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1 Introduction
As indicated in the books [, ] and the surveys [, ], the polynomial-like iterative equa-
tion

λf (x) + λf (x) + · · · + λnf n(x) = F(x), x ∈ S, (.)

where S is a subset of a linear space overR, F : S → S is a given function, λis (i = , . . . ,n) are
real constants, f : S → S is the unknown function, and f i is the ith iterate of f , i.e., f i(x) =
f (f i–(x)) and f (x) = x for all x ∈ S, is one of the important forms of a functional equation
since the problem of iterative roots and the problem of invariant curves can be reduced
to the kind of equations. Many works have been contributed to studying single-valued
solutions for Eq. (.); for example, in [–] for the case of linear F , [, ] for n = , []
for general n, [, ] for smoothness, [] for analyticity, [–] for convexity, [–] in
high-dimensional spaces. However, a multifunction (called multi-valued function or set-
valued map sometimes) is an important class of mappings often used in control theory
[], stochastics [], artificial intelligence [], and economics []. Hence, it gets more
interesting to study multi-valued solutions for Eq. (.), i.e., the equation

λF(x) + λF(x) + · · · + λnFn(x) =G(x), x ∈ I := [a,b], (.)

where n≥  is an integer, λis (i = , . . . ,n) are real constants,G is a givenmultifunction, and
F is an unknown multifunction. Here the ith iterate Fi of the multifunction F is defined
recursively as

Fi(x) :=
⋃{

F(y) : y ∈ Fi–(x)
}
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and F(x) :≡ {x} for all x ∈ I . In , Nikodem and Zhang [] discussed Eq. (.) for
n =  with an increasing upper semi-continuous (USC) multifunction G on I = [a,b] and
proved the existence and uniqueness of USC solutions under the assumption that G has
fixed points a and b and λ, λ are both constants such that λ > λ ≥  and λ + λ = .
As pointed out in [], the generalization to USC multifunctions for Eq. (.) is rather
difficult even if n = . Hence, discussing Eq. (.) for n ≥  evokes great interest, but the
greatest difficulty is that the multifunction has no Lipschitz condition. In , this diffi-
culty was overcome by introducing the class of unblended multifunctions, the existence
of USC multi-valued solutions for a modified form of the equation

λF(x) =G(x) – λF(x) – · · · – λnFn(x), x ∈ I, (.)

was proved in []. K-convex multifunctions, which are generalization of vector-valued
convex functions, have wide applications in optimization (cf. []) and play an important
role in various questions of convex analysis (cf. []). However, up to now, there are no
results on convexity of multi-valued solutions for the iterative equation (.). In this note,
we study the convexity of multi-valued solutions for Eq. (.). We prove the existence and
uniqueness of K-convex solutions in some class of multifunctions for Eq. (.).

2 K-convexmultifunctions
As in [], let X and Y be linear spaces and K ⊂ Y be a convex cone, i.e., K + K ⊂ K and
λK ⊂ K for all λ ≥ . Let � ⊂ X be a convex set. A multifunction T : X → Y is said to be
K-convex on � if

λT(x) + ( – λ)T(y)⊂ T
(
λx + ( – λ)y

)
+K , ∀x, y ∈ �,λ ∈ [, ].

A convex multifunction [] may be stated as θ -convex and the convexity of a real-valued
function may be stated as R+-convex, and concavity as R–-convex, where R+ := [,+∞)
and R

– := (–∞, ]. Let F (I) be the set of all multifunctions F : I → cc(I), where cc(I) de-
notes the family of all nonempty closed subintervals of I .
Considering R

+-convex multifunctions and R
–-convex multifunctions, the following

lemmas are obvious.

Lemma . Let F(x) ∈F (I). Then the multifunction F(x) is R+-convex on I if and only if

min
(
λF(x) + ( – λ)F(x)

) ≥ minF
(
λx + ( – λ)x

)
, ∀x,x ∈ I,λ ∈ [, ]. (.)

Lemma . Let F(x) ∈F (I). Then the multifunction F(x) is R–-convex on I if and only if

max
(
λF(x) + ( – λ)F(x)

) ≤ maxF
(
λx + ( – λ)x

)
, ∀x,x ∈ I,λ ∈ [, ]. (.)

