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Abstract
In this paper, we generalize a Hardy-type inequality to the class of arbitrary
non-negative functions bounded from below and above with a convex function
multiplied with positive real constants. This enables us to obtain new generalizations
of the classical integral Hardy, Hardy-Hilbert, Hardy-Littlewood-Pólya, and
Pólya-Knopp inequalities as well as of Godunova’s and of some recently obtained
inequalities in multidimensional settings. Finally, we apply a similar idea to functions
bounded from below and above with a superquadratic function.
MSC: Primary 26D10; secondary 26D15

Keywords: Hardy inequality; power weights; convex functions; superquadratic
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1 Introduction
Let  < p ≤ q < ∞ and (�,�,μ), (�,�,μ) be measure spaces with positive σ -finite
measures. Let u : � → R and k : � × � → R be non-negative measurable functions
such that

K(x) =
∫

�

k(x, y)dμ(y) > , x ∈ �, (.)

and

v(y) =
(∫

�

u(x)
(
k(x, y)
K(x)

) q
p
dμ(x)

) p
q
< ∞, y ∈ �.

Recently, Krulić et al. [] proved that the modular Hardy-type inequality

(∫
�

u(x)�
q
p
(
Akf (x)

)
dμ(x)

) 
q

≤
(∫

�

v(y)�
(
f (y)

)
dμ(y)

) 
p

(.)

holds for all non-negative convex functions � defined on a convex set I ⊆ R, all measur-
able functions f :� →R such that f (�) ⊆ I , and the general integral operatorAk defined
by

Akf (x) =


K(x)

∫
�

k(x, y)f (y)dμ(y), x ∈ �. (.)

Some further important and useful modular inequalities, related to (.) and to evenmore
general modular functions �, can be found, e.g., in [] and [].

© 2012 Adeleke et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2012/1/259
mailto:Lars-Erik.Persson@ltu.se
http://creativecommons.org/licenses/by/2.0


Adeleke et al. Journal of Inequalities and Applications 2012, 2012:259 Page 2 of 19
http://www.journalofinequalitiesandapplications.com/content/2012/1/259

It is not hard to see that inequality (.) generalizes several well-known classical one-
dimensional integral inequalities. We recall them for reader’s convenience. Namely, let
� = � = R+ = (,∞), dμ(x) = dx, dμ(y) = dy, and let u(x) = 

x . If  < p = q < ∞ and
� : [,∞)→R is defined by�(x) = xp, then for k(x, y) = 

xχ<y≤x<∞(x, y) and for f (y
p

p– )y


p–

instead of f (y), from (.) we get the classical Hardy integral inequality

∫ ∞



(

x

∫ x


f (y)dy

)p

dx≤
(

p
p – 

)p ∫ ∞


f p(x)dx (.)

for non-negative functions f ∈ Lp(R+). In the same setting, except for f (y) replaced with
f (y)y


p and for k(x, y) = ( xy )


p (x + y)–, (.) becomes Hardy-Hilbert’s integral inequality

∫ ∞



(∫ ∞



f (y)
x + y

dy
)p

dx≤
(

π

sin π
p

)p ∫ ∞


f p(x)dx, (.)

while for k(x, y) = ( xy )

p max{x, y}–, we get Hardy-Littlewood-Pólya’s inequality

∫ ∞



(∫ ∞



f (y)
max{x, y} dy

)p

dx ≤ (
pp′)p ∫ ∞


f p(x)dx, (.)

where p′ = p
p– . Similarly, by considering p = q = , k(x, y) = 

xχ<y≤x<∞(x, y), � : R → R,
�(x) = ex, and log(yf (y)) instead of f (y) in (.), we obtain Pólya-Knopp’s inequality

∫ ∞


exp

(

x

∫ x


log f (y)dy

)
dx ≤ e

∫ ∞


f (x)dx. (.)

Observe that (.) follows also from (.) by rewriting it with f

p , instead of with a positive

function f , and by taking limit as p → ∞. Moreover, the constants ( p
p– )

p, ( π
sin π

p
)p, (pp′)p,

and e, respectively appearing on the right-hand sides of (.)-(.), are the best possible,
that is, neither of them can be replaced with any smaller constant.
Inequality (.) can also be particularized to some multidimensional settings. Before

stating the corresponding results, we need to introduce some notation. First, we set  =
(, , . . . , ), = (, , . . . , ) ∈R

n, and for x = (x,x, . . . ,xn) ∈ R
n
+ and y = (y, y, . . . , yn) ∈R

n,
denote

y
x
=

(
y
x
,
y
x

, . . . ,
yn
xn

)
and xy = xy x

y
 · . . . · xynn .

Especially, x =
∏n

i= xi. Further, for x,y ∈ R
n, we write x < y if componentwise xi < yi,

i = , . . . ,n, and relations ≤, >, and ≥ are defined analogously. For a,b ∈ R
n, a < b, we

define (a,b) = {x ∈R
n : a < x < b}. Moreover,

(a,∞) =
{
x ∈ R

n : a < x < ∞}
and the n-boxes [a,b), (a,b], and [a,b] are defined similarly. Finally, the integral∫
(a,b) f (x)dx is interpreted as

∫ b
a

∫ b
a

· · · ∫ bn
an f (x,x, . . . ,xn)dx · · · dxn.

Using this notation, for p = q, � = � =R
n
+, dμ(x) = dx, dμ(y) = dy, the weight func-

tion u : Rn
+ → R, u(x) = x–, and the kernel k : Rn

+ × R
n
+ → R of the form k(x,y) = l( yx ),
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where l :Rn
+ →R is a non-negative measurable function such that

∫
R
n
+
l(x)dx = , inequal-

ity (.) reduces to a result of Godunova []. She proved that the inequality

∫
R
n
+

�

(

x

∫
R
n
+

l
(
y
x

)
f (y)dy

)
dx
x

≤
∫
R
n
+

�
(
f (x)

)dx
x

(.)

holds for all convex functions� : [,∞)→ [,∞) and non-negativemeasurable functions
f on R

n
+ such that the function x 	→ �(f (x))

x is integrable on R
n
+.

