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Abstract

The aim of this work is to define the notion of compatible random operators in a
partially ordered metric space and prove some coupled random coincidence
theorems for a pair of compatible mixed monotone random operators satisfying
(@, )-weak contractive conditions. These results present random versions and
extensions of recent results of Ciri¢ and Lakshmikantham (Stoch. Anal. Appl.
27:1246-1259, 2009), Choudhury and Kundu (Nonlinear Anal. 73:2524-2531, 2010),
Alotaibi and Alsulami (Fixed Point Theory Appl. 2011:44,2011) and many others.

1 Introduction

Random coincidence point theorems are stochastic generalizations of classical coinci-
dence point theorems. Some random fixed point theorems play an important role in the
theory of random differential and random integral equations (see [1, 2]). Random fixed
point theorems for contractive mappings on separable complete metric spaces have been
proved by several authors [3-8]. Sehgal and Singh [9] have proved different stochastic ver-
sions of the well-known Schauder fixed point theorem. Fixed point theorems for mono-
tone operators in ordered Banach spaces have been investigated and have found various
applications in differential and integral equations (see [10-12] and references therein).
Fixed point theorems for mixed monotone mappings in partially ordered metric spaces
are of great importance and have been utilized for matrix equations, ordinary differen-
tial equations, and for the existence and uniqueness of solutions for some boundary value
problems (see [13-19]).

Recently Ciri¢ and Lakshmikantham [20] and Zhu and Xiao [21] proved some coupled
random fixed point and coupled random coincidence results in partially ordered com-
plete metric spaces. The purpose of this article is to improve these results for a pair of
compatible mixed monotone random mappings F: Q2 x (X x X) > X andg: Q2 x X — X,
where F and g satisfy the (¢, ¢)-weak contractive conditions. Presented results are also the

extensions and improvements of the corresponding results in [22-24] and many others.

2 Preliminaries

Recall that if (X, <) is a partially ordered set and F : X — X is such that for x,y € X,
x <y implies F(x) < F(y), then a mapping F is said to be non-decreasing. Similarly, a
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non-increasing map may be defined. Bhaskar and Lakshmikantham [25] introduced the
following notions of a mixed monotone mapping and a coupled fixed point.

Definition 2.1 ([25]) Let (X, <) be a partially ordered setand F : X x X — X. The mapping
F is said to have the mixed monotone property if F is monotone non-decreasing in its first
argument and is monotone non-increasing in its second argument, that is, for any x, y € X,

x1,% €X; x<x = Flx1,9) <F(x2,9)
and

Yy €X; <y = Flxy)=Fxy).

Definition 2.2 ([25]) An element (x,y) € X x X is called a coupled fixed point of the
mapping F: X x X — X if

F(x,y) = x, F(y,x) =y.
The concept of the mixed monotone property is generalized in [24].

Definition 2.3 ([24]) Let (X, <) be a partially ordered set and F : X x X — X and
g: X — X. The mapping F is said to have the mixed g-monotone property if F is monotone
g-non-decreasing in its first argument and is monotone g-non-increasing in its second ar-
gument, that is, for any %,y € X,

xX1,% € X; gx) <glx) = F(x,y) < Flxa,y)
and
Y,92 €X; gon) <glyn) = Flx,y) = Fx,y2).

Definition 2.4 An element (x,y) € X x X is called a coupled fixed point of the mapping
F:XxX—Xandg: X — Xif

F(x,y) = g(x), F(y,x) = g(y).

Definition 2.5 The mappings F and g, where F: X x X — X and g: X — X, are said to
be compatible if

nlingod(g(F(xn,yn)),F(g(xn)»g(%))) =0

and

lim d(g(F()/n,xn))rF(g(Yn)’g(xn))) =0,

n—00

whenever {x,}, {y,} are sequences in X such that lim,,_, o, F(x,,, y,,) = lim,,—, o g(x,) = x and
limy,—, o0 F (¥, %) = limy,, 00 g(y,) = y for all x,y € X are satisfied.
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Using the concept of compatible maps and the mixed g-monotone property, Choudhury
and Kundu [23] proved the following theorem.

Theorem 2.6 Let (X, <) be a partially ordered set, and let there be a metric d on X such
that (X,d) is a complete metric space. Let ¢ : [0,00) — [0,00) be such that ¢(t) < t and
limit,,p(r)<tforallt>0.Let F: X x X — X and g : X — X be two mappings such that
F has the mixed g-monotone property and satisfy

d(F(x,y), Fu,v)) < ¢ (d(gx’g”) + d@’%p))

2

for all x,y,u,v € X, for which gx < gu and gy > gv. Let F(X x X) C g(X), g be continuous
and monotone increasing and F and g be compatible mappings. Also, suppose either
(a) F is continuous or
(b) X has the following properties:
(i) if a non-decreasing sequence {x,} — x, then x, <x for alln > 0,
(i) if a non-increasing sequence {y,} — y, then y,, >y for all n > 0.
If there exist xo,y0 € X, such that g(xo) < F(xo,y0) and g(yo) > F(yo,%0), then there exist
x,y € X suchthatg(x) = F(x,y) and g(y) = F(y,x), that is, F and g have a coupled coincidence
pointin X.

As in [17], let ® denote all functions ¢ : [0, 00) — [0, c0) which satisfy

1. ¢ is continuous and non-decreasing,

2. ¢(¢)=0ifand onlyift =0,

3. ¢t +5) <@(t) + ¢(s), Ve, s € [0,00),
and let W denote all the functions i : [0, 00) — (0, 00) which satisfy lim;_, . ¥ (£) > 0 for all
r>0 and lim;_ o+ ¥ () = 0.

