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Abstract
In this paper, we define new vector generalized convexity, namely nondifferentiable
vector (Gf ,βf )-invexity, for a given locally Lipschitz vector function f . Basing on this
new nondifferentiable vector generalized invexity, we have managed to deal with
nondifferentiable nonlinear programming problems under some assumptions. Firstly,
we present G-Karush-Kuhn-Tucker necessary optimality conditions for nonsmooth
mathematical programming problems. With the new vector generalized invexity
assumption, we also obtain G-Karush-Kuhn-Tucker sufficient optimality conditions for
the same programming problems. Moreover, we establish duality results for this kind
of multiobjective programming problems. In the end, a suitable example illustrates
that the new optimality results are more useful for some class of optimization
problems than the optimality conditions with invex functions.
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1 Introduction
Convexity plays a central role in many aspects of mathematical programming including
the analysis of stability, sufficient optimality conditions and duality. Based on convex-
ity assumptions, nonlinear programming problems can be solved efficiently. In order to
treat many practical problems, there have been many attempts to weaken the convexity
assumptions and many concepts of generalized convex functions have been introduced
and applied to mathematical programming problems in the literature [–]. One of these
concepts, invexity, was introduced by Hanson in []. He has shown that invexity has a
common property in mathematical programming with convexity and that Karush-Kuhn-
Tucker conditions are sufficient for global optimality of nonlinear programming under the
invexity assumptions. Ben-Israel and Mond [] also introduced the concept of preinvex
functions, which is a special case of invexity.Many researchers, such asMordukhovich [],
Mishra [, ], Ahmad [, ], Soleimani-Damaneh [] and so on, are devoted to this hot
topic. Furthermore, Ansari and Yao [] edited a book which provides a good review for
different variants of invexity. With generalized convexity, sufficient and dual results can
be obtained, and we refer to [–] and references therein for more research results.
In [], Antczak introduced new definitions of a p-invex set and a (p, r)-preinvex func-

tion which is the generalization of the concept in []. He also discussed the differentiable
and nondifferentiable nonlinear programming problems involving the (p, r)-invexity-type
functions in []. With respect to fixed functions η and b, Antczak extended the (p, r)-
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invexity to the B-(p, r)-invexity and generalized B-(p, r)-invexity in []. Ahmad et al. []
derived the sufficient conditions for an optimal solution to the minimax fractional prob-
lem and then established weak, strong, and strict converse duality theorems for the prob-
lem and its dual problem under B-(p, r)-invexity assumptions. Antczak [] considered a
special kind of (p, r)-invexity, (, r)-invexity, which is called r-invexity in the cases of differ-
entiability and nondifferentiability. Later, Antczak [] generalized the concept of (scalar)
differentiable r-invex functions to the vectorial case and defined a class ofV -r-invex func-
tions. In [], Antczak further generalized the notion ofV -r-invexity to the case of nondif-
ferentiability. Note that some other researchers were interested in studying themathemat-
ical programming involving V -r-invex functions; see [, , ] and the references therein.
To further enlarge the class of mathematical models for which the theoretical tools hold,

Antczak extended the invexity to G-invexity [] for scalar differentiable functions. In the
natural way, he extended the definition of G-invexity to the case of differentiable vector-
valued functions. He [] also applied this vector G-invexity to develop optimality con-
ditions for differentiable multiobjective programming problems with both inequality and
equality constraints and established the so-calledG-Karush-Kuhn-Tucker necessary opti-
mality conditions for this kind of programming under the Kuhn-Tucker constraint quali-
fication.With vectorG-invexity, he proved new duality results for nonlinear differentiable
multiobjective programmingproblems, and a number of newvector duality problems such
as G-Mond-Weir, G-Wolfe and G-mixed dual vector problems to the primal one were de-
fined in []. Further, Kim et al. [] considered a special kind of nondifferentiable mul-
tiobjective programming with G-invexity.
Motivated by [, , ], we enlarge the class of mathematical models for which the

theoretical tools hold in this paper. Here, we present a new generalized convexity, namely
nondifferentiable vector (Gf ,βf )-invexity, for a given locally Lipschitz vector function f .
We point out that it is very necessary to consider the nondifferentiable vector (Gf ,βf )-
invexity, and our reasons are as follows:
- In some case, choosing G suitably can simplify the computation of the Clarke
derivative of f ; see Examples  and ;

- The concept of (Gf ,βf )-invexity can not only unify but also extend the concepts of
α-invexity and G-invexity; see Example . Moreover, (Gf ,βf )-invexity, together with
Lemma , can make the choosing of a vector-valued function η easy; see Example .

Basing on the new nondifferentiable vector generalized invexity, we have managed to
deal with nonlinear programming problems under some assumptions. The rest of the pa-
per is organized as follows. In Section , we present the concept of the nondifferentiable
vector (Gf ,βf )-invexity pertaining to a given locally Lipschitz vector function f . For a given
function f , we discuss the relation between (Gf ,βf )-invexity and (b,Gf )-preinvexity in Sec-
tion . In Section , we present the G-Karush-Kuhn-Tucker necessary optimality condi-
tions for the nondifferentiable mathematical programming problems. Moreover, with this
nondifferentiable vector generalized invexity assumption, we prove the G-Karush-Kuhn-
Tucker sufficient optimality conditions for the nondifferentiable mathematical program-
ming problems. In Section , we establish the duality results for this kind of nonsmooth
multiobjective programming problems as applications of this new generalized invexity. In
Section , we give our conclusion. Moreover, we present a suitable example which illus-
trates that the optimality results in this paper are more useful for some class of optimiza-
tion problems than the optimality conditions with existing invexity; see Example .
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2 Notations and definitions
In this section, we provide some notations and results about the nondifferentiable vector
(Gf ,βf )-invex functions. The following convention will be used throughout the paper. For
any x = (x,x, . . . ,xn)T , y = (y, y, . . . , yn)T :

x > y if and only if xi > yi, for i = , , . . . ,n;

x� y if and only if xi ≥ yi, for i = , , . . . ,n;

x ≥ y if and only if xi ≥ yi, for i = , , . . . ,n, while x �= y;

x≯ y is the negation of x > y.