3 Some lemmas
In order to prove our main results, we give the following useful property (cf. [, ]).

Lemma. For A,B,C,D ∈ cc(I) and for an arbitrary real λ, the following properties hold:
(a) h(A +C,B +C) = h(A,B),
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(b) h(λA,λB) = |λ|h(A,B),
(c) h(A +C,B +D) ≤ h(A,B) + h(C,D),

where

h(A,B) =max
{
sup

{
d(x,B) : x ∈ A

}
, sup

{
d(y,A) : y ∈ B

}}
.

As defined in [, Definition ..], a multifunction F : I → cc(I) is increasing (resp.
strictly increasing) if maxF(x) ≤ minF(x) (resp. maxF(x) < minF(x)) for all x,x ∈ I
with x < x. Amultifunction F : I → cc(I) is upper semi-continuous (USC) at a point x ∈ I
if for every open set v⊂Rwith F(x) ⊂ V , there exists a neighborhoodUx of x such that
F(x)⊂ V for every x ∈Ux . F is USC on I if it is USC at every point in I . For convenience,
let

USIC+(I) :=
{
F ∈F (I) : F is USC, strictly increasing and R

+-convex on I
}

and

USIC–(I) :=
{
F ∈F (I) : F is USC, strictly increasing and R

–-convex on I
}
.

Remark . If F ∈ USIC+(I) (resp. USIC–(I)), I = [a,b], then F must be single-valued on
[a,b) (resp. (a,b]).

Lemma . F ◦ F ∈USIC+(I) (resp. USIC–(I)) for F,F ∈USIC+(I) (resp. USIC–(I)).

Proof By Lemma . in [], we only need to prove that F ◦ F is R+-convex on I (resp.
R

–-convex on I). We first prove that F ◦ F is R+-convex on I for F,F ∈ USIC+(I). By
Lemma ., the fact that F is R+-convex on I implies that

min
(
λF(x) + ( – λ)F(x)

) ≥ minF
(
λx + ( – λ)x

)
, ∀x,x ∈ I,λ ∈ [, ].

Hence, for all y ∈ λF(x) + ( – λ)F(x),

y≥ minF
(
λx + ( – λ)x

)
holds. Note that F is strictly increasing. Consequently,

minF(y) ≥ minF
(
minF

(
λx + ( – λ)x

))
= minF ◦ F

(
λx + ( – λ)x

)
.

So

minF
(
λF(x) + ( – λ)F(x)

)
= min

⋃{
F(y) : y ∈ λF(x) + ( – λ)F(x)

}
≥ minF ◦ F

(
λx + ( – λ)x

)
. (.)

By

min
(
λF ◦ F(x) + ( – λ)F ◦ F(x)

)
= λminF ◦ F(x) + ( – λ)minF ◦ F(x),

http://www.journalofinequalitiesandapplications.com/content/2012/1/258
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we have

min
(
λF ◦ F(x) + ( – λ)F ◦ F(x)

) ≥ minF
(
λminF(x) + ( – λ)minF(x)

)
= minF

(
min

(
λF(x) + ( – λ)F(x)

))
= minF

(
λF(x) + ( – λ)F(x)

)

because F is R+-convex. Hence, by (.)

min
(
λF ◦ F(x) + ( – λ)F ◦ F(x)

)
≥ minF ◦ F

(
λx + ( – λ)x

)
, ∀x,x ∈ I,λ ∈ [, ].

F ◦ F ∈USIC+(I) is proved.
Next, we prove F ◦ F is R–-convex on I for F,F ∈ USIC–(I). By Lemma ., the fact

that F is R–-convex on I implies that

max
(
λF(x) + ( – λ)F(x)

) ≤ maxF
(
λx + ( – λ)x

)
, ∀x,x ∈ I,λ ∈ [, ].

Hence, for all y ∈ λF(x) + ( – λ)F(x),

y≤ maxF
(
λx + ( – λ)x

)

holds. Note that F is strictly increasing. Consequently,

maxF(y) ≤ maxF
(
maxF

(
λx + ( – λ)x

))
= maxF ◦ F

(
λx + ( – λ)x

)
.