Alotaibi and Alsulami in [22] proved the following coupled coincidence result for mono-

tone operators in partially ordered metric spaces.
Theorem 2.7 Let (X, <) be a partially ordered set and suppose there is a metric d on X

such that (X, d) is a complete metric space. Let F : X x X — X be a mapping having the

mixed g-monotone property on X such that there exist two elements xg,yo € X with
gxo < Flxo,y0)  and  gyo = F(yo,Xo).

Suppose there exist ¢ € ® and ¢ € V such that

¢ (d(F(x,9), F(u,v))) <

d(gx, d(gy,
¢(d(gx,gu) + d(gy,gv)) - w( (e, gu) + digy gv))

2

N =

forallx,y,u,v e X with gx > gu and gy < gv. Suppose F(X x X) C g(X), g is continuous and
compatible with F and also suppose either
(a) F is continuous or
(b) X has the following property:
(i) if a non-decreasing sequence {x,} — x, then x, < x for all n,

(i) if a non-increasing sequence {y,} — y, then'y <y, for all n.
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Then there exists x,y € X such that
gx=F(x,y) and gy=F(y,x)
that is, F and g have a coupled coincidence point in X.

3 Main results

Let (€2, X) be a measurable space with ¥ being a sigma algebra of subsets of €2, and let
(X, d) be a metric space. A mapping T : Q@ — X is called X-measurable if for any open
subset U of X, TX(U) = {w : T(w) € U} € . In what follows, when we speak of mea-
surability, we will mean X -measurability. A mapping T: 2 x X — X is called a random
operator if for any x € X, T(-,x) is measurable. A measurable mapping ¢ : 2 — X is called
a random fixed point of a random function 7: Q x X — X if {(w) = T'(w, { (w)) for every
€ Q2. A measurable mapping ¢ : 2 — X is called a random coincidenceof T: @ x X — X
andg: Q2 x X — X if g(w, ¢ (w)) = T(w, { (w)) for every w € Q.

Definition 3.1 Let (X, d) be a separable metric space and (2, ¥) be a measurable space.
Then F: Q x (X x X) - X and g: Q2 x X — X are said to be compatible random operators
if

lim d(g(w,F(a), (x,,,y,,))),F(a), (g(w,x,,),g(w,y,,)))) =0

n—00

and

lim d(g(e, F(@, 0 %)), F (s (g, 9), g(@: %)) )) = O
whenever {x,}, {y,} are sequences in X, such that lim,,_, oo F(w, (x,, y,)) = lim,,—, o0 g(w, x,,) =
x and limy,_, o0 F(w, (¥, %4)) = lim,,, 00 g(@, y,) = y for all w € Q and x,y € X are satisfied.

Asin [23], let ¢ : [0,00) — [0, 00) be such that ¢(£) < ¢t and limit,_,;+@(r) < t for all £ > 0.

Now, we state our main result.

Theorem 3.2 Let (X, <,d) be a complete separable partially ordered metric space, (2, X)
be a measurable space, and F : Q@ x (X x X) = X and g : Q x X — X be mappings such
that
(i) g(w,-) is continuous for all w € 2;
(i) F(-,v), g(-,x) are measurable for all ve X x X and x € X respectively;
(ili) F(w,-) has the mixed g(w, -)-monotone property for each w € Q and

d(F(a), (x,y)),F(a), (u, V))) <o <d(g(w» x),8(w, u)) + d(g(w,y),g(w, V))) o

2

forall x,y,u,v € X, for which g(w,x) < g(w,u) and g(w,y) > g(w,v) for all o € Q.
Suppose g(w x X) = X for each w € Q, g is monotone increasing, and F and g are com-
patible random operators. Also suppose either
(@) F(w,-) is continuous for all w € Q or
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(b) X has the following property:

if a non-decreasing sequence {x,} — x, then x,, < x for all n, (2)

if a non-increasing sequence {y,} — v, theny, >y for all n. (3)

If there exist measurable mappings {o,1o : 2 — X such that g(w, {o(w)) < F(w, ({o(w),
no(w))) and g(w,no(w)) = F(w, (no(w), {o())) for all w € 2, then there are measurable
mappings ¢,0 : Q@ — X such that F(w, (¢ (),0())) = g(w, ¢ (w)) and F(w, (0(w), ¢ (w))) =
g(w,0(w)) for all w € @, that is, F and g have a coupled random coincidence point.

Proof Let © = {{ : @ — X} be a family of measurable mappings. Define a function # :
Q2 x X — R* as follows:

h(w,x) = d(x,g(w,x)).

Since x — g(w, x) is continuous for all w € 2, we conclude that /(w, -) is continuous for
all w € Q. Also, since x — g(w,x) is measurable for all x € X, we conclude that A(-,x) is
measurable for all w € Q (see [26], p.868). Thus, /(w,x) is the Caratheodory function.
Therefore, if ¢ : 2 — X is a measurable mapping, then w — h(w, { (w)) is also measurable
(see [27]). Also, for each ¢ € ©, the function 1 : @ — X defined by n(w) = g(w, { (w)) is
measurable, that is, n € ©.

