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Abstract
We establish some stability results concerning the functional equation

nf (x + ny) + f (nx – y) =
n(n2 + 1)

2

[
f (x + y) + f (x – y)

]
+ (n4 – 1)f (y),

where n ≥ 2 is a fixed integer, in the setting of L-fuzzy normed spaces that in turn
generalize a Hyers-Ulam stability result in the framework of classical normed spaces.
MSC: 39B22; 39B52; 39B72; 46S40; 47S40
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1 Introduction and preliminaries
The theory of fuzzy sets was introduced by Zadeh [] in . After the pioneering work of
Zadeh, there has been a great effort to obtain fuzzy analogues of classical theories. Among
other fields, a progressive development is made in the field of fuzzy topology [–]. One
of problems in L-fuzzy topology is to obtain an appropriate concept of L-fuzzy metric
spaces andL-fuzzy normed spaces. In , Katsaras [] defined a fuzzy norm on a linear
space, and at the same year Wu and Fang [] also introduced a fuzzy normed space and
gave the generalization of the Kolmogoroff normalized theorem for a fuzzy topological
linear space. Somemathematicians have defined fuzzymetrics andnorms on a linear space
from various points of view [, , , –]. In , Cheng and Mordeson introduced
the definition of a fuzzy norm on a linear space in such a manner that the corresponding
induced fuzzymetric is of Kramosil andMichalek type []. In , Bag and Samanta []
modified the definition of Cheng and Mordeson [] by removing a regular condition. In
, Park [] introduced and studied the notion of intuitionistic fuzzy metric spaces. In
, Saadati and Park introduced and studied the notion of intuitionistic fuzzy normed
spaces.
On the other hand, the study of stability problems for a functional equation is related

to a question of Ulam [], concerning the stability of group homomorphisms, affirma-
tively answered for Banach spaces by Hyers []. Subsequently, the result of Hyers was
generalized by Aoki [] for additive mappings and by Rassias [] for linear mappings by
considering an unbounded Cauchy difference. We refer the interested readers for more
information on such problems to the papers [, –].
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Let X and Y be real linear spaces and let f : X → Y be amapping. If X = Y =R, the cubic
function f (x) = cx, where c is a real constant, clearly satisfies the functional equation

f (x + y) + f (x – y) = f (x + y) + f (x – y) + f (x).

Hence, the above equation is called the cubic functional equation. Recently, Cho, Saadati
and Wang [] introduced the functional equation

f (x + y) + f (x – y) = 
[
f (x + y) + f (x – y)

]
+ f (y),

which has f (x) = cx (x ∈ R) as a solution for X = Y =R.
In this paper, we investigate the Hyers-Ulam stability of the functional equation as fol-

lows:

nf (x + ny) + f (nx – y) =
n(n + )


[
f (x + y) + f (x – y)

]
+

(
n – 

)
f (y), (.)

where n≥  is a fixed integer.
We recall some definitions and results for our main result in this paper.
A triangular norm (shorter t-norm) is a binary operation on the unit interval [, ], i.e., a

functionT : [, ]×[, ] → [, ] satisfying the following four axioms: for all a,b, c ∈ [, ],
(i) T(a,b) = T(b,a) (commutativity);
(ii) T(a,T(b, c)) = T(T(a,b), c) (associativity);
(iii) T(a, ) = a (boundary condition);
(iv) T(a,b)≤ T(a, c) whenever b ≤ c (monotonicity).
Basic examples are the Łukasiewicz t-norm TL and the t-norms TP , TM and TD, where

TL(a,b) :=max{a + b – , }, TP(a,b) := ab, TM(a,b) :=min{a,b} and

TD(a,b) :=

⎧⎨
⎩min{a,b} if max{a,b} = ,

 otherwise

for all a,b ∈ [, ].
For all x ∈ [, ] and all t-norms T , let x()T := . For all x ∈ [, ] and all t-norms T , define

x(n)T by the recursion equation x(n)T = T(x(n–)T ,x) for all n ∈ N. A t-norm T is said to be of
Hadžić type (we denote it by T ∈ H) if the family (x(n)T )n∈N is equicontinuous at x =  (see
[]).
Other important triangular norms are as follows (see []):
• The Sugeno-Weber family {TSW