On the other hand, applying a different approach, Oguntuase et al. [] obtained a class
of multidimensional strengthened Hardy-type inequalities with power weights, related to
arbitrary a.e. positive convex functions bounded frombelow and abovewith a power func-
tion multiplied with positive constants. More precisely, let p ∈R \ {} and � : [,∞)→R

be a convex function such that there exist positive real constants  < a ≤ a < ∞ provid-
ing

axp ≤ �(x)≤ axp, x > . (.)

If p > , b ∈ (,∞], and k > , then the inequality

∫
(,b)

x–k�
(∫

(,x)
f (y)dy

)
dx

≤ a

a

(
p

k – 

)p ∫
(,b)

xp–k
n∏
i=

[
 –

(
xi
bi

) ki–
p

]
f p(x)dx (.)

holds for all non-negative integrable functions f : (,b) → R. The same inequality holds
also if p < , k < , and f is an a.e. positive function. In the same paper, the so-called dual
inequality

∫
(b,∞)

x–k�
(∫

(x,∞)
f (y)dy

)
dx

≤ a

a

(
p

 – k

)p ∫
(b,∞)

xp–k
n∏
i=

[
 –

(
bi
xi

) –ki
p

]
f p(x)dx (.)

was obtained, which holds for p > , b ∈ [,∞), k < , and all non-negative integrable func-
tions f : (b,∞) → R, as well as for p < , k > , and all a.e. positive integrable functions f
on (b,∞).
Motivated by the idea from [], in this paper we generalize the modular Hardy-type

inequality (.) to the class of arbitrary non-negative modular functions � equivalent to
a non-negative convex function, that is, such that a� ≤ � ≤ a� holds for some real
constants a > a ≥  and a non-negative convex function� . Applying the result obtained
to some particular one-dimensional settings, we get new generalizations of the classical
inequalities (.)-(.). Moreover, our result provides a new generalization of Godunova’s
inequality (.) and improves inequalities (.) and (.) by relaxing the conditions on
the function � and by replacing the constant a

a
with the smaller constant a. Finally, we

show that a similar idea can be applied to the function � bounded with a superquadratic
function � in the same way. Such an approach enables us to get a new generalization of
the refined Hardy-type inequality from [].
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Conventions Throughout this paper, all functions are assumed to be measurable and ex-
pressions of the form  ·∞, 

 ,
∞
∞ , and a

∞ , where a ∈R, are taken to be equal to zero. For a
real parameter  
= p 
= , by p′ we denote its conjugate exponent p′ = p

p– , that is,

p +


p′ = .

In addition, by a weight function (shortly: a weight), we mean a non-negative measurable
function on the actual set, while an interval I ⊆ R stands for any convex subset of R. As
usual, logx is the natural logarithmof x ∈ R+,B(·, ·) is the usual beta function, while B(·; ·, ·)
denotes the incomplete beta function defined by

B(x;a,b) =
∫ x


ta–( – t)b– dt, x ∈ [, ],a,b > .

2 General Hardy-Knopp-type inequalities
Our first result is a generalization of inequality (.) to an arbitrary modular function � :
I ⊆R →R such that

a�(x)≤ �(x)≤ a�(x), x ∈ I, (.)

holds for some real constants  < a ≤ a <∞ and a non-negative convex function� on I .
For example, a whole class of such non-convex functions is given by �(x) = [a + (a –
a)| sinx|]�(x), x ∈ I . Another interesting non-convex function � is given on R+ by

�(x) =

⎧⎨
⎩xp, x ∈ (, ),

n, x ∈ [
n–
p , 

n
p ),n ∈ N.

It is equivalent to the power function �(x) = xp, where p ∈ [,∞), since it fulfills xp ≤
�(x)≤ xp, x ∈R+.
Now, we state and prove the central theorem in this section.

Theorem . Let t ∈ [,∞), (�,�,μ) and (�,�,μ) be measure spaces with positive
σ -finite measures, u be a weight function on �, and k be a non-negative measurable func-
tion on � × �. Suppose that K : � → R is as in (.), that the function x 	→ u(x)( k(x,y)K (x) )

t

is integrable on � for each fixed y ∈ �, and that the weight function v is defined by

v(y) =
(∫

�

u(x)
(
k(x, y)
K(x)

)t

dμ(x)
) 

t
< ∞, y ∈ �.

If� and� are non-negative functions on an interval I ⊆R, such that� is convex and (.)
holds for some real constants  < a ≤ a < ∞, then the inequality

∫
�

u(x)�t(Akf (x)
)
dμ(x) ≤ at

(∫
�

v(y)�
(
f (y)

)
dμ(y)

)t

≤
(
a
a

)t(∫
�

v(y)�
(
f (y)

)
dμ(y)

)t

(.)

holds for all measurable functions f : � → R with values in I and for Akf defined on �

by (.).
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Proof Observe that Akf (x) ∈ I , x ∈ �. Applying (.), Jensen’s and Minkowski’s inequali-
ties as well as monotonicity of the power function α 	→ αt on R+, we get

∫
�

u(x)�t(Akf (x)
)
dμ(x)

≤ at
∫

�

u(x)� t(Akf (x)
)
dμ(x)

≤ at
∫

�

u(x)
(


K(x)

∫
�

k(x, y)�
(
f (y)

)
dμ(y)

)t

dμ(x)

= at

{[∫
�

u(x)
(


K(x)

∫
�

k(x, y)�
(
f (y)

)
dμ(y)

)t

dμ(x)
] 

t
}t

≤ at

{∫
�

�
(
f (y)

)[∫
�

u(x)
(
k(x, y)
K(x)

)t

dμ(x)
] 

t
dμ(y)

}t

= at

(∫
�

v(y)�
(
f (y)

)
dμ(y)

)t

≤
(
a
a

)t(∫
�

v(y)�
(
f (y)

)
dμ(y)

)t

,

so the proof is completed. �

Remark . Notice that the inequality

(∫
�

u(x)�t(Akf (x)
)
dμ(x)

) 
t
≤

∫
�

v(y)�
(
f (y)

)
dμ(y)

holds even if a non-negative function � is bounded with a convex function � only from
above, that is, if  ≤ �(x)≤ �(x), for a.e. x ∈ I . Therefore,

(∫
�

u(x)�t(Akf (x)
)
dμ(x)

) 
t
≤ inf

�∈C

∫
�

v(y)�
(
f (y)

)
dμ(y),

where C denotes the class of all convex functions � on I such that �(x) ≥ �(x) for a.e.
x ∈ I .