Now, we shall construct two sequences of measurable mappings {¢,} and {7,} in ©,
and two sequences {g(w,¢,(w))} and {g(w,n,(®))} in X as follows. Let y,19 € © be
such that g(w, {o(w)) < F(w, ($o(w), no(w))) and g(w, no(w)) > F(w, (no(w), So(w))) for all
o € Q. Since F(w, (¢o(w), no(w))) € X = glw x X) by an appropriate Filippov measur-
able implicit function theorem [1, 20, 28, 29], there is ¢; € © such that g(w, {;(w)) =
F(w, (¢o(w), no())). Similarly, as F(w, (no(w), Lo(w))) € g(w x X), there is n;(w) € O such
that g(w, n1(w)) = F(@, (no(w), o(@))). Now F(w, (§1(w), m(w))) and F(w, (m(w), {1(w))) are
well defined. Again from F(w,(&1(w), m(w))), F(w, (m(w), s1(w))) € glw x X), there are
¢2,m2 € © such that g(w, $2(w)) = F(w, (51(w), m(@))) and g(, n2(w)) = F(w, (m (@), &1(0))).
Continuing this process, we can construct sequences {{,(w)} and {5,(®»)} in X such that

g(w’ Cnel (w)) = F(w» ((n(w)r MNn (w))) and

g(@, M1 (@) = F(@, (na(), Ea())) @
forall n > 0.
We shall prove that
g(®, 6u(@) < g(w, () foralln>0 (5)
and
2(@,14(®)) > g(w, M1 (@) foralln>0. (6)

The proof will be given by mathematical induction. Let n = 0. By assumption we have
g, So(@)) = Flw, (So(®), no())) and g(w, no(w)) = F(w, (no(@), So(@))). Since g(w, {1(w)) =
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F(w, ($o(®), no())) and g(w, n1(w)) = F(w, (no(w), Lo(w))), we have
g, 50(@) <g(w,1(@)) and  g(w,no(@)) > g(w, m(w)).

Therefore, (5) and (6) hold for # = 0.

Suppose now that (5) and (6) hold for some fixed #n > 0. Then, since g(w, {,(®)) <
g(w, Lyi1(w)) and g(w, n,(w)) > g(w, nysa1(w)) and as F is monotone g-non-decreasing in
its first argument, from (2) and (4), we have

F(w, (¢a(@), na(@))) < F(@, (¢n,, (@), na(w)))  and
F(w’ (nn+1(w)’ g‘n(w))) = F(w’ (nn(a)); ;Vl(a))))

7)

SimilarlY, from (3) and (4), as g(w’ Nn+1 () < g(a)! Mn (w)) and g(a)r Cn () < g(wr Cni1 (w)),

F(a)’ (§n+1(w)r 77n+1(w))) > F(a)r (le (@), nn(w))) and

8)
F(a)’ (7771+1(w)7 ;n(w))) = F(a)’ (Tln+1(w)’ €n+1(w)))‘

Now from (7), (8), and (4), we get

g(w! Cna1 (w)) = g(wr Cni2 (w)) 9)

and

g(a)’ Nn+1 (w)) = g(a): 77n+2(w))~ (10)

Thus, by mathematical induction we conclude that (5) and (6) hold for all # > 0.
Denote for each w € Q

Oy = d(g(w> Cn (w)),g(w1 ;rul(w))) + d(g(w) nn(w)))g(w: nn+1(w)))-

We show that

Sn
2

S
5(,0( 21) for all n > 1. 11)

Since from (5) and (6) we have g(w, {,-1(®)) < g(®, {4()) and g(w, Ny-1(@)) = glw, nu(@)),
therefore from (4) and (1), we get

d(g(@, 6()), g (@, Eun(@)))
= d(F(w’ (Cn—l (@), Nt (w)))rF(a), (Cn(a))r T]n(a)))))

p <d(g(w, tn-1(w)), g (@, £u(@)) + d(g(@, 1y1 (@), g, nn(w))))
2

S
go( 21>. 12)

IA
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http://www.journalofinequalitiesandapplications.com/content/2012/1/257

Hussain et al. Journal of Inequalities and Applications 2012, 2012:257 Page 7 of 20
http://www.journalofinequalitiesandapplications.com/content/2012/1/257

Similarly, from (4) and (1), as g(w, n,(®)) < g(w, Ny-1(w)) and g(w, {,(@)) = g(w, {1 (@),

d(g(w, M1 (@), g(@, na(@)))
= d(F(U); (ﬂn(w)! gn(w)))’F(a)’ (’7”_1 (@), {n—l(w))))

<o (d(g(w, Nn-1(@)), g (@, nx(w))) + d(g(w, §u1 (), g(w, Cn(w))))
- 2

By adding (12) and (13), and dividing by 2, we obtain (11).
From (11), since ¢(f) < ¢ for ¢ > 0, it follows that {§,} is the monotone decreasing se-
quence of positive reals. Therefore, there is some § > 0 such that

lim §, = 6+.
Hn—0Q

We show that § = 0. Suppose, to the contrary, that § > 0. Taking the limit in (11) when
8, — 8+ and having in mind that we assume that lim,_,,, ¢(¢) < ¢ for all £ > 0, we have

8 . Sn . 8}1—1 . 8;«,_1 8
—=1lim — < lim ¢ = lim ¢ <=,
2 n—oo 2 n—00 2 8u_1—>0+ 2 2

a contradiction. Thus, § = 0.

Now we prove that for each w € 2, {g(w, ¢,(®))} and {g(w, n,(w))} are Cauchy sequences.
Suppose, to the contrary, that at least one, {g(w, {,())} or {g(w, n,(w))}, is not a Cauchy se-
quence. Then there exist an € > 0 and two subsequences of positive integers {/(k)}, {m(k)},
m(k) > I(k) > k with

rie = d(g(w: Sy (@), & (@, L (@) + d (g (@, iy (@), g (@5 Ny (@)))
>e€ (14)

forke{1,2,...}.
We may also assume

d(g(w, 2 (@), (@5 Smip-1(@))) + d(g (@, Mg (@), g (@5 Nmy-1(@))) < €. (15)

By choosing m(k) to be the smallest number exceeding /(k) for which (14) holds, such
m(k) for which (15) holds exists, because 8, — 0. From (14), (15) and by the triangle in-

equality, we have
€ <rg
< d(g(®, L (@), 2(®, L1 (@)

+d(g(0, my-1(@)), (@, Ly (@)))

