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Abstract
In this paper, a known theorem dealing with |C,α,γ ;δ|k summability factors has been
generalized for |C,α,β ,γ ;δ|k summability factors. Some results have also been
obtained.
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1 Introduction
A sequence (bn) of positive numbers is said to be quasi-monotone if n�bn ≥ –ρbn for
some ρ >  and is said to be δ-quasi-monotone, if bn → , bn >  ultimately and�bn ≥ –δn,
where (δn) is a sequence of positive numbers (see []). Let

∑
an be a given infinite series

with partial sums (sn). We denote by uα,β
n and tα,βn the nth Cesàro means of order (α,β),

with α + β > –, of the sequences (sn) and (nan), respectively, that is (see []),

uα,β
n =


Aα+β
n

n∑
v=

Aα–
n–vA

β
v sv, ()

tα,βn =


Aα+β
n

n∑
v=

Aα–
n–vA

β
v vav, ()

where

Aα+β
n =O

(
nα+β

)
, α + β > –, Aα+β

 =  and Aα+β
–n =  for n > . ()

The series
∑

an is said to be summable |C,α,β|k , k ≥  and α + β > –, if (see [])

∞∑
n=

nk–
∣∣uα,β

n – uα,β
n–

∣∣k < ∞. ()

Since tα,βn = n(uα,β
n – uα,β

n–) (see []), condition () can also be written as

∞∑
n=


n

∣∣tα,βn
∣∣k <∞. ()
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The series
∑

an is said to be summable |C,α,β ,γ ; δ|k , k ≥ , α + β > –, δ ≥  and γ is a
real number, if (see [])

∞∑
n=

nγ (δk+k–)∣∣uα,β
n – uα,β

n–
∣∣k = ∞∑

n=

nγ (δk+k–)–k∣∣tα,βn
∣∣k <∞. ()

If we take β = , then |C,α,β ,γ ; δ|k summability reduces to |C,α,γ ; δ|k summability (see
[]).

2 Known result
In [], we have proved the following theorem dealing with |C,α,γ ; δ|k summability factors
of infinite series.

Theorem A Let k ≥ ,  ≤ δ < α ≤ , and γ be a real number such that –γ (δk + k – ) +
(α + )k > . Suppose that there exists a sequence of numbers (Bn) such that it is δ-quasi-
monotone with |�λn| ≤ |Bn|, λn →  as n→ ∞,

∑∞
n= nδn logn < ∞ and

∑∞
n= nBn logn is

convergent. If the sequence (wα
n) defined by (see [])

wα
n =

∣∣tαn ∣∣, α = , ()

wα
n = max

≤v≤n

∣∣tαv ∣∣,  < α < , ()

satisfies the condition

m∑
n=

nγ (δk+k–)–k(wα
n
)k =O(logm) as m → ∞, ()

then the series
∑

anλn is summable |C,α,γ ; δ|k .

3 Themain result
The aim of this paper is to generalize Theorem A for |C,α,β ,γ ; δ|k summability. We shall
prove the following theorem.

Theorem Let k ≥ ,  ≤ δ < α ≤ , and γ be a real number such that (α + β +  – γ (δ +
))k > , and let there be sequences (Bn) and (λn) such that the conditions of Theorem A are
satisfied. If the sequence (wα,β

n ) defined by

wα,β
n =

∣∣tα,βn
∣∣, α = ,β > –, ()

wα,β
n = max

≤v≤n

∣∣tα,βv
∣∣,  < α < ,β > –, ()

satisfies the condition

m∑
n=

nγ (δk+k–)–k(wα,β
n

)k =O(logm) as m → ∞, ()

then the series
∑

anλn is summable |C,α,β ,γ ; δ|k . It should be noted that if we take β = ,
then we get Theorem A.
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We need the following lemmas for the proof of our theorem.

Lemma  ([]) Under the conditions on (Bn), as taken in the statement of the theorem, we
have the following:

nBn logn =O(), ()
∞∑
n=

n logn|�Bn| < ∞. ()

Lemma  ([]) If  < α ≤ , β > –, and  ≤ v≤ n, then

∣∣∣∣∣
v∑

p=

Aα–
n–pA

β
pap

∣∣∣∣∣ ≤ max
≤m≤v

∣∣∣∣∣
m∑
p=

Aα–
m–pA

β
pap

∣∣∣∣∣. ()

4 Proof of the theorem
Let (Tα,β

n ) be the nth (C,α,β) mean of the sequence (nanλn). Then by (), we have

Tα,β
n =


Aα+β
n

n∑
v=

Aα–
n–vA

β
v vavλv.