λ }λ∈[–,∞] is defined by TSW
– := TD, TSW∞ := TP and

TSW
λ (x, y) :=max

{
,

x + y –  + λxy
 + λ

}

if λ ∈ (–,∞).
• The Domby family {TD

λ }λ∈[,∞] is defined by TD, if λ = , TM , if λ = ∞ and

TD
λ (x, y) :=


 + (( –xx )λ + ( –yy )λ)/λ

if λ ∈ (,∞).
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• The Aczel-Alsina family {TAA
λ }λ∈[,∞] is defined by TD, if λ = , TM , if λ = ∞ and

TAA
λ (x, y) := e–(| logx|

λ+| log y|λ)/λ

if λ ∈ (,∞).
A t-norm T can be extended (by associativity) in a unique way to an n-array operation

by taking, for any (x, . . . ,xn) ∈ [, ]n, the value T(x, . . . ,xn) defined by

T
i=xi := , Tn

i=xi := T
(
Tn–
i= xi,xn

)
= T(x, . . . ,xn).

A t-norm T can also be extended to a countable operation by taking, for any sequence
(xn)n∈N in [, ], the value

T∞
i=xi := lim

n→∞Tn
i=xi. (.)

The limit on the right-hand side of (.) exists since the sequence {Tn
i=xi}n∈N is non-

increasing and bounded from below.

Proposition . []
() For T ≥ TL, the following equivalence holds:

lim
n→∞T∞

i=xn+i =  ⇐⇒
∞∑
n=

( – xn) <∞.

() If T is of Hadžić type, then

lim
n→∞T∞

i=xn+i = 

for all sequence {xn}n∈N in [, ] such that limn→∞ xn = .
() If T ∈ {TAA

λ }λ∈(,∞) ∪ {TD
λ }λ∈(,∞), then

lim
n→∞T∞

i=xn+i =  ⇐⇒
∞∑
n=

( – xn)α < ∞.

() If T ∈ {TSW
λ }λ∈[–,∞), then

lim
n→∞T∞

i=xn+i =  ⇐⇒
∞∑
n=

( – xn) <∞.

We give some definitions and related lemmas for our main result.

Definition . [] Let L = (L,≤L) be a complete lattice and U a non-empty set called
universe. An L-fuzzy set A on U is defined by a mappingA :U → L. For any u ∈U ,A(u)
represents the degree (in L) to which u satisfies A.

Lemma . [] Consider the set L* and the operation ≤L* defined by

L* =
{
(x,x) : (x,x) ∈ [, ] and x + x ≤ 

}
,
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(x,x)≤L* (y, y) ⇐⇒ x ≤ y, x ≥ y

for all (x,x), (y, y) ∈ L*. Then (L*,≤L* ) is a complete lattice.

Definition . [] An intuitionistic fuzzy set Aζ ,η on a universe U is an object Aζ ,η =
{(ζA(u),ηA(u)) : u ∈ U}, where ζA(u) ∈ [, ] and ηA(u) ∈ [, ] for all u ∈ U are called the
membership degree and the non-membership degree, respectively, of u inAζ ,η and, further,
they satisfy ζA(u) + ηA(u) ≤ .

We presented the classical definition of t-norms which can be straightforwardly ex-
tended to any lattice L = (L,≤L). Define first L := infL and L := supL.

Definition . A triangular norm (t-norm) on L is a mapping T : L → L satisfying the
following conditions:

(i) (∀x ∈ L) (T (x, L) = x) (boundary condition);
(ii) (∀(x, y) ∈ L) (T (x, y) = T (y,x)) (commutativity);
(iii) (∀(x, y, z) ∈ L) (T (x,T (y, z)) = T (T (x, y), z)) (associativity);
(iv) (∀(x,x′, y, y′) ∈ L) (x≤L x′ and y≤L y′ ⇒ T (x, y)≤L T (x′, y′)) (monotonicity).

A t-norm can also be defined recursively an (n + )-array operation for each n ∈N \ {}
by T  = T and

T n(x(), . . . ,x(n+)) = T
(
T n–(x(), . . . ,x(n)),x(n+)

)

for all n ≥  and x(i) ∈ L.
The t-normM defined by

M(x, y) =

{
x, if x ≤L y,
y, if y≤L x,

is a continuous t-norm.