+

d(g(
(g (@, miw (@), g (@, Nmpy-1(@)))
d(g(

+ (g W, Nm(k)-1 (w)))g(wx nm(k)(w)))
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= d(g(w, Sy (@), & (@ Smipy-1(@)))
+d (g (@, mig (@), 2 (@5 N1 (@) + i1

< € + Bm(k)-1
Taking the limit as k — oo, we get

lim rg = €+. (16)

k—o00

Inequality (14) and the triangle inequality imply now

= d(g(w, 1 (@), 8 (@, Gty ())) + (g (@, 1M1t (@), 8 (@, Nt ()

< d(g(: b (@), g (@, S (@) + d(g (@, Sy (@), 8 (s Emra1 (@) )
+d(g(®, Emy (@), 8(@) Emity (@) + d(g (@, Mgy (@), g (@, Mgy 1 (@)

+ (g(a),n, 141(0)), € (@, Nty 11 (@))) + d(€ (@, Ny 11(@)), & (@, Nmiry (@)
= d(g(w, Zip (@), g (@, L1 (@) + d (g (@, nigy (@), g (s M1 (@)))
+[d(g(w’€m 1)), 8(@, Gty ())) + (g (@, M) (@), (@, Mty 1 (@)
+d(g(@: Ciiy1(@)), & (@, Ly 1(@))) + d (g (@5 iy 1(@)), g (@5 N1 (@)

Hence,

Tk < 81k + Sty + A( (@) Sy 1 (@), (@, Sy 1 (@) )
+d(g(w: nigy+1(@)), g (@5 N1 ())).- (17)

From (5) and (6), we conclude that g(w, {jx)(®)) < g(®, &y (w)) and glw, Ny (w)) >
&(@, Nm(ioy (@)

Now (1) and (4) imply that
d(g(w: Sy 1 (@), 2(@, L1 (@)

= d(F(w, (S0 1o (@) ) E (W, (Emys 1 (@0))))

<y (d(g(a), S0 (@), (@5 Eimry (@) + d(g (e, nigay (@), g (@5 Ny (w))))
- 2

:¢<%>, (18)

Also, from (1) and (4), as g(®, Mm@ (@) = glw, Ny (@)) and g(@, L (@) = glw, Sy (@),

d(g(w: nign1(@)),g(@, L1 (@)))

= d(F(w, (miw» S0 (@) )s (W, (ata» Em (@))))

<y <d(g(a), N1y (@), &(@; Ny (@) + A(g (@, Syt (@) 8 (@5 Ermry (w))))
- 2

=w(%>. (19)

Page 8 of 20
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Inserting (18) and (19) in (17), we obtain

43
re < 51(k) + ‘Sm(k) +2¢p 3 .

Letting k — 0o, we get by (16)

Tk €
e<211m(p 5 2r,}l—r>13+¢ 2 <2§=e, (20)

a contradiction. Therefore, our supposition (14) was wrong. Thus, we proved that
{g(w, ¢y(w))} and {g(w, n,(w))} are Cauchy sequences in X.

Since X is complete and g(w x X) = X, there exist ¢p,0y € ©® such that lim,_, - g(w,
En(@)) = g(w, fo(w)) and lim,,—, 0 g(@, n,4(@)) = g(, Op(w)). Since g(w, {o(w)) and g(w, o (w))
are measurable, therefore the functions ¢ (w) and 6(w), defined by ¢ (w) = g(w, {o(w)) and
0 (w) = g(w,0p(w)) are measurable. Thus,

lim F(a)’ (Cn(w): nn(w))) = nlinolcg(w7 é‘n(w)) =¢{(w) and

n—00

(21)
Tim F(w, (nn(w), x(@))) = Tim g(@, nu(@)) = 6().
Since F and g are compatible mappings, we have by (21)
Tim d(g(0, (@, (6:0), 1)), F(o, (8( () g(0,1,(@)))) =0, 22)
nli)nolod(g(va(w’ (nn (w): {n(a))))),F(a), (g(w’ nn(w))’g(a)’ é‘n(w))))) =0. (23)

Next, we prove that

g(®,¢(0) = F(o, (¢ (@),0(w)))

and

g(a), 9(0))) = F(a), (0(0)), g“(a)))).
Let (a) hold. We have
d(g(@, ¢ (@), F(@, (¢(@, n()), (w’ Mn(@)))))

<d(g(w, £ (@), g(@ F(, (£a(@), n4()))))
+d(g(w, F(w, (¢n(@), nu(w )))),F(w, (g(@, tn(@)), g (@ nu(@)))))-

Taking the limit as # — 00, using (4), (21), and (22) and the fact that F and g are contin-

uous, we have
d(g(w, ¢ (@), F(o, (¢(@),0(w)))) = 0.
Similarly, from (4), (21), and (23) and the continuity of F and g, we have

d(g(w, Q(a))), F(a), (9 (w), ¢ (a))))) =

Page 9 of 20
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Combining the above two results, we obtain

¢(0,£@) = F(o, (:@),6(0)

and

g(w, G(a))) = F(a), (G(a)), {(a))))

for each w € Q.
Next, suppose that (b) holds. From (5), (6), and (21), we have {g(w,¢,(®))} is non-
decreasing and {g(w, ,(®))} is non-increasing sequence and

2(®,54(0)) = g(w, ¢ (), 2(@,n4(0)) = g(w,0(w)).

So, from (2) and (3), we have for all # > 0

g, 8(@) <g(w,¢(@)) and  g(w,n,(0)) > g(w,0(w)). (24)

Since F and g are compatible mappings and g is continuous, by (22) and (23) we have

lim g(w,g(w, £u(@)))
=g(w, ¢ (@) = nlLrgog(w,F(w, (tn(@), nu(@))))
= lim F(w, (g(w, {u(®)),g(@, n4(@)))) @5

n—00

and

lim g(w,g(@, 114()))

- £(0,6(@) = Jim g(0, F(@, (1,(0), /(@)
= lim F(o, (g(@, 14(@)),g(@, £.()))). (26)

n—00

Now, we have

d(g(w, ¢ (@), F(@, (¢(0),0(w))))
< d(g(,¢ (@), g(w g(@ tni1(@))))
+d(g(0,8( &ra (@), F (o, (¢ (@), 0(e)))).