So

maxF
(
λF(x) + ( – λ)F(x)

)
= max

⋃{
F(y) : y ∈ λF(x) + ( – λ)F(x)

}
≤ maxF ◦ F

(
λx + ( – λ)x

)
. (.)

By

max
(
λF ◦ F(x) + ( – λ)F ◦ F(x)

)
= λmaxF ◦ F(x) + ( – λ)maxF ◦ F(x),

it follows that

max
(
λF ◦ F(x) + ( – λ)F ◦ F(x)

) ≤ maxF
(
λmaxF(x) + ( – λ)maxF(x)

)
= maxF

(
max

(
λF(x) + ( – λ)F(x)

))
= maxF

(
λF(x) + ( – λ)F(x)

)

http://www.journalofinequalitiesandapplications.com/content/2012/1/258
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because F is R–-convex. Hence, by (.)

max
(
λF ◦ F(x) + ( – λ)F ◦ F(x)

)
≤ maxF ◦ F

(
λx + ( – λ)x

)
, ∀x,x ∈ I,λ ∈ [, ].

This completes the proof of F ◦ F ∈USIC–(I). �

Define

USIC+∗(I) :=
{
F ∈USIC+(I) :minF(x) > x,x ∈ int I

}
,

USIC–∗(I) :=
{
F ∈USIC–(I) :minF(x) > x,x ∈ int I

}
,

USIC+
∗ (I) :=

{
F ∈USIC+(I) :minF(x) < x,x ∈ int I

}
,

USIC–
∗ (I) :=

{
F ∈USIC–(I) :minF(x) < x,x ∈ int I

}
,

USIC+(I,m,M) :=
{
F ∈USIC+(I) :m(x – x)≤ F(x) – F(x) ≤ M(x – x),

x < x,x,x ∈ int I,maxF(b) = b
}
,

USIC–(I,m,M) :=
{
F ∈USIC–(I) :m(x – x) ≤ F(x) – F(x) ≤M(x – x),

x < x,x,x ∈ int I,minF(a) = a
}
,

where I = [a,b] andM >m > .

Remark . The condition maxF(b) = b for F ∈ USIC+(I,m,M) (minF(a) = a for F ∈
USIC–(I,m,M)) guarantees that the iterations Fn, n = , , . . . , are also multifunctions.

Lemma. USIC+(I,m,M) andUSIC–(I,m,M) are completemetric spaces equippedwith
the distance

D(F,F) := sup
{
h
(
F(x),F(x)

)
: x ∈ I

}
.

Proof By Lemma . in [], we only need to prove that if {Fn} ⊂USICσ (I,m,M) such that
limn→∞ Fn = F(x) in USI(I,m,M), i.e.,

lim
n→∞D(Fn,F) = , (.)

then F(x) is Rσ -convex on I , where σ = + or σ = –. We first prove the case of USIC+(I,
m,M). By (.), we have limn→∞ h(Fn(x),F(x)) = , ∀x ∈ I . Hence,

lim
n→∞h

(
Fn

(
λx + ( – λ)x

)
,F

(
λx + ( – λ)x

))
= , ∀x,x ∈ I,λ ∈ [, ]. (.)

Note that by Lemma .,

lim
n→∞h

(
λFn(x),λF(x)

)
= , ∀x ∈ I,λ ∈ [, ]

and

lim
n→∞h

(
( – λ)Fn(x), ( – λ)F(x)

)
= , ∀x ∈ I,λ ∈ [, ].

http://www.journalofinequalitiesandapplications.com/content/2012/1/258
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Hence,

lim
n→∞h

(
λFn(x) + ( – λ)Fn(x),λF(x) + ( – λ)F(x)

)
= ,

∀x,x ∈ I,λ ∈ [, ]. (.)

By (.) and (.), we have for every ε > , there exists n ∈N such that

Fn
(
λx + ( – λ)x

) ⊂ F
(
λx + ( – λ)x

)
+

(
–

ε


,
ε



)
(.)

and

λF(x) + ( – λ)F(x) ⊂ λFn (x) + ( – λ)Fn (x) +
(
–

ε


,
ε



)
, (.)