For any function f defined on a nonempty set X ⊂ Rn, If (X) denotes the range of f or
the image of X under f . Moreover, let K = {, . . . ,k} andM = {, , . . . ,m}.

Definition  Let d ∈Rn, X be a nonempty set of Rn and f : X →R. If

f (x;d) := lim
y→x
μ↓

sup

μ

(
f (y +μd) – f (y)

)

exists, then f (x;d) is called the Clarke derivative of f at x in the direction d. If this limit
superior exists for all d ∈Rn, then f is called Clarke differentiable at x. The set

∂f (x) =
{
ζ | f (x;d) ≥ 〈ζ ,d〉,∀d ∈Rn}

is called the Clarke subdifferential of f at x.

We give a direct proof for the following useful lemma, which can also be deduced from
Theorem .. in [].

Lemma  (Chain rule) Let φ be a real-valued Lipschitz continuous function defined on X,
and denote the image of X under φ by Iφ(X); let ϕ : Iφ(X) → R be a differentiable function
such that ϕ′(γ ) is continuous on Iφ(X) and ϕ′(γ ) ≥  for each γ ∈ Iφ(X). Then the chain
rule

(ϕ ◦ φ)(x,d) = ϕ′(φ(x))φ(x,d)

holds for each d ∈Rn. Therefore,

∂(ϕ ◦ φ)(x) = ϕ′(φ(x))∂(φ)(x).
Proof On the one hand, from Definition  and the assumption that ϕ′(γ ) ≥  for all γ ∈
Iφ(X), we obtain

(ϕ ◦ φ)(x;d) = lim
y→x
μ↓

sup

μ

(
ϕ ◦ φ(y +μd) – ϕ ◦ φ(y)

)

= lim
y→x
μ↓

sup

(
ϕ ◦ φ(y +μd) – ϕ ◦ φ(y)

φ(y +μd) – φ(y)
· φ(y +μd) – φ(y)

μ

)
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≤ lim
y→x
μ↓

sup

(
ϕ ◦ φ(y +μd) – ϕ ◦ φ(y)

φ(y +μd) – φ(y)

)
· lim
y→x
μ↓

sup

(
φ(y +μd) – φ(y)

μ

)

= ϕ′(φ(x))φ(x,d).

On the other hand, by the definition of φ(x,d), there exists a vector sequence {yn} ⊂ X,
a real sequence {μn} ⊂R+ such that yn → x (n→ ∞), μn →  (n→ ∞) and

φ(x,d) = lim
y→x
μ↓

sup
φ(y +μd) – φ(y)

μ
= lim

n→∞
φ(yn +μnd) – φ(yn)

μn
. ()

Note that

ϕ ◦ φ(yn +μnd) – ϕ ◦ φ(yn)
φ(yn +μnd) – φ(yn)

· φ(yn +μnd) – φ(yn)
μn

=
ϕ ◦ φ(yn +μnd) – ϕ ◦ φ(yn)

μn

and

lim
n→∞

ϕ ◦ φ(yn +μnd) – ϕ ◦ φ(yn)
φ(yn +μnd) – φ(yn)

= ϕ′(φ(x)).
Therefore, by () and definition of (ϕ ◦ φ)(x;d), we obtain

ϕ′(φ(x))φ(x;d) = lim
n→∞

ϕ ◦ φ(yn +μnd) – ϕ ◦ φ(yn)
μn

≤ (ϕ ◦ φ)(x;d).

Thus, we obtain the desired result. �

With the above chain rule, we can compute the Clarke derivative of a real-valued func-
tion f more easily than by using the definition of the Clarke derivative itself; see the fol-
lowing Examples  and .

Example  Denote

f (x) = ln
(
x + |x| + 

)
, x ∈ R,

g(x) = ln(x + ), x ∈ (–,+∞),

h(x) = x + |x|, x ∈R.

Then f (x) = g ◦ h(x), and it is easy to check that

h(,d) =

⎧⎨
⎩, d > ,

–, d < 
and g ′() = .

Thus, by the chain rule in Lemma ,

f (,d) =

⎧⎨
⎩, d > ,

–, d < .

http://www.journalofinequalitiesandapplications.com/content/2012/1/256
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Example  Let X be a nonempty subset of Rn, f be a locally Lipschitz function on X, and
r be an arbitrary real number. Denote

ϕ(a) =:

⎧⎨
⎩


r e

ra, r �= ,

a, r = 

for all a ∈R. By the chain rule in Lemma ,

(ϕ ◦ f )(x,d) = ϕ′(f (x))f (x,d).
For differentiable functions, Antczak introduced the G-invexity in []. Note from Ex-

ample  that the function ϕ(f ) may be not differentiable even if the function ϕ is differen-
tiable. Thus, it is necessary to introduce the following vector (Gf ,βf )-invexity concept for
a given nondifferentiable function f .