Remark . Rewriting (.) with t = q
p ≥ , that is, with  < p≤ q < ∞ or –∞ < q ≤ p < ,

we obtain

∫
�

u(x)�
q
p
(
Akf (x)

)
dμ(x) ≤ a

q
p


(∫
�

v(y)�
(
f (y)

)
dμ(y)

) q
p

≤
(
a
a

) q
p
(∫

�

v(y)�
(
f (y)

)
dμ(y)

) q
p
. (.)

Notice that for p≥  or p <  (in the latter case � and � have to be positive), the function
�p is convex as well. Hence, by replacing � with �p and considering that

ap�
p(x)≤ �p(x)≤ ap�

p(x), x ∈ I,

http://www.journalofinequalitiesandapplications.com/content/2012/1/259
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relation (.) becomes

∥∥�(Akf )
∥∥q
Lqu(�,μ)

≤ aq‖�f ‖q
Lpv (�,μ)

≤
(
a
a

)q

‖�f ‖q
Lpv (�,μ)

.

Especially, for  < p≤ q <∞ and �(x) = x, we get

∥∥�(Akf )
∥∥q
Lqu(�,μ)

≤ aq‖f ‖qLpv (�,μ)
≤

(
a
a

)q

‖�f ‖q
Lpv (�,μ)

.

Remark . For a = a = , inequality (.) reduces to (.), so Theorem . can be re-
garded as a generalization of the corresponding result from []. In that case, the function�

has to be convex.

The following two sections are dedicated to some applications and analogues of Theo-
rem .. Namely, by choosing some standard measure spaces, kernels, and weight func-
tions, we get generalizations of one-dimensional and multidimensional Hardy-Knopp-
type inequalities from the papers [, , –], and [].

3 Generalized one-dimensional Hardy-Knopp-type inequalities
In this section, we consider the standard one-dimensional setting with intervals in R and
the Lebesgue measure. First, let  < b ≤ ∞ and

S =
{
(x, y) ∈R

 :  < y≤ x < b
}
. (.)

Applying Theorem . to � = � = (,b), dμ(x) = dx, dμ(y) = dy, and to kχS ,
u(x)
x , w(y)

y
instead of k, u(x), v(y), we get the following corollary.

Corollary . Let  < b ≤ ∞ and k : (,b) × (,b) → R, u : (,b) → R be non-negative
measurable functions such that

K(x) =
∫ x


k(x, y)dy > , x ∈ (,b), (.)

and let

w(y) = y
(∫ b

y
u(x)

(
k(x, y)
K(x)

) q
p dx
x

) p
q
< ∞, y ∈ (,b).

If  < p ≤ q < ∞ or –∞ < q ≤ p < , � is a non-negative convex function on an interval
I ⊆ R, and � : I → R fulfills (.) for some positive real constants a ≤ a, then the in-
equalities

∫ b


u(x)�

q
p
(
Akf (x)

)dx
x

≤ a
q
p


(∫ b


w(y)�

(
f (y)

)dy
y

) q
p

≤
(
a
a

) q
p
(∫ b


w(y)�

(
f (y)

)dy
y

) q
p

(.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/259
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hold for all measurable functions f : (,b)→R with values in I and for Akf defined by

Akf (x) =


K(x)

∫ x


k(x, y)f (y)dy, x ∈ (,b). (.)

On the other hand, for  ≤ b < ∞,

S =
{
(x, y) ∈ R

 : b < x≤ y < ∞}
, (.)

� = � = (b,∞), dμ(x) = dx, dμ(y) = dy, and for k, u(x), and v(y) respectively replaced
with kχS ,

u(x)
x , and w(y)

y , Theorem . provides the results dual to Corollary ..

Corollary . For  ≤ b < ∞, let k : (b,∞) × (b,∞) → R and u : (b,∞) → R be non-
negative measurable functions satisfying

K̃(x) =
∫ ∞

x
k(x, y)dy > , x ∈ (b,∞), (.)

and

w̃(y) = y
(∫ y

b
u(x)

(
k(x, y)
K̃(x)

) q
p dx
x

) p
q
< ∞, y ∈ (b,∞).

If  < p ≤ q < ∞ or –∞ < q ≤ p < , � is a non-negative convex function on an interval
I ⊆R and � : I →R satisfies (.), then the inequalities

∫ ∞

b
u(x)�

q
p
(
Ãkf (x)

)dx
x

≤ a
q
p

(∫ ∞

b
w̃(y)�

(
f (y)

)dy
y

) q
p

≤
(
a
a

) q
p
(∫ ∞

b
w̃(y)�

(
f (y)

)dy
y

) q
p

(.)

hold for all measurable functions f : (b,∞)→R with values in I and for Ãkf defined as

Ãkf (x) =


K̃(x)

∫ ∞

x
k(x, y)f (y)dy, x ∈ (b,∞).

Remark . By setting p = q ∈ R \ {} in Corollary . and Corollary ., we obtain a
generalization of [, Theorem .] and [, Theorem .]. Observe that the functions �

and � need not be non-negative in that case.

As a consequence of Corollary ., we get an inequality related to the so-called Riemann-
Liouville operator.

