)$, is balanced. It give us an algorithm that generates the infinite sequences of all balanced n-tuples.
Let $P C^{m}(X)$ be the class of functions with derivatives up to order $m-1$ and with bounded piecewise continuous $m^{\text {th }}$ derivative on X.

Next, we prove the following auxiliary lemma.
Lemma 4.7. Let $<i_{k}>$ be an ordered n-tuple of nonnegative integers. Suppose $h \in P C^{m}$ (X), where $m=\max \left\{i_{k}\right\}$ and $h^{(j)}\left(x_{k}\right)=0,0 \leq j \leq i_{k}-1,1 \leq k \leq n$. Then

$$
\|h\|_{\phi, E}=O\left(\max \left\{\mathcal{A}_{k}\left(i_{k}\right)\right\}\right) .
$$

Proof. Expanding h by the Taylor polynomial at x_{k} up to the order n, we obtain

$$
h(x)=\sum_{k=1}^{n} h^{\left(i_{k}\right)}\left(\xi_{k}\right) \frac{\left(x-x_{k}\right)^{i_{k}}}{i_{k}!} \chi_{E_{k}}(x), \quad x \in E,
$$

where ξ_{k} is between x and x_{k}. The change of variable $x-x_{k}=\epsilon y, y \in A_{k}$, yields

$$
\|h\|_{\phi, E}=\inf \left\{\lambda>0: \sum_{k=1}^{n} \int_{A_{k}} \mu\left(E_{k}\right) \phi\left(\frac{\left|h^{\left(i_{k}\right)}\left(\xi_{k}\right)\right| \frac{\mu\left(E_{k}\right)^{i_{k}}\left|\gamma^{i_{k}}\right|}{i_{k}!}}{\lambda}\right) \frac{d y}{\mu(E)} \leq 1\right\}
$$

For

$$
\lambda:=M \sum_{j=1}^{n} \frac{\mu\left(E_{j}\right)^{i_{j}}}{\phi^{-1}\left(\frac{\mu(E)}{n \mu\left(E_{j}\right)}\right)},
$$

where $M=\max _{1 \leq k \leq n}\left\{\frac{1}{i_{k}!} \max _{x \in X}\left\{\left|h^{\left(i_{k}\right)}(x)\right|\right\} \max _{y \in A_{k}}\left\{|y|^{i_{k}}\right\}\right\}$, we obtain

$$
\sum_{k=1}^{n} \int_{A_{k}} \mu\left(E_{k}\right) \phi\left(\frac{\left|h^{\left(i_{k}\right)}\left(\xi_{k}\right)\right| \frac{\mu\left(E_{k}\right)^{i_{k}}\left|y^{i_{k}}\right|}{i_{k}!}}{\lambda}\right) \frac{d y}{\mu(E)} \leq 1
$$

Therefore $\|h\|_{\phi, E}=O\left(\sum_{k=1}^{n} \frac{\mu\left(E_{k}\right)^{i_{k}}}{\phi^{-1}\left(\frac{\mu(E)}{n \mu\left(E_{k}\right)}\right)}\right)$. Using the convexity of φ, we have $\frac{\phi^{-1}(x)}{n} \leq \phi^{-1}\left(\frac{x}{n}\right), x \geq 0$. So, $\|h\|_{\phi, E}=O\left(\max \left\{\mathcal{A}_{k}\left(i_{k}\right)\right\}\right)$.
If a polynomial $P \in \Pi^{N}, N+1=\sum_{k=1}^{n} i_{k}$, satisfies $P^{(j)}\left(x_{k}\right)=f^{(j)}\left(x_{k}\right), 1 \leq j \leq i_{k}-1,1 \leq$ $k \leq n$, we call it the Hermite interpolating polynomial of the function f on $\left\{x_{1}, \ldots, x_{n}\right\}$.

Now, we are in condition to prove the main result in this Section.
Theorem 4.8. Let $<i_{k}>$ be a balanced n-tuple and $N+1=\sum_{k=1}^{n} i_{k}$. If $m=\max \left\{i_{k}\right\}$ and $f \in P C^{m}(X)$, then the best local approximation of ffrom Π^{N} on $\left\{x_{1}, \ldots, x_{k}\right\}$ is the Hermite interpolating polynomial of f on $\left\{x_{1}, \ldots, x_{n}\right\}$.
Proof Let $H \in \Pi^{N}$ be the Hermite interpolating polynomial and let $\left\{g_{E}\right\}$ be a net of best approximations of f from Π^{N} respect to $\|\cdot\|_{\varphi, E}$. From Lemma 4.7,

$$
\left\|g_{E}-H\right\|_{\phi, E}=O\left(\max \left\{\mathcal{A}_{k}\left(i_{k}\right)\right\}\right)
$$

Using Theorem 3.1 and the equivalence of the norms in Π^{N}, we get

$$
\left\|g_{E}-H\right\|_{\infty} \leq \frac{K}{\min _{1 \leq k \leq n}\left\{\mu\left(E_{k}\right)^{i_{k}-1} \phi^{-1}\left(\frac{\mu\left(E_{k}\right)}{\mu(E)}\right)\right\}}\left\|g_{E}-H\right\|_{\phi, E .}
$$

So, the definition of balanced n-tuple implies $g_{E} \rightarrow H$, as $\mu(E) \rightarrow 0$.

Acknowledgements

This work was supported by Universidad Nacional de Rio Cuarto, Universi-dad Nacional de San Luis and CONICET.

Author details

${ }^{1}$ Department of Mathematics, UNRC, 5800, Río Cuarto, Argentina ${ }^{2}$ Department of Mathematics, UNSL, 5700, San Luis, Argentina

Authors' contributions

The three authors participated in the preparation of all work. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Received: 14 July 2011 Accepted: 10 February 2012 Published: 10 February 2012

References

1. Krasnosel'skii, M, Rutickii, Ya: Convex Function and Orlicz Spaces. Noordhoff Groningen. (1961)
2. Chui, C, Diamond, H, Raphael, R: On best data approximation. Approx Theory Appl. 1, 37-56 (1984)
3. Cuenya, H, Favier, S, Levis, F, Ridolfi, C: Weighted best local | • |-approximation in Orlicz spaces. Jaen J Approx. 2(1):113-127 (2010)
4. Favier, S, Ridolfi, C: Weighted best local approximation in Orlicz spaces. Anal Theory Appl. 24(3):225-236 (2008). doi:10.1007/s10496-008-0225-y
5. Cuenya, H, Levis, F, Marano, M, Ridolfi, C: Best local approximation in Orlicz spaces. Numer Funct Anal Optim. 32(11):1127-1145 (2011). doi:10.1080/01630563.2011.590264
6. Borwein, P, Erdelyi, T: Polynomials and Polynomial Inequalities. Springer, New York (1995)
7. Ganzburg, MI: Polynomial inequalities on measurable sets and their applications. Constr Approx. 17, 275-306 (2001). doi:10.1007/s003650010020
8. Timan, FA: Theory of Approximation of Functions of a Real Variable. Pergamon Press, New York. (1963)
9. Cuenya, H, Levis, F: Pólya-type polinomial inequalities in L^{p} spaces and best local approximation. Numer Funct Anal Optim. 26(7-8):813-827 (2005). doi:10.1080/01630560500431084
```
doi:10.1186/1029-242X-2012-26
Cite this article as: Cuenya et al.: Pólya-type polynomial inequalities in Orlicz spaces and best local approximation. Journal of Inequalities and Applications 2012 2012:26.
```