Definition  Let f = (f, . . . , fk) be a vector-valued locally Lipschitz function defined on
a nonempty set X ⊂ Rn. Consider the functions η : X × X → Rn, Gfi : Ifi (X) → R, and
β
f
i : X×X →R+ for i ∈ K . Moreover,Gfi is strictly increasing on its domain Ifi (X) for each

i ∈ K . If

Gfi ◦ fi(x) –Gfi ◦ fi(u) ≥ (>)β f
i (x,u)G

′
fi

(
fi(u)

)〈
ζi,η(x,u)

〉
, ∀ζi ∈ ∂fi(u), ()

holds for all x ∈ X (x �= u) and i ∈ K , then f is said to be (strictly) nondifferentiable vector
(Gf ,βf )-invex at u on X (with respect to η) (or shortly, (Gf ,βf )-invex at u on X), where
Gf = (Gf , . . . ,Gfk ) and β := (β f

 ,β
f
, . . . ,β

f
k ). If f is (strictly) nondifferentiable vector (Gf ,βf )-

invex at u on X (with respect to η) for all u ∈ X, then f is (strictly) nondifferentiable vector
(Gf ,βf )-invex on X with respect to η.

Remark  In order to define (strictly) nondifferentiable vector (Gf ,βf )-incave functions
with respect to η for given f , the direction of the inequality () in Definition  should be
changed to the opposite one.

Remark  () Let f : X →R be differentiable (Gf ,βf )-invex, then Gf (f ) is α-invex by Def-
inition  in this paper and α-invexity as defined in [], where α = βf .
() Let f : X → R be differentiable (Gf ,βf )-invex and Gf (a) = a for a ∈ R, then f is α-

invex as defined in [], where α = βf .
() Let f = (f, . . . , fk) be differentiable vector (Gf ,βf )-invex and β

f
i (x,u) =  for all x,u ∈ X

(i ∈ K ), then f is vector G-invex as defined in []. Further, if |K | = , then f is G-invex as
defined in [].

Hence, the concept of (Gf ,βf )-invexity defined in this paper not only unifies but also
extends the concepts of α-invexity and G-invexity. Example  illustrates that there exists
a function which is neither α-invex as defined in [] nor G-invex as defined in [], but
(Gf ,βf )-invex as defined in this paper. Moreover, Definition  together with Lemma  can
help us to choose a vector-valued function η simply; see Example  too.
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Example  Let X = [–/, /]⊂ R. Define f = (f, f, f) : X →R as follows:

f(x) = e|x|–x , x ∈ X,

f(x) = arctan
(
|x| – x

)
, x ∈ X,

f(x) = ln
(|x| – x + 

)
, x ∈ X.

From Lemma ,

∂f() = [–, ], ∂f() = [–, ], ∂f() = [–, ].

Define

η(x, ) =: |x| – x, x ∈ [–/, /],

βi(x, ) = , x ∈ X, i = , , ,

G(t) = ln t, t ∈ If ,

G(t) = tan t, t ∈ If ,

G(t) = et , t ∈ If .

Then, by Definition , f is nondifferentiable vector (Gf ,βf )-invex with respect to η. Note
that f is nondifferentiable. Then f is neither α-invex as defined in [] nor G-invex as
defined in [].

3 Relations between (b,Gf )-preinvexity and (Gf ,βf )-invexity
In this section, we present the concept of (b,Gf )-preinvexity and discuss its relations with
(Gf ,βf )-invexity introduced in the above section.

Definition  Let X ⊂ Rn, α : X × X → R+, and η : X × X → Rn. The set X is said to be
α-invex at u ∈ X with respect to η if for all x ∈ X,

u + λα(x,u)η(x,u) ∈ X, ∀λ ∈ [, ].

X is said to be an α-invex set with respect to η ifX is α-invex at each u ∈ X. If α(x,u) =  for
all x,u ∈ X, then the α-invex set X with respect to η is called an invex set X with respect
to η.

Definition  Let X be an invex set (with respect to η) in Rn as defined in Definition .
Consider the functions fi : X →R and bi : X ×X × [, ] →R+ (i ∈ K ). If

fi
(
u + λη(x,u)

) ≤ (<)λbi(x,u;λ)fi(x) +
(
 – λbi(x,u;λ)

)
fi(u),

 ≤ λbi(x,u;λ) ≤ ,λ ∈ [, ], i ∈ K ()

hold for all x ∈ X (x �= u), then f = (f, . . . , fk) is said to be (strictly) vector b-preinvex at u
on X with respect to η, where b = (b, . . . ,bk). If f is (strictly) vector b-preinvex at u on X
with respect to η for each u ∈ X, then f is (strictly) vector b-preinvex on X with respect
to η.

http://www.journalofinequalitiesandapplications.com/content/2012/1/256
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Definition  Let X be an invex set (with respect to η) of Rn as defined in Definition .
Consider the functions fi : X → R, Gfi : Ifi (X) → R, and bi : X × X × [, ] → R+ (i ∈ K ).
Moreover, Gfi is strictly increasing on Ifi (X) for i ∈ K . If

fi
(
u + λη(x,u)

) ≤ (<)G–
fi

(
λbi(x,u;λ)Gfi ◦ fi(x) +

(
 – λbi(x,u;λ)

)
Gfi ◦ fi(u)

)
,

 ≤ λbi(x,u;λ) ≤ ,λ ∈ [, ], i ∈ K ()

hold for all x ∈ X (x �= u), then f = (f, . . . , fk) is said to be (strictly) vector (b,Gf )-preinvex
at u on X with respect to η, where Gf = (Gf , . . . ,Gfk ) and b = (b, . . . ,bk). If f is (strictly)
vector (b,Gf )-preinvex at u on X for all u ∈ X, then f is (strictly) vector (b,Gf )-preinvex
on X with respect to η.

Example  Let X =R. Define

f (x) = ln
(|x| + 

)
, G(x) = ex, x ∈ X.

Then it is easy to check that f is (b,G)-invex on R with respect to the function η defined
by η(x,u) = –u, where b(x,u;λ)≡  for all x,u ∈R. However, f is not b-invex at u =  with
respect to the same η and b, since

f
(
u + λη(x,u)

)
> λf (x) + ( – λ)f (u), λ = .,x = ,u = .

Above Example  illustrates there exists a function which is not b-preinvex but (b,G)-
preinvex. Next, we give another useful lemma and the proof is omitted.