Taking the limit as # — oo in the above inequality, using (4) and (25), we have

d(g(,¢ (@), F (e (¢(@),6()))
(@£ (@), g(@,g(@ Eun (@)
+ lim d(g(w, F(e, (£4(@), 1a()))), F (o, (£ (@),0())))

n—00

< 1im d(F(o, (g( 6u(@), (@ n4(@)))), F(@, (£ (©),0()))).

n—00

< lim d(g

n—00
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Since the mapping g is monotone increasing, by (1), (24), and the above inequality, we
have forall # > 0

d(2(,¢ (@), F(o, (¢ (@),6())))
(d(g(w, (¢(@, £:()), 8@, ¢ (@))) + d(g@, o, 1:(0)),¢(@,0())))) )

< lim ¢
n—00

2
Using (21) and the property of a ¢-function, we obtain
d(g(w, ¢ (@), F(w, (¢ (@),0(w)))) <O0.

That is,

2(0,2()) = F(o, (¢ (@),0())).

And similarly, by the virtue of (4), (21), and (26), we obtain

2(0,0(w)) = F(w, (0(w), £ (w))).
This proves that F and g have a coupled random coincidence point. d

Corollary 3.3 Let (X, <,d) be a complete separable partially ordered metric space, (2, X)
be a measurable space, and F: Q x (X x X) - X and g : Q@ x X — X be mappings such
that
(i) g(w,-) is continuous for all w € 2;
(i) F(-,v), g(-,x) are measurable for all ve X x X and x € X respectively;
(ili) F(w,-) has the mixed g(w, -)-monotone property for each w € Q and for some
ke[0,1)

[\

d(F(w, (x, y)),F(a), (ut, v))) < (d(g(a),x),g(a), u)) + d(g(a),y),g(a), v)))
for all x,y,u,v € X, for which g(w,x) < g(w, u) and g(w,y) > g(w,v) for all v € Q.

Suppose g(w x X) = X for each w € Q, g is monotone increasing, and F and g are com-
patible random operators. Also suppose either

(a) F(w,-) is continuous for all w € Q or

(b) X has the following property:

(i) if a non-decreasing sequence {x,} — x, then x, < x for all n,
(i) if a non-increasing sequence {y,} — vy, then y, >y for all n.

If there exist measurable mappings o,1n0 @ Q2 — X such that g(w,(w)) < F(o,
(Zo(w), no(w))) and g(w, no(w)) > Flw, (no(w), Lo(w))) for all w € Q, then there are mea-
surable mappings ¢,0 : Q@ — X such that F(w, (¢ (0),0(w))) = g(o, ¢ (®)) and F(o, (0 (),
¢ ())) = g(w,0(w)) for all w € Q, that is, F and g have a coupled random coincidence point.

Proof Taking ¢(¢) = k - t with k € [0,1) in Theorem 3.2, we obtain the result. O

The following theorem presents the stochastic version of Theorem 2.7 and generalizes
the recent results in [20].
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Theorem 3.4 Let (X, <,d) be a complete separable partially ordered metric space, (2, X)
be a measurable space, and F : Q2 x (X x X) — X and g : Q x X — X be mappings such
that
(i) glw,") is continuous for all w € Q;
(i) F(-,v), g(-,x) are measurable for all v € X x X and x € X, respectively;
(iti) F: Q2 x (X xX)—> Xandg: Q2 x X — X are such that F(w,-) has the mixed
g(w, -)-monotone property for each w € ; and suppose there exist ¢ € ® and
¥ € WV, satisfying conditions of Theorem 2.7, such that

¢(d(F(w, (x,y)),F(w, (u, v))))

39(d(e(0,2),g(0,10) + d(g(,7),g0,))
(o)) o) glo)

5 (27)
forall x,y,u,v € X, for which g(w,x) < g(w,u) and g(w,y) > g(w,v) for all w € Q.
Suppose g(w x X) = X for each w € Q, g is monotone increasing, and F and g are com-
patible random operators. Also suppose either
(@) F(w,) is continuous for all w € Q or
(b) X has the following property:

if a non-decreasing sequence {x,} — X, then x, <x for all n, (28)

if a non-increasing sequence {x,} — X, then x,, < x for all n. (29)

If there exist measurable mappings o,no : Q@ — X such that g(w, {(w)) < F(w, ({o(w),

no())) and g(w, no(w)) > F(w, (no(w), Lo(w))) for all w € Q, then there are measurable

mappings ¢,0 : Q — X such that F(w, (¢ (w),0(w))) = g(w, {(w)) and F(w, (0(w), ¢ (w))) =
g(w,0(w)) for all w € Q, that is, F and g have a coupled random coincidence.

Proof Let © = {¢ : 2 — X} be a family of measurable mappings. Define a function # :
Q2 x X — R* as follows:

h(w,x) = d(x,g(w,x)).