Example . Let b, p, and q be as in Corollary ., the set S be defined by (.), and let
k : (,b) × (,b) → R and u : (,b) → R be defined by k(x, y) = γ

xγ (x – y)γ–χS (x, y) and

http://www.journalofinequalitiesandapplications.com/content/2012/1/259
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u(x) ≡ , where  ≤  – p
q < γ < ∞. Under the conditions of Corollary ., we have

∫ b


�

q
p
(
Rγ f (x)

)dx
x

≤ a
q
p


∫ b


�

q
p
(
Rγ f (x)

)dx
x

≤ a
q
p


(∫ b


wγ (y)�

(
f (y)

)dy
y

) q
p

≤
(
a
a

) q
p
(∫ b


wγ (y)�

(
f (y)

)dy
y

) q
p
, (.)

where Rγ is Riemann-Liouville’s operator given by

Rγ f (x) =
γ

xγ

∫ x


(x – y)γ–f (y)dy, x ∈ (,b), (.)

while for x, y ∈ (,b), we define

wγ (y) = γ

(∫ – y
b


t(γ–)

q
p ( – t)

q
p– dt

) p
q
= γB

p
q

(
 –

y
b
; (γ – )

q
p
+ ,

q
p

)
.

As usual,B(·; ·, ·) denotes the incomplete beta function defined in the introduction. Rewrit-
ing the second line of (.) with �(x) = xp, k ∈ R such that k–

p > , and with b
k–
p and

f (y
p

k– )y
p

k– – instead of b and f (y), after a sequence of suitable variable changes, we obtain
the strengthened Hardy inequality

∫ b


x

q
p (–k)–

(
Rf (x)

)q dx ≤ γ

(
p

γ (k – )

)q+– q
p
(∫ b


wγ ,k(y)f p(y)dy

) q
p

(.)

for non-negative functions f on (,b) (positive, if p < ), where

wγ ,k(y) = B
p
q

(
 –

(
y
b

) k–
p
; (γ – )

q
p
+ ,

q
p

)
yp–k , y ∈ (,b),

and

Rf (x) =
∫ x



[
 –

(
y
x

) k–
p

]γ–

f (y)dy, x ∈ (,b)

(see [] for more details). If the function � is such that (.) holds, then

∫ b


x

q
p (–k)–�

q
p
(
Rf (x)

)
dx

≤ a
q
p
 γ

(
p

γ (k – )

)q+– q
p
(∫ b


wγ ,k(y)f p(y)dy

) q
p

≤
(
a
a

) q
p
γ

(
p

γ (k – )

)q+– q
p
(∫ b


wγ ,k(y)�

(
f (y)

)
dy

) q
p
, (.)

so we obtained a new generalization of (.). Notice that for b = ∞, k = q = p > , γ = ,
and �(x) = xp, x ∈R+, inequalities (.) reduce to the classical Hardy inequality (.).

http://www.journalofinequalitiesandapplications.com/content/2012/1/259
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On the other hand, rewriting the second line of (.) with �(x) = ex and γ = , as well as
with y 	→ log(yf (y)) instead of a positive function f : (,b) → R, we get the strengthened
Pólya-Knopp inequality

∫ b


x

q
p–

(
Gf (x)

) q
p dx ≤ p

q
e
q
p

(∫ b



[
 –

(
y
b

) q
p
] p

q
f (y)dy

) q
p
, (.)

obtained in [], where

Gf (x) = exp

(

x

∫ x


log f (y)dy

)
, x ∈ (,b).

Hence, for the function � : R+ → R satisfying ax ≤ �(x) ≤ ax for a.e. x ∈ R, where
 < a ≤ a < ∞, we get the following generalization of (.):

∫ b


x

q
p–�

q
p
(
Gf (x)

)
dx

≤ a
q
p

p
q
e
q
p

(∫ b



[
 –

(
y
b

) q
p
] p

q
f (y)dy

) q
p

≤ p
q

(
e
a
a

) q
p
(∫ b



[
 –

(
y
b

) q
p
] p

q
�

(
log f (y)

)
dy

) q
p
. (.)

Observe that inequality (.) follows from (.) by taking b = ∞, p = q and �(x) = x,
x ∈R+.

In the sequel, we state and prove inequalities dual to (.)-(.), related to the so-called
Weyl operator.

Example . Suppose  ≤ b < ∞ and S is defined by (.). Define the kernel k : (b,∞)×
(b,∞)→R and the weight function u : (b,∞)→R as k(x, y) = γ x

yγ+ (y– x)γ–χS (x, y) and
u(x) ≡ . For γ ,p,q ∈ R, q

p ≥ , γ >  – p
q , a non-negative function � on an interval I ⊆ R,

a convex function � : I →R fulfilling (.), and a function f : (b,∞)→R with values in I ,
from Corollary . we get the inequalities

∫ ∞

b
�

q
p
(
Wγ f (x)

)dx
x

≤ a
q
p


∫ ∞

b
�

q
p
(
Wγ f (x)

)dx
x

≤ a
q
p


(∫ ∞

b
w̃γ (y)�

(
f (y)

)dy
y

) q
p

≤
(
a
a

) q
p
(∫ ∞

b
w̃γ (y)�

(
f (y)

)dy
y

) q
p
, (.)

whereWγ denotes the Weyl operatorWγ given by

Wγ f (x) = γ x
∫ ∞

x
(y – x)γ–f (y)

dy
yγ+ , x ∈ (b,∞), (.)

and for x, y ∈ (b,∞), we define w̃γ (y) = γB
p
q ( – b

y ; (γ – ) qp + , qp ).
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As in Example ., to get a new dual Hardy inequality, we rewrite (.) with �(x) = xp.
More precisely, let k ∈R be such that p

–k > ,

w̃γ ,k(y) = B
p
q

(
 –

(
b
y

) –k
p
; (γ – )

q
p
+ ,

q
p

)
yp–k , y ∈ (b,∞),

f be a non-negative function on (b,∞) (positive, if p < ), and

Wf (x) =
∫ ∞

x

[
 –

(
x
y

) –k
p

]γ–

f (y)dy, x ∈ (b,∞).