Lemma  Let ϕ be an increasing function defined on A ⊂ R, then ϕ– exists and ϕ– is
increasing on Iϕ(A).

Theorem  Let X be an invex set (with respect to η) in Rn and f = (f, . . . , fk) be a func-
tion defined on X; let Gf = (Gf , . . . ,Gfk ) be a function such that Gfi : Ifi (X) → R is strictly
increasing on Ifi (X) for i ∈ K ; let b =: (b, . . . ,bk), where bi : X × X × [, ] → R+ (i ∈ K ).
Then f is (strictly) vector (b,Gf )-preinvex at u on X with respect to η if and only if
Gf ◦ f = (Gf ◦ f, . . . ,Gfk ◦ fk) is (strictly) vector b-preinvex at u on X with respect to the
same η.

Proof ‘if ’ part. Let Gf ◦ f = (Gf ◦ f, . . . ,Gfk ◦ fk) be (strictly) vector b-preinvex at u on X
with respect to η. We get from Definition 

Gfi ◦ fi
(
u + λη(x,u)

) ≤ (<)λbi(x,u;λ)Gfi ◦ fi(x) +
(
 – λbi(x,u;λ)

)
Gfi ◦ fi(u),

 ≤ λbi(x,u;λ) ≤ ,λ ∈ [, ], i ∈ K .

Thus, we obtain with Lemma 

fi
(
u + λη(x,u)

) ≤ (<)G–
fi

(
λbi(x,u;λ)Gfi ◦ fi(x) +

(
 – λbi(x,u;λ)

)
Gfi ◦ fi(u)

)
,

 ≤ λbi(x,u;λ) ≤ ,λ ∈ [, ].

http://www.journalofinequalitiesandapplications.com/content/2012/1/256
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By Definition , we deduce f is (strictly) vector (b,Gf )-preinvex at u on X with respect to
the same η.
Moreover, the above steps are invertible, so the result follows. �

Theorem  Let X be an invex set (with respect to η) in Rn; let f = (f, . . . , fk) be (strictly)
vector (b,Gf )-preinvex onX with respect to η; assume thatGfi (·) is differentiable and strictly
increasing on Ifi (X), bi(x,u;λ) is continuous on X × X × [, ] for each i ∈ K . Moreover,
limλ↓ supbi(x,u;λ) >  for any x,u ∈ X. Then f is vector (Gf ,βf )-invex on X with respect
to η, where β

f
i (x,u) =


limλ↓ supbi(x,u;λ) for i ∈ K .

Proof Since f = (f, . . . , fk) is (strictly) vector (b,Gf )-preinvex on X with respect to η, then
from Theorem  Gf ◦ f = (Gf ◦ f, . . . ,Gfk ◦ fk) is (strictly) vector b-preinvex on X with
respect to η. That is, for any x,u ∈ X (x �= u),

Gfi ◦ fi
(
u + λη(x,u)

) ≤ (<)λbi(x,u;λ)Gfi ◦ fi(x) +
(
 – λbi(x,u;λ)

)
Gfi ◦ fi(u),

 ≤ λbi(x,u;λ) ≤ ,λ ∈ [, ], i ∈ K .

Hence,

Gfi ◦ fi(u + λη(x,u)) –Gfi ◦ fi(u)
λbi(x,u;λ)

≤ (<)Gfi ◦ fi(x) –Gfi ◦ fi(u),
 ≤ λbi(x,u;λ) ≤ ,λ ∈ [, ], i ∈ K .

Therefore, by the definition of the superior limit and continuity, one obtains

(Gfi ◦ fi)(u;η(x,u))
limλ↓ supbi(x,u;λ)

≤ (<)Gfi ◦ fi(x) –Gfi ◦ fi(u), i ∈ K ,

which together with Lemma  gives

Gfi ◦ fi(x) –Gfi ◦ fi(u) ≥ 
limλ↓ supbi(x,u;λ)

(Gfi )
′(fi(u))f i (

u;η(x,u)
)

= β
f
i (x,u)(Gfi )

′(fi(u))〈ζi,η(x,u)〉, ∀ζi ∈ ∂fi(u), i ∈ K .

Thus, the result follows. �

Example  Let X be an invex set (with respect to η) of Rn and f = (f, . . . , fk) be (strictly)
(b,Gf )-preinvex on X with respect to η. For any given real number r, let ϕ be the func-
tion defined in Example  and denote by Gf ◦ f � (ϕ ◦ f, . . . ,ϕ ◦ fk). Then from Theo-
rem  f is nondifferentiable vector (Gf ,βf )-invex on X with respect to η, where β

f
i (x,u) =


limλ↓ supbi(x,u;λ) for i ∈ K . That is, the inequalities


r
erfi(x) –


r
erfi(u) ≥ β

f
i (x,u)e

rfi(u)
〈
ζi,η(x,u)

〉
, r �= ,

fi(x) – fi(u) ≥ β
f
i (x,u)

〈
ζi,η(x,u)

〉
, r = 

hold for any ζi ∈ ∂fi(u) and for each i ∈ K . Thus, f is exactly the locally Lipschitz V -r-
invexity with respect to η on X or r-invex.

http://www.journalofinequalitiesandapplications.com/content/2012/1/256


Yuan et al. Journal of Inequalities and Applications 2012, 2012:256 Page 9 of 17
http://www.journalofinequalitiesandapplications.com/content/2012/1/256

Remark  By Definition  and Example , we know that both a V -r-invex function and
an r-invex function are nondifferentiable vector (Gf ,βf )-invex.