Since X — g(w,x) is continuous for all w € Q, we conclude that 4(w,-) is continuous
for all w € Q. Also, since x — g(w, x) is measurable for all x € X, we conclude that 4(-, x)
is measurable for all w € Q (see [26], p.868). Thus, h(w, x) is the Caratheodory function.
Therefore, if ¢ : @ — X is a measurable mapping, then w — h(w, {(w)) is also measur-
able (see [27]). Also, for each ¢ € ©, the function 1 : Q — X defined by n(w) = g(w, ¢ (®))
is measurable, that is, n € ©. Now, we shall construct two sequences of measurable
mappings {¢,} and {n,} in ©, and two sequences {g(w, ¢,(w))} and {g(w, n,(®))} in X
as follows. Let ¢y, n9 € © such that g(w, ¢(w)) < F(w, (Zo(w), no(w))) and g(w, no(w)) >
F(w, (no(w), &o(w))) for all w € Q. Since F(w, ({o(w), no(w))) € X = glw x X), by an ap-
propriate Filippov measurable implicit function theorem [1, 20, 28, 29], there is & € ©
such that g(w, &1(w)) = F(w, ({o(@), no(w))). Similarly, as F(w, (no(w), {o(w))) € X = g(w x X),
there is 171 (w) € © such that g(w, m(w)) = F(w, (no(®), {o(w))). Now, F(w, (&1(w), n1(@))) and
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F(w, (m(w), &1(w))) are well defined. Again, from F(w, ({1(®), m(w))), F(w, (im(w), i1(w))) €
g(w x X), there are ¢, 12 € © such that g(w, {2(0)) = F(o, (¢1(w), m(w)) and g(w, n2(w)) =
F(w, (m(w), &1(w))). Continuing this process, we can construct sequences {¢,(w)} and
{n.(w)} in X such that

g(wr | (a))) = F(w: (gn(w)’ M (a)))) and

(30)
g(a)’ Nn+1 (w)) = F(a)r (@), $n ((,()))
forall n > 0.
We shall prove that
2(®,4(0)) < g(w, L (w)) foralln>0 (31)
and
g(a)’ ﬂn(w)) < g(a)’ Nn+1 (Cl))) fOI' all n=> 0. (32)

The proof will be given by mathematical induction. Let # = 0. By assumption, we have
8@, {o(w)) < Flw, (§o(w), no(w))) and g(w, no(w)) = F(w, (no(w), {o(w))). Since g(w, 1(w)) =
F(w, (§o(w), no(w))) and g(w, m(w)) = F(w, (no(w), §o(@))), we have g(w, {o(w)) < g(w, &1(w))
and g(w, no(w)) > g(w, n1(w)). Therefore, (31) and (32) hold for # = 0. Suppose now that
(31) and (32) hold for some fixed # > 0. Then g(w, ¢,(w)) < g(w, {11 (w)) and g(w, n,(w)) >
g(w, nyi1(w)) as F is monotone g-non-decreasing in its first argument, from (28) and (30),

F(a)’ (é‘n(w): nn(a)))) = F(a)¢ (§n+l(w): nn(w))) and

(33)
F(w’ (nn+1(w)7 é‘n(w))) = F(w7 (nn(a))¢ é‘n(a))))

Similarly, from (29) and (30), as g(w, {,(®)) < g(w, {ua (@) and g(w, n.(w)) = g(w, N4 (@),
we have

F(a)’ (§n+1(w)r NMn+l (Cl)))) > F(a)’ (§n+1(a))r nn(w))) and

(34)
F(@, (n11(@), 8a(@))) = F(@, (141(@), L (@)
Now, from (30), (33), and (34), we get
2(@, 51(@)) < g(@, Lura (@) (35)
and
2(® 11(@)) < g(@5 Nur2(@)). (36)

Thus, by mathematical induction we conclude that (31) and (32) hold for all n > 0.
Therefore,

2(@,50(®)) < g(w, (@) < - < g(0,t0(®)) < g, ) < 37)
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and

g(@,m0(@)) = g(w,mw)) = -+ = g(w, na(w)) = -+ = glw, npi1) = (38)

Since g(w, ¢u-1(w)) < g(w, Lu(w)) and g(w, n,(®)) < g(w, n,-1(®)), using (27) and (30), we
have

$(d(g(@ tunr (@), g(@, Cu(@))))
= ¢(d(F (@, (£u(@), nu(@)))), F (@, (En1 (@), a1 (@))))
< %qﬁ(d(g(w, (@), &(@, Cu1 (@) + d(g (@, 10(@)), g(@, 11())))
_y (d(g(a), $n(@)), 8@, §n1(w))) + d(g(w, nu(w)), g (o, nnl(w))))

5 (39)

Similarly, since g(@, {,-1(®)) < g(w, {u(w)) and g(@, Ny-1(w)) < g(w, N4(w)), using (27) and
(30), we also have

¢(d(g(w, 1(®)), g(@; npi1(@))))
A(F (@, (nn-1(@), u-1(@)))), F (@, (14(0), £u(@))))

Il
<
—_

< S (&1 1(),8(010(@) + g0, 1() 2 (6:))))

v (d(g(w, Nn-1(@)), g (@, 11(@))) + d(g(@, §n-1(w)), g (@, {n(w))) )

5 (40)

Using (39) and (40), we have

P(d(g(@: Snir(@)),g(@: 8a(@)))) + P (d(g(@s Na(®)), g (@, N1 (@))))
< ¢ (d(g(@, 2n(®)), g (@) En1(@))) + d(g (s N(®)), g (@, -1 (@)

_ Zw (d(g(w’ Nn-1 (w))xg(wx nn(w))) + d(g(w’ {n—l (a)))’g(w: é-n(w)))>
B .

From the property (iii) of ¢, we have

P(d(g(@) Lnni (@), g(@, ta(@))) + d(g (@, Nni1 (@), g (@, 1n())))
<¢(d(g(w {1 (@), g(@, Lu(@))))
+ ¢ (d(g(@, 1)), g (@, 1)) (42)

Using (41) and (42), we have

B(d(g(@, tm1(@)), g (@, En())) + d(g (@ N1 (@), g (@, (@) ))
< ¢(d(g(w, ta(®)), g (@, La1(@))) + d(g(@, 1n(@)), g (@, Nr-1())))

_ 21// <d(g(wr Nn-1 (w))rg(w! nn(w))) + d(g(wr Cn—l (w))7g(w’ é‘n(w)))>
D) .