Substituting b
–k
p and f (y

p
–k )y

p
–k + respectively for b and f (y) in the inequality from the

second line of (.), after some computations and using the condition (.), as in [], we
obtain the inequalities

∫ ∞

b
x

q
p (–k)–�

q
p
(
Wf (x)

)
dx

≤ a
q
p
 γ

(
p

γ ( – k)

)q+– q
p
(∫ ∞

b
w̃γ ,k(y)f p(y)dy

) q
p

≤
(
a
a

) q
p
γ

(
p

γ ( – k)

)q+– q
p
(∫ ∞

b
w̃γ ,k(y)�

(
f (y)

)
dy

) q
p
. (.)

For b = , k = q = p > , γ = , and �(x) = xp, x ∈R+ relation (.) reduces to the so-called
classical dual Hardy inequality.
Finally, for γ = , �(x) = x, and y 	→ log(yf (y)) instead of a positive function f : (b,∞) →

R, inequality (.) becomes

∫ ∞

b
x

q
p–�

q
p
(
G̃f (x)

)
dx

≤ a
q
p

p
q
e–

q
p

(∫ ∞

b

[
 –

(
b
y

) q
p
] p

q
f (y)dy

) q
p

≤ p
q

(
a
ea

) q
p
(∫ ∞

b

[
 –

(
b
y

) q
p
] p

q
�

(
log f (y)

)
dy

) q
p
, (.)

where

G̃f (x) = exp

(
x
∫ ∞

x
log f (y)

dy
y

)
, y ∈ (b,∞).

Since for b = , p = q, and�(x) = x, x ∈R+, relation (.) reduces to the so-called classical
dual Pólya-Knopp inequality, our result can be regarded as its generalization.

Remark . It is important to notice that due to variable changes applied, none of the
inequalities from Example . and Example . can be derived directly from Theorem ..

Our analysis continues by considering � = � = R+. We still assume that dμ(x) = dx
and dμ(y) = dy. In the following example, we apply Theorem . to provide a new gener-
alization of the classical Hardy-Hilbert inequality (.).

http://www.journalofinequalitiesandapplications.com/content/2012/1/259
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Example . Let p,q, s ∈ R be such that q
p ≥  and s–

p , s–p′ > –, and let α ∈ (– q
p (

s–
p′ +

), qp (
s–
p +)). Let k :R

+ →R and u :R+ →R be respectively defined by k(x, y) = ( yx )
s–
p (x+

y)–s and u(x) = xα–. Applying Theorem . with�(x) = xp andwith f (y)y
–s
p instead of f (y),

as in [], we get the inequalities

∫ ∞


xα–+ q

p′ (s–)+
q
p �

q
p
(
Sf (x)

)
dx

≤ a
q
p
 CC

q
p′


(∫ ∞


yα

p
q –s+f p(y)dy

) q
p

≤
(
a
a

) q
p
CC

q
p′


(∫ ∞


yα

p
q –s+�

(
f (y)

)
dy

) q
p
, (.)

where

C = B
(
q
p

(
s – 
p

+ 
)
– α,

q
p

(
s – 
p′ + 

)
+ α

)
,

C = B
(
s – 
p

+ ,
s – 
p′ + 

)
,

and Sf denotes the generalized Stieltjes transform of a non-negative function f on R+,

Sf (x) =
∫ ∞



f (y)
(x + y)s

dy, x ∈R+

(see [] and [] for further information). In particular, for p = q > , α = , and s = ,
we have C = C = B( p ,


p′ ) = π

sin π
p
, so (.) provides a new generalization of the classical

Hardy-Hilbert inequality (.).

Similarly, in the next example we generalize the classical Hardy-Littlewood-Pólya in-
equality (.).

Example . Let the parameters p, q, s, α and the functions u and f be as in Example .,
and let k : R

+ → R be defined by k(x, y) = ( yx )
s–
p max{x, y}–s. For a non-negative function

� such that (.) holds, and for f (y)y
–s
p instead of f (y), from Theorem . we get

∫ ∞


xα–+ q

p′ (s–)+
q
p �

q
p
(
Lf (x)

)
dx

≤ a
q
p
 DD

q
p′


(∫ ∞


yα

p
q –s+f p(y)dy

) q
p

≤
(
a
a

) q
p
DD

q
p′


(∫ ∞


yα

p
q –s+�

(
f (y)

)
dy

) q
p
, (.)

where

D =
pp′qs

(αpp′ + p′q + qs – q)(pq + qs – αp – q)
,

D =
pp′s

(p + s – )(p′ + s – )
,

http://www.journalofinequalitiesandapplications.com/content/2012/1/259
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and

Lf (x) =
∫ ∞



f (y)
max{x, y}s dy, x ∈R+

(see [] for more details). For p = q > , α = , and s = , we have D = D = pp′, so it is
not hard to see that our result generalizes the classical Hardy-Littlewood-Pólya inequal-
ity (.).

We complete this section with anotherHardy-Hilbert-type inequality, making use of the
well-known reflection formula for the Digamma function ψ ,

∫ ∞



log t
t – 

t–α dt = ψ ′( – α) +ψ ′(α) =
π

sin πα
, α ∈ (, ),

and of the fact that

Z(a,b) =
∫ ∞


tbe–at

(
 – e–t

)b dt < ∞, a ∈R+,b ≥ .

More precisely, Z(a,b) = �(b+ )φ∗
b (,b+ ,a), where φ∗

μ is the so-called unified Riemann-
Zeta function,

φ∗
μ(z, s,a) =


�(s)

∫ ∞


ts–e–at

(
 – ze–t

)–μ dt,

where μ ≥ , Rea >  and either |z| ≤ , z 
=  and Re s >  or z =  and Re s > μ (for more
information regarding the unified Riemann-Zeta function, see, e.g., []).