In general, a multiobjective programming problem is formulated as the following vector
minimization problem:

min f (x) :=
(
f(x), . . . , fk(x)

)
,

s.t. g(x) :=
(
g(x), . . . , gm(x)

)
� ,

x ∈ X, (CVP)

whereX is a nonempty set ofRn, fi (i ∈ K ) and gj (j ∈M) are real-valued Lipschitz functions
on X.
Let ECVP = {x ∈ X : gj(x) � , j ∈ M} be the set of all feasible solutions for the prob-

lem (CVP). Further, denote by J(x̄) := {j ∈M : gj(x̄) = } the set of constraint indices active
at x̄ ∈ ECVP.
The above multiobjective programming problem (CVP) was widely used in applied sci-

ences. Recently, this kind of programmingwas used to solve problems arising in fields such
as bioinformatics, computational biology, molecular biology, wastewater treatment, drug
discovery, and food processing.
For convenience, we need the following vector minimization problem:

minGf ◦ f (x) := (
Gf ◦ f(x), . . . ,Gfk ◦ fk(x)

)
,

s.t. Gg ◦ g(x) := (
Gg ◦ g(x), . . . ,Ggm ◦ gm(x)

)
�Gg(),

x ∈ X, (G-CVP)

whereGg() := (Gg (), . . . ,Ggm ()). Denote byEG-CVP := {x ∈ X :Gg ◦g(x)�Gg()}, J ′(x̄) :=
{j ∈ M : Ggj ◦ gj(x̄) = Ggj ()}. Then it is easy to see that ECVP = EG-CVP and J(x̄) = J ′(x̄). So,
the set of all feasible solutions and the set of constraint active indices for either (CVP) or
(G-CVP) are denoted by E and J(x̄), respectively.
Before studying optimality inmultiobjective programming, we have to define clearly the

concepts of optimality and solutions in relation to a multiobjective programming prob-
lem. Note that in vector optimization problems, there is a multitude of competing defini-
tions and approaches. One of the dominating ones is (weak) Pareto optimality. The (weak)
Pareto optimality inmultiobjective programming associates the concept of a solutionwith
some property that seems intuitively natural.

Definition  A feasible point x̄ is said to be a (weakly) efficient solution for a multiobjec-
tive programming problem (CVP) if and only if there exists no x ∈ E such that

f (x)≤ (<)f (x̄).

Lemma  Let Gfi be strictly increasing on Ifi (X) for each i ∈ K and Ggj be strictly increasing
on Igj (X) for each j ∈M. Further, let  ∈ Igj (X), j ∈M. Then x̄ is a (weakly) efficient solution
for (CVP) if and only if x̄ is a (weakly) efficient solution for (G-CVP).

http://www.journalofinequalitiesandapplications.com/content/2012/1/256
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4 Optimality conditions in nondifferentiable multiobjective programming
The first necessary conditions for the inequality-constrained problem have been pre-
sented in  by Fritz John; while stronger necessary conditions for the same inequality-
constrained problem were obtained in  by Kuhn and Tucker. Since then, optimality
conditions of Fritz John and Karush-Kuhn-Tucker type for differentiable or nondifferen-
tiable nonconvex multiobjective programming problems were established under different
assumptions. For example, optimality conditions of Fritz-John and Karush-Kuhn-Tucker
type for nondifferentiable convexmultiobjective programming problemswere established
by Kanniappan. Later, Craven proved these conditions for nondifferentiable multiobjec-
tive programming problems involving locally Lipschitz functions. Also, under some con-
straint qualifications, Lee proved the Karush-Kuhn-Tucker necessary optimality condi-
tions for multiobjective programming problems involving Lipschitz functions. Moveover,
Soleimani-Damaneh characterized the weak Pareto-optimal solutions of nonsmoothmul-
tiobjective programs in Asplund spaces under locally Lipschitz and generalized convexity
conditions. Further, he established some sufficient conditions for optimality and proper
optimality for multiple-objective programs in Banach spaces after extending the concept
of vector invexity.
Recently, Antczak [] introduced the so-called G-Karush-Kuhn-Tucker necessary op-

timality conditions for a differentiable mathematical programming problem. In a natural
way, he [] extended the so-called G-Karush-Kuhn-Tucker necessary optimality condi-
tions to the vectorial case for differentiable multiobjective programming problems. From
the discussion in the above sections, it is interesting to consider the nondifferentiable non-
linear programming. Hence, we present not only G-Karush-Kuhn-Tucker necessary opti-
mality but also G-Karush-Kuhn-Tucker sufficient optimality for this kind of nondifferen-
tiable mathematical programming problems.

Theorem  (G-Fritz John necessary optimality condition) Let Gfi be a function defined
on Ifi (X) such that G′

fi is nonnegative and continuous on Ifi (X) for each i ∈ K ; let Ggj be a
function defined on Igj (X) such that G′

gj is nonnegative and continuous on Igj (X) for each
j ∈ M. If x̄ is a (weakly) efficient solution for (CVP), then there exist λ̄ ∈ Rn, and ξ̄ ∈ Rm

such that

 ∈
k∑
i=

λ̄iG′
fi

(
fi(x̄)

)
∂fi(x̄) +

m∑
j=

ξ̄jG′
gj

(
gj(x̄)

)
∂gj(x̄), ()

ξ̄j
(
Ggj ◦ gj(x̄) –Ggj ()

)
= , j ∈M, ()

λ̄ � , ξ̄ � , (λ̄, ξ̄ ) �= . ()

Proof Since x̄ is a (weakly) efficient solution for (CVP), then by Lemma , x̄ is a (weakly)
efficient solution for (G-CVP). Therefore, from Theorem  of [], we have

 ∈
k∑
i=

λ̄i ∂(Gfi ◦ fi)(x̄) +
m∑
j=

ξ̄j ∂(Ggj ◦ gj)(x̄),

ξ̄j
(
Ggj ◦ gj(x̄) –Ggj ()

)
= , j ∈M,

λ̄ � , ξ̄ � , (λ̄, ξ̄ ) �= .