Definition . A t-norm T on L* is said to be t-representable if there exist a t-norm T
and a t-conorm S on [, ] such that

T (x, y) =
(
T(x, y),S(x, y)

)

for all x = (x,x), y = (y, y) ∈ L*.

Definition .
() A negator on L is any decreasing mappingN : L → L satisfyingN (L) = L and

N (L) = L.
() If a negatorN on L satisfiesN (N (x)) = x for all x ∈ L, thenN is called an

involution negator.
() The negatorNs on ([, ],≤) defined asNs(x) =  – x for all x ∈ [, ] is called the

standard negator on ([, ],≤).
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Definition . The -tuple (V ,P ,T ) is said to be anL-fuzzy normed space ifV is a vector
space, T is a continuous t-norm on L andP is an L-fuzzy set on V × (,∞) satisfying the
following conditions: for all x, y ∈ V and t, s ∈ (,∞),

(i) L <L P(x, t);
(ii) P(x, t) = L ⇔ x = ;
(iii) P(αx, t) =P(x, t

|α| ) for all α = ;
(iv) T

(
P(x, t),P(y, s)

) ≤L P(x + y, t + s);
(v) P(x, ·) : (,∞)→ L is continuous;
(vi) limt→P(x, t) = L and limt→∞ P(x, t) = L.

In this case, P is called an L-fuzzy norm. If P = Pμ,ν is an intuitionistic fuzzy set and
the t-norm T is t-representable, then the -tuple (V ,Pμ,ν ,T ) is said to be an intuitionistic
fuzzy normed space.

Definition . (see []) Let (V ,P ,T ) be an L-fuzzy normed space.
() A sequence {xn}n∈N in (V ,P ,T ) is called a Cauchy sequence if, for any ε ∈ L \ {L}

and for any t > , there exists a positive integer n such that

N (ε) <L P(xn+p – xn, t)

for all n≥ n and p > , whereN is a negator on L.
() A sequence {xn}n∈N in (V ,P ,T ) is said to be convergent to a point x ∈ V in the

L-fuzzy normed space (V ,P ,T ) (denoted by xn
P–→ x) if P(xn – x, t)→ L

wherever n → ∞ for all t > .
() If every Cauchy sequence in (V ,P ,T ) is convergent in V , then the L-fuzzy normed

space (V ,P ,T ) is said to be complete and the L-fuzzy normed space is called an
L-fuzzy Banach space.

Lemma . Let P be an L-fuzzy norm on V . Then we have the following.
() P(x, t) is non-decreasing with respect to t ∈ (,∞) for all x in V .
() P(x – y, t) =P(y – x, t) for all x, y in V and all t ∈ (,∞).

Definition . Let (V ,P ,T ) be an L-fuzzy normed space. For any t ∈ (,∞), we define
the open ball B(x, r, t) with center x ∈ V and radius r ∈ L \ {L, L} as

B(x, r, t) =
{
y ∈ V :N (r) <L P(x – y, t)

}
.

A subset A ⊆ V is called open if, for all x ∈ A, there exist t >  and r ∈ L \ {L, L} such
that B(x, r, t)⊆ A.

Let τP denote the family of all open subsets of V . Then τP is called the topology induced
by the L-fuzzy norm P .

2 Main results
In this section, we study the stability of the functional equation (.) in L-fuzzy normed
spaces.
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Theorem . Let X be a linear space and (Y ,P ,T ) a complete L-fuzzy normed space. Let
f : X → Y be a mapping with f () =  and Q be an L-fuzzy set on X × (,∞) satisfying

P
(
nf (x + ny) + f (nx – y) –

n(n + )


[
f (x + y) + f (x – y)

]
–

(
n – 

)
f (y), t

)

≥L Q(x, y, t) (.)

for all x, y ∈ X and all t > . If

T ∞
i=

(
Q

(
nr+i–x,nr+i–y,nr+i+t

))
= L

and

lim
n→∞Q

(
nrx,nry,nrt

)
= L

for all x, y ∈ X and t > , then there exists a unique cubic mapping C : X → Y such that

P
(
f (x) –C(x), t

) ≥L T ∞
i=

(
Q

(
ni–x, ,ni+t

))
(.)

for all x ∈ X and t > .