Example . Suppose that α ∈ (, ) and p,q,β ∈ R are such that q
p ≥  and α

q
p + β ∈

(–, qp – ). Define the kernel k :R
+ → R by k(x, y) = log y–logx

y–x ( xy )
α and the weight function

u :R+ →R by u(x) = xβ . As in previous two examples, applying Theorem . to �(x) = xp

and to f (y)yα instead of f (y), we get
∫ ∞


xαq+β�

q
p
(
Mf (x)

)
dx

≤ a
q
p
 EE

q
p′


(∫ ∞


yαp+(β+) pq –f p(y)dy

) q
p

≤
(
a
a

) q
p
EE

q
p′


(∫ ∞


yαp+(β+) pq –�

(
f (y)

)
dy

) q
p
, (.)

where

E =
∫ ∞



(
log t
t – 

) q
p
tα

q
p+β dt = Z

(
α
q
p
+ β + ,

q
p

)
+ Z

(
q
p
– α

q
p
– β – ,

q
p

)
,

E =
∫ ∞



log t
t – 

t–α dt =
π

sin πα
,

and

Mf (x) =
∫ ∞



log y – logx
y – x

f (y)dy, x ∈R+.
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Observe that for�(x) = xp relation (.) reduces to a usualHardy-Hilbert-type inequality,
so our result can be seen as a generalization in that direction.

4 Generalizedmultidimensional Hardy-Knopp-type inequalities
In this section, we give a multidimensional result related to Godunova’s inequality (.).
Namely, we improve and generalize inequalities (.) and (.) by considering an arbi-
trary function �, not necessarily convex, such that (.) holds.
Suppose that� = � =R

n
+, dμ(x) = dx, dμ(y) = dy, and that the kernel k :Rn

+ ×R
n
+ →

R is of the form k(x,y) = l( yx ), where l : Rn
+ → R is a non-negative measurable function.

Applying Theorem . to this setting and to u(x) and v(y), respectively replaced with u(x)
x

and w(y)
y , we get the following generalization of Godunova’s inequality (.) and a general-

ization of [, Theorem .].

Theorem . Let  < p ≤ q < ∞ or –∞ < q ≤ p < . Let l and u be non-negative measur-
able functions on R

n
+ such that  < L(x) = x

∫
R
n
+
l(y)dy < ∞ for all x ∈ R

n
+, and that the

function x 	→ u(x)( l(
y
x )

L(x) )
q
p is integrable on R

n
+ for each fixed y ∈ R

n
+. Let the function w be

defined on R
n
+ by

w(y) = y
(∫

R
n
+

u(x)
( l( yx )
L(x)

) q
p dx
x

) p
q
.

If � is a non-negative convex function on an interval I ⊆ R and � : I → R is any function
satisfying (.) for some real constants  < a ≤ a <∞, then the inequality

∫
R
n
+

u(x)�
q
p
(
Alf (x)

)dx
x

≤ a
q
p


(∫
R
n
+

w(y)�
(
f (y)

)dy
y

) q
p

≤
(
a
a

) q
p
(∫

R
n
+

w(y)�
(
f (y)

)dy
y

) q
p

(.)

holds for all measurable functions f :Rn
+ →R with values in I and Al defined by

Alf (x) =


L(x)

∫
R
n
+

l
(
y
x

)
f (y)dy, x ∈R

n
+.

The above result can be reformulated with particular convex functions, for example,
with power and exponential functions. This leads tomultidimensional analogues of corol-
laries and examples from the previous section. Due to the lack of space, we only give a re-
sult regarding the n-dimensional Riemann-Liouville operator. The corresponding result
for the n-dimensional Weyl operator, which provides a generalization and a refinement of
(.), can be obtained by a similar method as in the one-dimensional case.
Following the idea that we have used to get inequality (.), we obtain the next result.

Example . Let γ ,p,q ∈R be such that  ≤  – p
q < γ . Let  < b≤ ∞ and

Sn =
{
(x,y) ∈R

n ×R
n :  < y ≤ x < b

}
. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/259
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Specifying Theorem . for u : Rn
+ → R, u(x) = χSn (x,x), and l : Rn

+ → R, l(x) = γ n( –
x)(γ–)χ(,)(x), we get L(x) = x and the inequalities

∫
(,b)

�
q
p
(
Rγ ,nf (x)

)dx
x

≤ a
q
p


∫
(,b)

�
q
p
(
Rγ ,nf (x)

)dx
x

≤ a
q
p


(∫
(,b)

wγ ,n(y)�
(
f (y)

)dy
y

) q
p

≤
(
a
a

) q
p
(∫

(,b)
wγ ,n(y)�

(
f (y)

)dy
y

) q
p
, (.)

where

Rγ ,nf (x) =
γ n

xγ 

∫
(,x)

(x – y)(γ–)f (y)dy, x ∈ (,b), (.)

and

wγ ,n(y) = γ n
n∏
i=

B
p
q

(
 –

yi
bi
; (γ – )

q
p
+ ,

q
p

)
, y ∈ (,b).

Considering the inequality from the second line of (.) with �(x) = xp, k ∈ R
n such that

k–
p > , and with c = (b

k–
p

 , . . . ,b
kn–
p

n ) and f (y
p

k–
 , . . . , y

p
kn–
n )y

p
k––, respectively instead of

b and f (y), after a sequence of suitable variable changes, we obtain the inequality

∫
(,b)

x
q
p (–k)–

(
Rnf (x)

)q dx
≤ γ n

(
p

γ (k – )

)(q+– q
p )

(∫
(,b)

wγ ,k,n(y)f p(y)dy
) q

p
, (.)

where

wγ ,k,n(y) = yp–k
n∏
i=

B
p
q

(
 –

(
yi
bi

) ki–
p
; (γ – )

q
p
+ ,

q
p

)
, y ∈ (,b),

and

Rnf (x) =
∫
(,x)

{ n∏
i=

[
 –

(
yi
xi

) ki–
p

]}γ–

f (y)dy, x ∈ (,b). (.)