Hence, by Lemma , we get the desired result. �
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The G-Karush-Kuhn-Tucker necessary optimality conditions for x̄ to be (weak) Pareto
optimal are obtained from the above Fritz John necessary optimality conditions under
some constraint qualifications.
Now, we give a generalized Slater type constraint qualification. Under this regularity

constraint qualification, we establish the G-Karush-Kuhn-Tucker necessary optimality
conditions for the considered nonsmooth multiobjective programming problem (CVP).

Definition  The program (CVP) is said to satisfy the generalized Slater type constraint
at x̄ if there exists x ∈ E such that gJ (x) <  and gJ is (GgJ ,βgJ )-invex with respect to η at
x̄ on E, where J � J(x̄).

Theorem  (G-Karush-Kuhn-Tucker necessary optimality condition) Let Gfi be a func-
tion defined on Ifi (X) such that G′

fi is nonnegative and continuous on Ifi (X) for each i ∈ K ;
let Ggj be a function defined on Igj (X) such that G′

gj is nonnegative and continuous on Igj (X)
for each j ∈ M. Assume that x̄ is a (weakly) efficient solution for (CVP) and the program
(CVP) satisfies the generalized Slater type constraint at x̄. Then there exist λ̄ ∈ Rn, and
ξ̄ ∈Rm such that

 ∈
k∑
i=

λ̄iG′
fi

(
fi(x̄)

)
∂fi(x̄) +

m∑
j=

ξ̄jG′
gj

(
gj(x̄)

)
∂gj(x̄), ()

ξ̄j
(
Ggj ◦ gj(x̄) –Ggj ()

)
= , j ∈M, ()

λ̄ ≥ , ξ̄ � , (λ̄, ξ̄ ) �= . ()

Proof On the one hand, since x̄ is a (weakly) efficient solution for (CVP), the necessary
optimality conditions of G-Fritz John type ()-() for (CVP) are fulfilled. Let us suppose
that λ̄ = . Then by () we have that μ̄j =  for all j �∈ J , and there exists at least one j ∈ J
such that μ̄j > . Thus, from (), Lemma , and subdifferential calculus (see []), it follows
that

 ∈ ∂

( m∑
j=

ξ̄jGgj ◦ gj
)
(x̄) = ∂

(∑
j∈J

ξ̄jGgj ◦ gj
)
(x̄) ⊂

∑
j∈J

ξ̄jG′
gj

(
gj(x̄)

)
∂gj(x̄).

This implies that there exists ζj ∈ ∂gj(x̄), j ∈M, such that

∑
j∈J

ξ̄jG′
gj

(
gj(x̄)

)
ζj = .

Note that gJ is assumed to be (GgJ ,βgJ )-invex with respect to η at x̄. Then

∑
j∈J

ξ̄j
Ggj ◦ gj(x) –Ggj ()

β
gJ
j (x, x̄)

=
∑
j∈J

ξ̄j
Ggj ◦ gj(x) –Ggj ◦ gj(x̄)

β
gJ
j (x, x̄)

≥
∑
j∈J

ξ̄jG′
gj

(
gj(x̄)

)〈
ζj,η(x, x̄)

〉
= . ()

On the other hand, it follows from the generalized Slater type constraint qualification
that there exists x ∈ E such that gj(x) <  for all j ∈ J . Since μ̄j >  at least for one j ∈ J ,
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we obtain the following inequality:

 >
∑
j∈J

ξ̄j
Ggj ◦ gj(x) –Ggj ()

β
gJ
j (x, x̄)

=
∑
j∈J

ξ̄j
Ggj ◦ gj(x) –Ggj ◦ gj(x̄)

β
gJ
j (x, x̄)

,

which contradicts (). �

Now, under the assumption of generalized invexity defined in Section , we can establish
sufficient optimality conditions for nonsmoothmultiobjective programming problems in-
volving locally Lipschitz functions.

Theorem  (G-Karush-Kuhn-Tucker sufficient optimality conditions) Let x̄ be a feasible
point for (CVP); let Gfi be differentiable and strictly increasing on Ifi (X) for each i ∈ K ,
and let Ggj be differentiable and strictly increasing on Igj (X) for each j ∈ M. Moreover,
G-Karush-Kuhn-Tucker necessary optimality conditions ()-() are satisfied at x̄. If f is
nondifferentiable vector (Gf ,βf )-invex at x̄ on X with respect to η and g is nondifferen-
tiable vector (Gg ,βg)-invex at x̄ on X with respect to the same η, then x̄ is a (weakly) efficient
solution for (CVP).

Proof Suppose, contrary to the result, that x̄ is not a weakly efficient solution for (CVP).
By Lemma , x̄ is not a weakly efficient solution for (G-CVP). Hence, there exists x ∈ X
such that

Gfi ◦ fi(x) <Gfi ◦ fi(x̄), i ∈ K . ()

By the generalized invexity assumption of f and g , we have

Gfi ◦ fi(x) –Gfi ◦ fi(x̄) ≥ β
f
i (x, x̄)G

′
fi

(
fi(x̄)

)〈
ζ
f
i ,η(x, x̄)

〉
, i ∈ K , ()

Ggj ◦ gj(x) –Ggj ◦ gj(x̄) ≥ β
g
j (x, x̄)G

′
gj

(
gj(x̄)

)〈
ζ
g
j ,η(x, x̄)

〉
, j ∈M, ()

where ζ
f
i ∈ ∂fi(x̄) (i ∈ K ) and ζ

g
j ∈ ∂gj(x̄) (j ∈M). Multiplying () by ξ̄j, we get

ξ̄j
(
Ggj ◦ gj(x) –Ggj ◦ gj(x̄)

) ≥ ξ̄jβ
g
j (x, x̄)G

′
gj

(
gj(x̄)

)〈
ζ
g
j ,η(x, x̄)

〉
, j ∈ M. ()

From (), (), (), and (), we have

G′
fi

(
fi(x̄)

)〈
ζ
f
i ,η(x, x̄)

〉
< , i ∈ K ,

ξ̄jG′
gj

(
gj(x̄)

)〈
ζ
g
j ,η(x, x̄)

〉 ≤ , j ∈M.