∀x,x ∈ I , λ ∈ [, ]. Consequently,

min
(
λF(x) + ( – λ)F(x)

) ≥ min
(
λFn (x) + ( – λ)Fn (x)

)
–

ε



≥ minFn
(
λx + ( – λ)x

)
–

ε


≥ minF

(
λx + ( – λ)x

)
– ε

because Fn (x) is R+-convex on I . Hence,

min
(
λF(x) + ( – λ)F(x)

) ≥ minF
(
λx + ( – λ)x

)
,

which shows that F(x) is R+-convex on I .
Next we prove the case of σ = –. By (.) and (.), we have for every ε > ,

max
(
λF(x) + ( – λ)F(x)

) ≤ max
(
λFn (x) + ( – λ)Fn (x)

)
+

ε



≤ maxFn
(
λx + ( – λ)x

)
+

ε


≤ maxF

(
λx + ( – λ)x

)
+ ε

because Fn (x) is R–-convex on I . Hence,

max
(
λF(x) + ( – λ)F(x)

) ≤ maxF
(
λx + ( – λ)x

)
,

which shows that F(x) is R–-convex on I . The proof is completed. �

Define

USIC+∗(I,m,M) :=USIC+∗(I)∩USIC+(I,m,M),

USIC+
∗ (I,m,M) :=USIC+

∗ (I)∩USIC+(I,m,M),

USIC–∗(I,m,M) :=USIC–∗(I)∩USIC–(I,m,M),

USIC–
∗ (I,m,M) :=USIC–

∗ (I)∩USIC–(I,m,M),

http://www.journalofinequalitiesandapplications.com/content/2012/1/258
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USIC+
∗ (I,m,M) is a closed subset of USIC+(I,m,M). USIC–∗(I,m,M) is a closed subset of

USIC–(I,m,M).
By Lemma ., one can prove the following result.

Lemma . Fi ∈ USIC+
∗ (I,mi,Mi) (resp. USIC–∗(I,mi,Mi)) if F ∈ USIC+

∗ (I,m,M) (resp.
USIC–∗ (I,m,M)).

Lemma . If F,F ∈USIC+
∗ (I,m,M) (resp. USIC–∗(I,m,M)), then

D
(
Fi
,F

i

) ≤

( i–∑
j=

Mj

)
D(F,F).

The proof of Lemma . is similar to that of Lemma . in []. We omit it here.

4 Convex solutions
Theorem . Suppose that λ > , λi ≤  (i = , . . . ,n) and

∑n
i= λi =  and G ∈ USIC–∗(I,

m,M) with M >m > . Then for arbitrary constants M >m >  satisfying

m ≤ m +
∑n

i= |λi|mi

λ
, M ≥ M +

∑n
i= |λi|Mi

λ
, (.)

Eq. (.) has a unique solution F ∈USIC–∗(I,m,M) if

d :=

λ

n∑
i=

|λi|
i–∑
j=

Mj < . (.)

Proof Define the mapping L :USIC–∗(I,m,M) →F (I) by

LF(x) =

λ

(
G(x) –

n∑
i=

λiFi(x)

)
, ∀x ∈ I. (.)

By Lemma ., Fi(x), i = , . . . ,n are strictly increasing R
–-convex on I because F(x) is

strictly increasing R
–-convex. Since G(x) is R–-convex on I and max(A + B) = maxA +

maxB, we have

max
(
λLF(x) + ( – λ)L(x)

)
=


λ

(
maxλG(x) –

n∑
i=

λimaxλFi(x)

)

+

λ

(
max( – λ)G(x) –

n∑
i=

λimax( – λ)Fi(x)

)

=

λ

(
max

(
λG(x) + ( – λ)G(x)

))
–


λ

( n∑
i=

λimax
(
λFi(x) + ( – λ)Fi(x)

))

≤ 
λ

(
maxG

(
λx + ( – λ)x

)
–

n∑
i=

λimaxFi(λx + ( – λ)x
))

=maxLF
(
λx + ( – λ)x

)
, ∀x,x ∈ I,λ ∈ [, ].

http://www.journalofinequalitiesandapplications.com/content/2012/1/258
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Hence, LF(x) isR–-convex on I . Obviously, LF(x) is strictly increasing and LF(x) > x for x ∈
int I . Similar to the proof of Theorem. in [], by Lemma . and condition (.), LF(x) ∈
USIC–∗(I,m,M). Thus, we have proved that LF(x) is a self-mapping on USIC–∗(I,m,M).
By Lemma . and condition (.), L is a contractionmap. By Lemma .,USIC–∗(I,m,M)
is a completemetric space. Using Banach’s fixed point principle, L has a unique fixed point
F in USIC–∗(I,m,M), i.e.,

F(x) =

λ

(
G(x) –

n∑
i=

λiFi(x)

)
, ∀x ∈ I.