Moreover, if the function � is such that (.) holds, then we get a new generalization of
the strengthened Hardy inequality (.),

∫
(,b)

x
q
p (–k)–�

q
p
(
Rnf (x)

)
dx

≤ a
q
p
 γ n

(
p

γ (k – )

)(q– q
p+)

(∫
(,b)

wγ ,k,n(y)f p(y)dy
) q

p

≤
(
a
a

) q
p
γ n

(
p

γ (k – )

)(q– q
p+)

(∫
(,b)

wγ ,k,n(y)�
(
f (y)

)
dy

) q
p
. (.)
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Notice that (.) generalizes and refines inequality (.). Namely, for p = q and γ = ,
inequality (.) reduces to (.), only with a smaller constant a

a
≤ a

a
on its right-hand

side (since  < a ≤ a).

5 General Hardy-type inequalities for superquadratic functions
To conclude the paper, we state and prove aweightedHardy-type inequality involving gen-
eral measure spaces, a non-negative kernel, and a function boundedwith a superquadratic
function. For reader’s convenience, we recall the notion and some basic properties of su-
perquadratic functions (for more information, see [–]). A function ϕ : [,∞) → R is
called superquadratic provided that for each x≥  there exists a constantCx ∈R such that

�(y) –�(x) –�
(|y – x|) ≥ Cx(y – x)

for all y ≥ . It is known that a continuously differentiable function � : [,∞) → R, such
that �() ≤ , is superquadratic if the function x 	→ � ′(x)

x is non-decreasing on R+ or the
function� ′ is superadditive, that is,� ′(x+y) ≥ � ′(x)+� ′(y), x, y≥  (see [, Lemma.]).
As a consequence, the power function � : [,∞〉 → R, �(x) = xp, is superquadratic for all
p ∈ R+, p ≥ . On the other hand, another important characterization of a superquadratic
function is the refined Jensen inequality

�

(∫
�

f (s)dμ(s)
)
+

∫
�

�

(∣∣∣∣f (s) –
∫

�

f (s)dμ(s)
∣∣∣∣
)
dμ(s)≤

∫
�

�
(
f (s)

)
dμ(s). (.)

It holds for all probability measure spaces (�,μ) and all non-negative μ-integrable func-
tions f on � if and only if � : [,∞) → R is a superquadratic function (see [, Theo-
rem .]).
The following theorem provides the main result of this section.

Theorem . Suppose that (�,�,μ), (�,�,μ), u, k, and K are as in Theorem .,
that the function x 	→ u(x) k(x,y)K (x) is integrable on � for each fixed y ∈ �, and that the pos-
itive function v is defined by

v(y) =
∫

�

u(x)
k(x, y)
K(x)

dμ(x) < ∞, y ∈ �.

If � is a superquadratic function on an interval I ⊆ [,∞) and � : I → R is any function
fulfilling (.) for some constants  < a ≤ a < ∞, then

∫
�

u(x)�
(
Akf (x)

)
dμ(x) +

∫
�

∫
�

u(x)
k(x, y)
K(x)

�
(∣∣f (y) –Akf (x)

∣∣)dμ(x)dμ(y)

≤ a
∫

�

v(y)�
(
f (y)

)
dμ(y) ≤ a

a

∫
�

v(y)�
(
f (y)

)
dμ(y) (.)

holds for all measurable functions f : � → R with values in I and for Akf defined on �

by (.).
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Proof Applying inequality (.) to a superquadratic function � , for each fixed x ∈ �, we
get

�
(
Akf (x)

)
+


K(x)

∫
�

k(x, y)�
(∣∣f (y) –Akf (x)

∣∣)dμ(y)

≤ 
K(x)

∫
�

k(x, y)�
(
f (y)

)
dμ(y).

Therefrom,

∫
�

u(x)�
(
Akf (x)

)
dμ(x) +

∫
�

∫
�

u(x)
k(x, y)
K(x)

�
(∣∣f (y) –Akf (x)

∣∣)dμ(x)dμ(y)

≤ a
[∫

�

u(x)�
(
Akf (x)

)
dμ(x)

+
∫

�

∫
�

u(x)
k(x, y)
K(x)

�
(∣∣f (y) –Akf (x)

∣∣)dμ(x)dμ(y)
]

≤ a
∫

�

u(x)
K(x)

∫
�

k(x, y)�
(
f (y)

)
dμ(y)dμ(x)

= a
∫

�

�
(
f (y)

)(∫
�

u(x)
k(x, y)
K(x)

dμ(x)
)
dμ(y)

= a
∫

�

v(y)�
(
f (y)

)
dμ(y) ≤ a

a

∫
�

v(y)�
(
f (y)

)
dμ(y),

so (.) is proved. �

As in previous sections, the above result can be specified for some usualmeasure spaces.
Namely, suppose � = � = R

n
+, dμ(x) = dx, dμ(y) = dy, and Sn is defined by (.). Ap-

plying Theorem . to this setting and to u(x), k(x,y), and v(y) respectively replaced with
u(x)
x χSn (x,x), k(x,y)χSn (x,y), and

w(y)
y , we immediately obtain the following corollary.

Corollary . Let  < b ≤ ∞, and let k : (,b) × (,b) → R and u : (,b) → R be non-
negative measurable functions such that

K(x) =
∫
(,x)

k(x,y)dy > , x ∈ (,b),

and

w(y) = y
∫
(y,b)

u(x)
k(x,y)
K(x)

dx
x

<∞, y ∈ (,b).