Note that λ̄ ≥ . Then

〈 k∑
i=

λ̄iG′
fi

(
fi(x̄)

)
ζ
f
i +

m∑
j=

ξ̄jG′
gj

(
gj(x̄)

)
ζ
g
j ,η(x, x̄)

〉
< ,

which contradicts theG-Karush-Kuhn-Tucker necessary optimality condition (). Hence,
x̄ is a weakly efficient solution for (CVP), and the proof is complete. �
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Theorem  (G-Karush-Kuhn-Tucker sufficient optimality conditions) Let x̄ be a feasible
point for (CVP); let Gfi be differentiable and strictly increasing on Ifi (X) for each i ∈ K , and
let Ggj be differentiable and strictly increasing on Igj (X) for each j ∈M.Moreover,G-Karush-
Kuhn-Tucker necessary optimality conditions ()-() are satisfied at x̄. If f is strictly non-
differentiable vector (Gf ,βf )-invex at x̄ on X with respect to η and g is nondifferentiable
vector (Gg ,βg)-invex at x̄ on X with respect to the same η, then x̄ is an efficient solution
for (CVP).

Proof Proof is similar to the proof of Theorem . �

5 Duality
Duality is an important concept in the study of optimization problems. Several duals,
including the Mond-Weir dual and the Wolfe dual, have been introduced for various
nonlinear programming problems. For example, Ahmad et al. [] considered the Mond-
Weir type dual programof nonsmoothmultiobjective programming involving generalized
V -r-invex functions. Further, Soleimani-Damaneh considered Mond-Weir type and
Wolfe type duals for a general nonsmooth optimization problem in Banach algebras. As
applications of our new generalized invexity, we also establish dual results following the
approaches of Mond and Weir. We formulate the following dual problem for (CVP):

max f (y) :=
(
f(y), f(y), . . . , fk(y)

)
,

s.t.  ∈
k∑
i=

λiG′
fi

(
fi(y)

)
∂fi(y) +

m∑
j=

μjG′
gj

(
gj(y)

)
∂gj(y),

m∑
j=

μjgj(y) ≥ ,

λ ≥ , μ � , (λ,μ) ∈Rk ×Rm. (MWD)

LetW denote the set of all feasible solutions for the dual problem (MWD). Further, denote
by Y the set Y = {y ∈ X : (y,λ,μ) ∈W }.

Theorem  (Weak duality) Let x and (y,λ,μ) be feasible solutions for (CVP) and (MWD),
respectively.Moreover, assume that fI and gJ are (GfI ,βfI )-invex and (GgJ ,βgJ )-invex at y on
E∪Y with respect to the same η, respectively, where I � I(y) and J � J(y). Then f (x)≮ f (y).

Proof Let x and (y,λ,μ) be feasible solutions for (CVP) and (MWD), respectively. Then
there exist ζ

f
i ∈ ∂fi(y), i ∈ K and ζ

g
j ∈ ∂gj(y), j ∈M, such that

k∑
i=

λiG′
fi

(
fi(y)

)
ζ
f
i +

m∑
j=

μjG′
gj

(
gj(y)

)
ζ
g
j = . ()

We proceed by contradiction. Suppose that

f (x) < f (y). ()

http://www.journalofinequalitiesandapplications.com/content/2012/1/256
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Since fI and gJ are (GfI ,βfI )-invex and (GgJ ,βgJ )-invex at y on E∪Y with respect to the same
η, respectively. Then, by Definition , the system

Gfi ◦ fi(x) –Gfi ◦ fi(y)
β
fI
i (x, y)

≥G′
fi

(
fi(y)

)〈
ζ
f
i ,η(x, y)

〉
, ζ

f
i ∈ ∂fi(ȳ), i ∈ I,

Ggj ◦ gj(x) –Ggj ◦ gj(y)
β
gJ
j (x, y)

≥ G′
gj

(
gj(y)

)〈
ζ
g
j ,η(x, y)

〉
, ζ

g
j ∈ ∂gj(ȳ), j ∈ J

holds for all x ∈ E. Hence, we deduce that the inequality

〈 k∑
i=

λiG′
fi

(
fi(y)

)
ζ
f
i +

m∑
j=

μjG′
gj

(
gj(y)

)
ζ
g
j ,η(x, y)

〉
< 

holds for all ζ f
i ∈ ∂fi(y), i ∈ I , ζ g

j ∈ ∂gj(y), j ∈ J . This contradicts (). �

Theorem  (Strong duality) Let x̄ be a (weakly) efficient solution in (CVP). Then there
exist λ̄ ∈ Rk , λ̄ ≥ , μ̄ ∈ Rm, μ̄ �  such that (x̄, λ̄, μ̄) is feasible in (MWD). If, also weak
duality theorem holds for problems (CVP) and (MWD), then (x̄, λ̄, μ̄) is a (weakly) efficient
solution in (MWD) and the optimal values in both problems are the same.

Proof Let x̄ be a (weakly) efficient solution in (CVP). Then there exist λ̄ ∈ Rk , λ̄ ≥ , μ̄ ∈
Rm, μ̄�  such that theG-Karush-Kuhn-Tucker optimality conditions ()-() are fulfilled
at x̄. Thus, by the G-Karush-Kuhn-Tucker optimality conditions ()-(), we conclude that
(x̄, λ̄, μ̄) is feasible in (MWD). Suppose that (x̄, λ̄, μ̄) is not a (weakly) efficient solution in
(MWD). Then there exists (x̃, λ̃, μ̃) ∈W such that

f (x̃) (<) ≤ f (x̄).