Firstly applying Abel’s transformation and then using Lemma , we have that

Tα,β
n =


Aα+β
n

n–∑
v=

�λv

v∑
p=

Aα–
n–pA

β
ppap +

λn

Aα+β
n

n∑
v=

Aα–
n–vA

β
v vav,

∣∣Tα,β
n

∣∣ ≤ 
Aα+β
n

n–∑
v=

|�λv|
∣∣∣∣∣

v∑
p=

Aα–
n–pA

β
ppap

∣∣∣∣∣ + |λn|
Aα+β
n

∣∣∣∣∣
n∑
v=

Aα–
n–vA

β
v vav

∣∣∣∣∣
≤ 

Aα+β
n

n–∑
v=

Aα
v A

β
v w

α,β
v |�λv| + |λn|wα,β

n = Tα,β
n, + Tα,β

n, , say

since

∣∣Tα,β
n, + Tα,β

n,
∣∣k ≤ k

(∣∣Tα,β
n,

∣∣k + ∣∣Tα,β
n,

∣∣k). ()

In order to complete the proof of the theorem, by (), it is sufficient to show that for r = , ,

∞∑
n=

nγ (δk+k–)–k∣∣Tα,β
n,r

∣∣k < ∞.

Whenever k > , we can apply Hölder’s inequality with indices k and k′, where 
k +


k′ = ,

we get that

m+∑
n=

nγ (δk+k–)–k∣∣Tα,β
n,

∣∣k

≤
m+∑
n=

nγ (δk+k–)–k

∣∣∣∣∣ 
Aα+β
n

n–∑
v=

Aα
v A

β
v w

α,β
v �λv

∣∣∣∣∣
k
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=O()
m+∑
n=


n(α+β+–γ (δ+))k

{ n–∑
v=

vαkvβk|�λv|
(
wα,β
v

)k}{ n–∑
v=

|�λv|
}k–

=O()
m+∑
n=


n(α+β+–γ (δ+))k

{ n–∑
v=

vαkvβk|Bv|
(
wα,β
v

)k}{ n–∑
v=

|Bv|
}k–

=O()
m∑
v=

v(α+β)k|Bv|
(
wα,β
v

)k m+∑
n=v+


n(α+β+–γ (δ+))k

=O()
m∑
v=

v(α+β)k|Bv|
(
wα,β
v

)k ∫ ∞

v

dx
x(α+β+–γ (δ+))k

=O()
m∑
v=

|Bv|vγ (δk+k–)–k+(wα,β
v

)k

=O()
m∑
v=

v|Bv|vγ (δk+k–)–k(wα,β
v

)k

=O()
m–∑
v=

∣∣�(
v|Bv|

)∣∣ v∑
p=

pγ (δk+k–)–k(wα,β
p

)k +O()m|Bm|
m∑
v=

vγ (δk+k–)–k(wα,β
v

)k

=O()
m–∑
v=

∣∣�(
v|Bv|

)∣∣ log v +O()m|Bm| logm

=O()
m–∑
v=

v|�Bv| log v +O()
m–∑
v=

|Bv+| log v +O()m|Bm| logm

=O() asm→ ∞,

in view of the hypotheses of the theorem and Lemma . Similarly, we have that

m+∑
n=

nγ (δk+k–)–k∣∣Tα,β
n,

∣∣k = O()
m∑
n=

|λn|nγ (δk+k–)–k(wα,β
n

)k

= O()
m–∑
n=

|�λn|
n∑
v=

vγ (δk+k–)–k(wα,β
v

)k

+O()|λm|
m∑
v=

vγ (δk+k–)–k(wα,β
v

)k

= O()
m–∑
n=

|�λn| logn +O()|λm| logm

= O()
m–∑
n=

|Bn| logn +O()|λm| logm

= O() asm → ∞,

by virtue of the hypotheses of the theorem and Lemma . Therefore, by (), we get that for
r = , ,

∞∑
n=

nγ (δk+k–)–k∣∣Tα,β
n,r

∣∣k < ∞.
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This completes the proof of the theorem. If we take δ =  and γ = , then we get a result
for |C,α,β|k summability factors. Also, if we take β = , δ = , and α = , then we get a
result for |C, |k summability.
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