This completes the proof. �

Wenote the fact thatA+B ⊃ C if the setsA, B,C satisfyA = C–B. Hence, every solution
F of Eq. (.) satisfies

λF(x) + λF(x) + · · · + λnFn(x) ⊃G(x), ∀x ∈ I. (.)

We have the following result.

Corollary . Under the same conditions as in Theorem ., there exists a multifunction
F ∈USIC–∗ (I,m,M) such that (.) holds.

For multifunctions in the other class USIC+
∗ (I,m,M), we have a similar result to Theo-

rem .. It can be proved similarly.

Theorem . Suppose that λ > , λi ≤  (i = , . . . ,n) and
∑n

i= λi =  and G ∈ USIC+
∗ (I,

m,M)withM >m > .Then for arbitrary constantsM >m >  satisfying (.), Eq. (.)
has a unique solution F ∈USIC+

∗ (I,m,M) if condition (.) holds.

Corollary . Under the same conditions as in Theorem ., there exists a multifunction
F ∈USIC+

∗ (I,m,M) such that (.) holds.

Remark . Although the assumption F ∈ USIC–∗(I) (or USIC+
∗ (I)) implies that F is

single-valued on [a,b) (or (a,b]), but Eq. (.) cannot be considered on the interval [a,b)
(or (a,b]) as a single-valued case and the point b (or a) as a multi-valued case, respectively,
because there is no meaning at the point b (or a).

Remark . By Remark ., there is no strictly increasing R
+-convex multifunction in

USIC+∗(I,m,M). The same applies to the case of USIC–
∗ (I,m,M). Consequently, Eq. (.)

has no solution in USIC+∗(I,m,M) (resp. USIC–
∗ (I,m,M)).

Remark . By Theorem . and Theorem ., we actually only prove the existence and
uniqueness ofK-convex (K =R

+ andK =R
–, i.e.,K is not a nontrivial convex cone)multi-

valued solutions for Eq. (.). In fact, there is no convex multi-valued (i.e., {}-convex
multi-valued) solutions for Eq. (.) in the multifunction class USI(I). Since F(x) is a con-
vex multi-valued function on I if and only if

minλF(x) +min( – λ)F(y) ≥ minF
(
λx + ( – λ)y

)
and

maxλF(x) +max( – λ)F(y)≤ maxF
(
λx + ( – λ)y

)
, ∀x, y ∈ I,λ ∈ [, ].

(.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/258
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Hence, if Eq. (.) has a convex multi-valued solution F in USI(I), then F must be strictly
increasing on I , which is contradictory to (.).

Remark . We point out that we actually only have proved a special class of K-convex
solutions, i.e., strictly increasing K-convex solutions of Eq. (.). It is very difficult to dis-
cuss K-convex solutions of Eq. (.) which are not strictly increasing because the method
in [] cannot be used. Discussing non-strictly-increasing K-convex solutions of Eq. (.)
will be the subject of our next work.

5 Examples
We give an example to illustrate the applications of Theorem .. Consider the equation



F(x) =G(x) +



F(x), x ∈ I := [, ], (.)

where n = , λ = 
 , λ = , λ = – 

 and

G(x) =

⎧⎨
⎩[,  ], x = ,

√
x+
 , x ∈ (, ].

(.)

Clearly, G ∈USIC–∗(I,m,M), where

m =



, M =



.

Let m = 
 and M = . It is easy to check that both (.) and (.) hold. Thus, by Theo-

rem ., Eq. (.) has a unique solution F ∈USIC–∗(I,m,M).

Remark . Example (.) cannot be solved by known single-valued results.
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