(43)
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Since ¥ is a non-negative function, therefore we have

¢(d(g(wr §n+1(w))’g(a)’ Cn(w))) (g(w¢ NMn+1 (w)),g(a), nn(w))))
< ¢(d(g(@, 6n(@)), &(@, ¢u1())) + d(g (@, 14(@)), g (@, N1-1())))-

Using the fact that ¢ is non-decreasing, we get

d(g(a)’ {n+l(w))’g(wx gn(w))) + d(g(wr nn+1(w))rg(a): nn(w)))
d(g(a)r gn(w)):g(w’ g‘n—l(a)))) + d(g(wx nn(a))):g(a)’ nn—l(w)))-

Let
O = d(g(w’ §n+1(60));g(60, gn(w))) + d(g(a)r nn+1(w))rg(w’ nn(w)))

Now, we show that §, — 0 as n — 00. It is clear that the sequence {§,}is decreasing;
therefore, there is some § > 0 such that

nll>r§o 8;1 = hm [d(g(a); §n+1(w))1g(wi gn (a)))) + d(g(a)’ nn+1(w))’g(w; Un(w)))]
= 4. (44)

We shall show that § = 0. Suppose, to the contrary, that § > 0. Then taking the limit as
n — o0 on both sides of (43) and as lim,_,, ¥ (¢) > 0 for all » > 0 and ¢ is continuous, we

)]

have

¢®)=J§;¢®M§n§§[¢@nﬂ—2w(

)<¢wx

a contradiction. Thus, § = 0, that is

=¢(8) -2 lim w(

Sp-1—9

lim 8, = lim [d(g(@, {ua1 (@), g (@, Eu(@))) + d(g(@, a1 (), g (@, na(@)) ) ]

n—00 n—00

- 0. (45)

Now, we will prove that {g(w, £,)}, {g(®, n,)} are Cauchy sequences. Suppose, to the con-
trary, that at least one of {g(w,¢,)} or {g(w,n,)} is not a Cauchy sequence. Then there
exists an € > 0 for which we can find subsequences of positive integers {m}, {ni} with

n(k) > m(k) > k such that

1 = d(g(@, Tnit (@), & (@, L) (@) + A (g (@5 Nty (@) & (@, i (@) )
> € (46)

for k ={1,2,3,...}. We may also assume

d(g(@, Cur-1(@)), g (@s Sy (@) + d(€ (@5 Nuiry-1(@)) g (@5 Ny (@) < € (47)
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by choosing n(k) in such a way that it is the smallest integer with n(k) > m(k) and satisfying
(46). Using (46), (47), and the triangle inequality, we have

€ < 1= d(g() Guio (@), € () Gty () + A(g (@, 1t (@), & (s Nt (@)
< d(g(w, tur (w)), (@, Euiiy-1(@))) + d(g(@, Eniry-1(@)), & (@, L (@)
+d(g(@: 1uio (@), & (@, M(iy-1(@))) + d(g (@, Muiiy-1(@)), g (@5 Nty (@)
< d(g(®, tu (a))) g(@, Cupy-1(@))) + d(g(@: nuiy (@), & (@, Nuiry-1(@)))
+d(g(®, Cu1(0)), 8(@, &ty (@) ) + A(&(@, Naity-1()), &(@, iy ()
< d(g(@, Sk (w))» (@) Cu-1(@))) + d(g (@, Ny (@), (@, Nawy1(@))) + €

Letting k — oo and using (45), we get

Jim 7 = lim [4(2(@, £ut (@), (@) G (@))) + A& (@, N (@), (@, Ny (@))) ]

=€. (48)
By the triangle inequality,

= d(g(@) 610 (@), (@) Sty (@) + A (€(, 111 (), (5 Ty (@)))
< d(g(@, Suty (@), (@, Cuiry1 (@) + A(€ (@) Enry1 (@), & (@, Emigy 1 (@)
A(g(@, Emr)11(@)), (@, Lty (@) + (g (@, 1) (@), (@, Ty (@)
+d(g (@, Mu) 11(@)), g (@5 Ny +1(@)) ) + d(g(@, Nmiro+1(@)), & (@, Tonia (@)))
= d(g(@, u (@), (s Sniy 1 (@))) + d(g (@, Nty (@), g (@, Ny 1 (@) (49)
+d(g(: Emao1()), §(: Lt (@))) + A (g (@, Mt 1()), & (@, Nty ()
+ d(g(@, Sni1(@)), € (@, Emiro+1(@))) + d(g(@5 N1 (@), g (@5 Ny 1(@)) )5
Tk = 8 + Sty + A (g (@, Enit+1(@)), & (@, Ly 1 (@)))
+d(g(@, M1 (@), g (@ N1 (@)

+

Using the property of ¢, we have

D (i) = & (Su) + Smity + A(g (@5 Cuy1(@)), (@5 Eomitr1 (@) )

+ d(g(w’ Mn(k)+1 (w))’g(w’ Nm(k)+1 (U)))))
< PGur) + Smit) + A (A(g(@s Tnit1(@)), & (@, Ly 1(@))))
+ ¢ (d(g(@ Nur1 (@), (@5 N1 (@)))).
Since n(k) > m(k), hence g(®, &) (®)) > (@, Lmry(@)) and g(@, Nugry (@) < g(@, Nnry(@)).
Using (27) and (30), we get
D (d(g(@) Luty1(@)), & (@, L1 (@))))
= ¢)(d(F((,(), (é‘n(k)(a))) nn(k)(w)))¢F(wr (g‘m(k) ((,()), nm(k)(w)))))
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S