Proof Putting y =  in (.), we have

P
(
f (nx)
n

– f (x), t
)

≥L Q
(
x, ,nt

)

for all x ∈ X and all t > . Therefore, it follows that

P
(
f (nk+x)
n(k+)

–
f (nkx)
nk

,
t
nk

)
≥L Q

(
nkx, ,nt

)
,

which implies that

P
(
f (nk+x)
n(k+)

–
f (nkx)
nk

, t
)

≥L Q
(
nkx, ,n(k+)t

)
,

that is,

P
(
f (nk+x)
n(k+)

–
f (nkx)
nk

,
t

nk+

)
≥L Q

(
nkx, ,n(k+)t

)

for all x ∈ X, t >  and all k ∈ N. Since n ≥ , we get  > 
n + · · · + 

nr for all r ∈ N. By the
triangle inequality, it follows that

P
(
f (nrx)
nr

– f (x), t
)

≥L P
(
f (nrx)
nr

– f (x),
r–∑
k=

t
nk+

)

≥L T r–
k=

(
P

(
f (nk+x)
n(k+)

–
f (nkx)
nk

,
t

nk+

))

≥L T r
k=

(
Q

(
nk–x, ,nkt

))
(.)

for all x ∈ X, t >  and all r ∈N.
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In order to prove the convergence of the sequence { f (nrx)nr }, we replace xwith nmx in (.)
to find that for allm, r > ,

P
(
f (nr+mx)
n(r+m) –

f (nmx)
nm

, t
)

≥L T r
k=

(
Q

(
nk+m–x, ,nk+mt

))

for all x ∈ X, t >  and all r ∈N. Since the right-hand side of the inequality tend to L asm
tends to infinity, the sequence { f (nrx)nr } is a Cauchy sequence. Thus, we may define

C(x) := lim
r→∞

f (nrx)
nr

for all x ∈ X.
Now we show that C is a cubic mapping. Replacing x, y with nrx and nry, respectively,

in (.), it follows that

P
(
nf (nr(x + ny))

nr
+
f (nr(nx – y))

nr
–
n(n + )f (nr(x + y))

nr

–
n(n + )f (nr(x – y))

nr
–
(n – )f (nry)

nr
, t

)
≥L Q

(
nrx,nry,nrt

)

for all x, y ∈ X, t >  and all r ∈ N. Taking the limit as r → ∞, we find that C satisfies (.)
for all x, y ∈ X.
To prove (.), taking the limit as r → ∞ in (.), we have (.).
Finally, to prove the uniqueness of the cubic mapping C subject to (.), let us assume

that there exists another cubic mapping C′ which satisfies (.). Obviously, we have

C
(
nrx

)
= nrC(x), C′(nrx) = nrC′(x)

for all x ∈ X and all n ∈N. Hence, it follows from (.) that

P
(
C(x) –C′(x), t

)
=P

(
C

(
nrx

)
–C′(nrx),nrt)

≥L T
(
P

(
C

(
nrx

)
– f

(
nrx

)
,nr–t

)
,P

(
f
(
nrx

)
–C′(nrx),nr–t))

≥L T
(
T ∞
i=

(
Q

(
nr+i–x, ,nr+it

))
,T ∞

i=
(
Q

(
nr+i–x, ,nr+it

)))
= T (L, L) = L

for all x ∈ X and all t > . This proves the uniqueness of C and completes the proof. �

Corollary . Let (X,P ′,T ) be an L-fuzzy normed space and (Y ,P ,T ) be a complete L-
fuzzy normed space. If f : X → Y is a mapping such that

P
(
nf (x + ny) + f (nx – y) –

n(n + )


[
f (x + y) + f (x – y)

]
–

(
n – 

)
f (y), t

)

≥L P ′(x + y, t)

for all x, y ∈ X and all t > . If

T ∞
i=

(
P ′(x + y,nr+i+t

))
= L

http://www.journalofinequalitiesandapplications.com/content/2012/1/249
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and

lim
n→∞P ′(x + y,nrt

)
= L

for all x, y ∈ X and all t > , then there exists a unique cubic mapping C : X → Y such that

P
(
f (x) –C(x), t

) ≥L T ∞
i=

(
P ′(x,ni+t))

for all x ∈ X and all t > .
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