But the above inequality is a contradiction to weak duality. Thus, (x̄, λ̄, μ̄) is a (weakly)
efficient solution in (MWD), and the optimal values in both problems are the same. �

Theorem  (Converse duality) Let (ȳ, λ̄, μ̄) be a (weakly) efficient solution for (MWD)
such that ȳ ∈ E. Moreover, assume that fI and gJ are (strictly) (GfI ,βfI )-invex and (strictly)
(GgJ ,βgJ )-invex at ȳ on E ∪ Y with respect to the same η, respectively, where I � I(ȳ) and
J � J(ȳ). Then ȳ is a (weakly) efficient solution in (CVP).

Proof Since (ȳ, λ̄, μ̄) is a (weakly) efficient point in (MWD), then it is feasible in (MWD).
Hence, ȳ ∈ X, μ̄� , and the second constraint of (MWD) is fulfilled at ȳ. Thus, we have

k∑
i=

μ̄jgj(ȳ) = .

We proceed by contradiction. Suppose that ȳ is not a (weakly) efficient point in (MWD).
Then there exists x̃ ∈ E such that

f (x̃) (<) ≤ f (ȳ).
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Since fI and gJ are (strictly) (GfI ,βfI )-invex and (strictly) (GgJ ,βgJ )-invex at ȳ on E∪Y with
respect to the same η, respectively, then, by Definition , the inequalities

Gfi ◦ fi(x) –Gfi ◦ fi(ȳ)
β
fI
i (x, ȳ)

(>)≥ G′
fi

(
fi(ȳ)

)〈
ζ
f
i ,η(x, ȳ)

〉
, ζ

f
i ∈ ∂fi(ȳ), i ∈ I(ȳ),

Ggj ◦ gj(x) –Ggj ◦ gj(ȳ)
β
gJ
j (x, ȳ)

(>) ≥ G′
gj

(
gj(ȳ)

)〈
ζ
g
j ,η(x, ȳ)

〉
, ζ

g
j ∈ ∂gj(ȳ), j ∈ J(ȳ)

hold for all x ∈ E. Hence, it is also true for x = x̃. Thus, we deduce that the inequality

〈 k∑
i=

λ̄iG′
fi

(
fi(ȳ)

)
ζ
f
i +

m∑
j=

μ̄jG′
gj

(
gj(ȳ)

)
ζ
g
j ,η(x, ȳ)

〉
< 

holds for all ζ f
i ∈ ∂fi(ȳ), i ∈ K , ζ g

j ∈ ∂gj(ȳ), j ∈M, which contradicts the feasibility of (ȳ, λ̄, μ̄)
in (MWD). �

6 Conclusion
This paper presents a new type of generalized invexity, namely nondifferentiable (Gf ,βf )-
invexity for a given locally Lipschitz function f defined on X ⊂ Rn. This new invexity
not only unifies but also extends the existing G-invexity and α-invexity presented in lit-
eratures. We have constructed auxiliary mathematical programming (G-CVP) and have
discussed the relations between programming (G-CVP) and (CVP). With (G-CVP), we
have proved the G-Karush-Kuhn-Tucker necessary optimality conditions for (CVP). Our
statement of the so-called G-Kuhn-Tucker necessary optimality conditions established in
this paper is more general than the classical Kuhn-Tucker necessary optimality conditions
found in the literature. Also, we have proved the sufficiency of the introduced G-Karush-
Kuhn-Tucker necessary optimality conditions for (CVP) under the new nondifferentiable
vector invexity assumption.More exactly, this result has been proved for suchmultiobjec-
tive programming problems in which the objective functions, the constraints are nondif-
ferentiable vector generalized invexwith respect to the same η defined in Section , but not
necessarily with respect to the same G; see the following example. As applications of our
new generalized invexity, we establish dual results for (CVP) under the Mond-Weir dual
programming. Note thatmany researchers were interested in studyingminimax program-
ming or fractional programming with different generalized invexities; see [, , , ]. As
pointed out by an anonymous referee, we will study minimax programming or fractional
programming under the invexity proposed in this sequel in the future.
To illustrate the approach to optimality considered in the paper, we here give an example

of a nonsmooth multiobjective programming problem involving nondifferentiable vector
generalized invex functions with respect to the same function η defined in Section .

Example  Let X = [–/, /]⊂R. We consider the following (CVP):

min f (x) :=
(
f(x), f(x)

)
,

s.t. g(x) ≤ ,

x ∈ X, (CVP)
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where

f(x) = e|x|–x , x ∈ X,

f(x) = arctan
(
|x| – x

)
, x ∈ X,

g(x) = ln
(|x| – x + 

)
, x ∈ X.

It is not difficult to see that f, f, g are locally Lipschitz functions and, moreover, the set
of all feasible solutions E = X = [–/, /] ⊂ R. Note also that a feasible solution x̄ =  is
an efficiently optimal in the considered nonsmooth vector optimization problem. Then,
fromExample , f and g are nondifferentiable vector (Gf ,βf )-invex and (Gg ,βg)-invexwith
respect to the same η, respectively, where η, βf , and βg are defined in Example . Also, it
can be established that the G-Karush-Kuhn-Tucker necessary optimality conditions ()-
() are satisfied at x̄. Since all the hypotheses of Theorem  are fulfilled, then x̄ is an
efficient optimal in the considered multiobjective programming problem. Further, note
that the sufficient optimality Theorem  in [] for efficient optimality is not applicable
to the consideredmultiobjective programming problem (CVP). This follows from the fact
that all functions involved in the considered multiobjective programming problem are
nondifferentiable.
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