B (d(g(@, Tnit (@), & (@, L) (@) + A (g (s Nty (@) & (0, T (@) )

_ w (d(g(a): ;‘n(k) (w))rg(a)! Cm(k)(w))) + d(g(a)¢ Nn(k) (w))!g(w) Nm(k) (w))) )
2

N =

1 Tk
== SRV e 50
790) W( 5 ) (50)
By the same way, we also have

¢(d(g(wr 77n(k)+l(w))’g(w) 77m(k)+l(w))))
A(F (2, (100/(@)s Snti) (@) ) F (@0, (1m0 (@), L) (@)))))

1l
<
—

D (d(g(@, 1) (@), € (@, Nt (@) + A (g (@1 Cuiry (@), & (@, Eoniy (@)))

v (d(g(w, Nn(k) (@), (@, iy (@) + A(g(@, Eniay (@), 8 (@5 Ermry (w))))
2

- 5000-v(%) 1

Putting (50) and (51) in (49), we have

1 1
d(ri) < ¢(Suy + ) + 5¢(Vk) B W(%) + §¢(Vk) - W(%)

= PGy + Smii) + P (ri) =29 <%k)
Taking k — 0o and using (45) and (48), we get
9(€) < $(0) + () - 2 lim w(%)
= 9(c) -2 lim w(%k) <p(e),

a contradiction. This shows that {g(w, ¢,)} and {g(w, n,)} are Cauchy sequences.

Since X is complete and g(w x X) = X, there exist ¢y,0y € ©® such that lim,_,  g(w,
En(@)) = g(w, fo(w)) and lim,,—, 0 g(@, n,4(@)) = g(w, Op(w)). Since g(w, {o(w)) and g(w, o (w))
are measurable, then the functions ¢{(w) and 6(w), defined by ¢(w) = g(w, ¢o(w)) and
0 (w) = g(w,0p(w)), are measurable. Thus,

lim F(w, (£x(@), na(@))) = lim g(, {x(w)) = ¢(w) and
n—00 n—oo
(52)
Tim F(w, (nu(w), x(@))) = lim g(@, nu(@)) = 6().
Using the compatibility of F and g and the technique of the proof of Theorem 3.2, we
obtain the required conclusion. d

Corollary 3.5 Let (X, <,d) be a complete separable partially ordered metric space, (2, %)
be a measurable space, and F : Q2 x (X x X) — X and g : Q x X — X be mappings such
that
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(i) g(w,-) is continuous for all v € ;
(i) F(-,v), g(-,x) are measurable for all ve X x X and x € X respectively;
(iii) F(w,-) has the mixed g(w, -)-monotone property for each w € Q; and suppose there
exist ¢ € ® and y € V such that

(d(g(a),x),g(a), u)) + d(g(w,y),g(a), v)))

- (d(g(a),x),g(a), u)) +dglw,y),g(w, v)))
2

N =

d(F(w, (x,y)),F(a), (ut, V))) <

for all x,y,u,v € X, for which g(w,x) < g(w, u) and g(w,y) > g(w,v) for all v € Q.

Suppose g(w x X) = X for each o € Q, g is continuous and monotone increasing, and F
and g are compatible mappings. Also suppose either

(@) F(w,) is continuous for all w € Q or

(b) X has the following property:

(i) if a non-decreasing sequence {x,} — X, then x, < x for all n,
(ii) if a non-increasing sequence {x,} — X, then x,, < x for all n.

If there exist measurable mappings o,no : Q@ — X such that g(w, {(w)) < F(, ({(w),
no(w))) and g(w,no(w)) = F(w, (no(w), {o(w))) for all w € Q, then there are measurable
mappings ¢,0 : Q — X such that F(w, (¢ (w),0(w))) = g(w, ¢ (w)) and F(w, (0(w), ¢ (w))) =
g(w,0(w)) for all w € Q, that is, F and g have a coupled random coincidence.

Proof Take ¢(t) = t in Theorem 3.4. O

Corollary 3.6 Let (X, <,d) be a complete separable partially ordered metric space, (2, X)
be a measurable space, and F : Q2 x (X x X) — X and g : Q x X — X be mappings such
that
(i) g(w,-) is continuous for all v € ;
(i) F(-,v), g(-,x) are measurable for all ve X x X and x € X respectively;
(ili) F(w,-) has the mixed g(w, -)-monotone property for each w € 2; and suppose there
exists k € [0,1) such that

N X

(d(F(w, x,0), F(0,(®,v)))) < = (d(g(w,%),g(w, u)) +d(g(w,y),g(w,v)))
forall x,y,u,v € X, for which g(w,x) < g(w,u) and g(w,y) > g(w,v) forall w € Q.

Suppose g(w x X) = X for each w € Q, g is monotone increasing, and F and g are com-
patible random operators. Also suppose either

(a) F(w,-) is continuous for all w € Q or

(b) X has the following property:

(i) if a non-decreasing sequence {x,} — X, then x, < x for all n,
(i) if a non-increasing sequence {x,} — X, then x,, < x for all n.

If there exist measurable mappings o,no : Q@ — X such that g(w, {(®)) < F(w, ({o(w),
no(w))) and g(w,no(w)) = F(w, (no(w), {o(w))) for all w € 2, then there are measurable
mappings ¢,0 : Q — X such that F(o, (¢ (0),0(w))) = g(w, ¢ (w)) and F(w, (0 (), () =
g(w,0(w)) for all w € Q, that is, F and g have a coupled random coincidence point.

Proof Take ¥(t) = %t in Corollary 3.5. O
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Remark 3.7 By defining g: Q@ x X — X as g(w,x) = x for all v € Q in Theorem 3.2-

Corollary 3.6, we obtain corresponding coupled random fixed point results.
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