If a real-valued function � is superquadratic on an interval I ⊆ [,∞) and � : I → R

satisfies (.), then

∫
(,b)

u(x)�
(
Akf (x)

)dx
x

+
∫
(,b)

∫
(y,b)

u(x)
k(x,y)
K(x)

�
(∣∣f (y) –Akf (x)

∣∣)dx
x

dy

≤ a
∫
(,b)

w(y)�
(
f (y)

)dy
y

≤ a
a

∫
(,b)

w(y)�
(
f (y)

)dy
y

(.)
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holds for all measurable functions f : (,b)→R with values in I and for Akf defined as

Akf (x) =


K(x)

∫
(,x)

k(x,y)f (y)dy, x ∈ (,b).

Remark . Observe that for n = , k(x,y) ≡ , and a superquadratic function � (that is,
for a = a), inequality (.) reduces to [, Proposition .], so our result can be regarded
as its generalization.

Analogously, applying Theorem . to u(x), k(x,y), and v(y) respectively replaced with
u(x)
x χSn (x,x), k(x,y)χSn (x,y), and

w(y)
y , where ≤ b < ∞ and Sn = {(x,y) ∈R

n ×R
n : b < x ≤

y < ∞}, we get the following result dual to Corollary ..

Corollary . Let ≤ b <∞, and let k : (b,∞)× (b,∞)→R and u : (b,∞)→R be non-
negative measurable functions such that

K̃(x) =
∫
(x,∞)

k(x,y)dy > , x ∈ (b,∞),

and

w̃(y) = y
∫
(b,y)

u(x)
k(x,y)
K̃(x)

dx
x

<∞, y ∈ (b,∞).

If � is a superquadratic function on an interval I ⊆ [,∞) and � : I → R satisfies (.),
then

∫
(b,∞)

u(x)�
(
Ãkf (x)

)dx
x

+
∫
(b,∞)

∫
(b,y)

u(x)
k(x,y)
K̃(x)

�
(∣∣f (y) – Ãkf (x)

∣∣)dx
x

dy

≤ a
∫
(b,∞)

w̃(y)�
(
f (y)

)dy
y

≤ a
a

∫
(b,∞)

w̃(y)�
(
f (y)

)dy
y

(.)

holds for all measurable functions f : (b,∞)→R with values in I and for Ãkf defined by

Ãkf (x) =


K̃(x)

∫
(x,∞)

k(x,y)f (y)dy, x ∈ (b,∞).

Remark . For n = , k(x,y) = y–, and a superquadratic function � (that is, for a =
a), relation (.) reduces to [, Proposition .]. Hence, our results can be seen as its
generalization.

Finally, we apply Corollary . to the superquadratic function� : [,∞)→R,�(x) = xp,
where p ≥ , and to some particular weights and kernels deducing a new class of multidi-
mensional Hardy-type inequalities.

Example . Let p,γ ∈ R+, p ≥ , and let  < b ≤ ∞. Rewriting Corollary . with I =
[,∞), �(x) = xp, u(x) ≡ , and k(x,y) = γ n

xγ  (x – y)(γ–)χSn (x,y), where Sn is defined by

http://www.journalofinequalitiesandapplications.com/content/2012/1/259
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(.), we get

∫
(,b)

�
(
Rγ ,nf (x)

)dx
x

+ γ n
∫
(,b)

∫
(y,b)

(x – y)(γ–)�
(∣∣f (y) – Rγ ,nf (x)

∣∣) dx
x(γ+)

dy

≤ a
∫
(,b)

(
Rγ ,nf (x)

)p dx
x

+ aγ n
∫
(,b)

∫
(y,b)

(x – y)(γ–)
∣∣f (y) – Rγ ,nf (x)

∣∣p dx
x(γ+)

dy

≤ a
∫
(,b)

wγ ,n(y)f p(y)
dy
y

≤ a
a

∫
(,b)

wγ ,n(y)�
(
f (y)

)dy
y

. (.)

As in Example ., the operator Rγ ,n is given by (.), while

wγ ,n(y) = γ n
n∏
i=

B
(
 –

yi
bi
;γ , 

)
=

(
 –

y
b

)γ 

, y ∈ (,b).

Considering the second inequality in (.) with k ∈ R
n such that k–

p >  and with c =

(b
k–
p

 , . . . ,b
kn–
p

n ) and f (y
p

k–
 , . . . , y

p
kn–
n )y

p
k–– instead of b and f (y) respectively, after a se-

quence of variable changes as in Example ., we deduce the inequality

∫
(,b)

x–k
(
Rnf (x)

)p dx +(
γ (k – )

p

) ∫
(,b)

∫
(y,b)

n∏
i=

[
 –

(
yi
xi

) ki–
p

]γ–

×
∣∣∣∣
(

p
γ (k – )

)

f (y)
(
y
x

)– k–
p

–

x

Rnf (x)
∣∣∣∣
p

xp–k–
k–
p y

k–
p – dxdy

≤
(

p
γ (k – )

)p ∫
(,b)

n∏
i=

[
 –

(
yi
bi

) ki–
p

]γ

yp–kf p(y)dy, (.)

where Rn is defined by (.). Combining (.) and (.), we obtain

∫
(,b)

x–k�
(
Rnf (x)

)
dx +

(
γ (k – )

p

) ∫
(,b)

∫
(y,b)

n∏
i=

[
 –

(
yi
xi

) ki–
p

]γ–

× �

(∣∣∣∣
(

p
γ (k – )

)

f (y)
(
y
x

)– k–
p

–

x

Rnf (x)
∣∣∣∣
)
xp–k–

k–
p y

k–
p – dxdy

≤ a
a

(
p

γ (k – )

)p ∫
(,b)

n∏
i=

[
 –

(
yi
bi

) ki–
p

]γ

yp–k�
(
f (y)

)
dy. (.)

Notice that our inequalities (.) and (.) generalize the results from [] since inequality
(.) reduces to [, Theorem .] for n = γ = .

A result dual to (.) generalizes the corresponding inequality from [, Theorem .]. It
is omitted since it can be deduced similarly, starting from Corollary ..
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