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Abstract
This paper investigates some precise large deviations for the random sums of the
differences between two sequences of independent and identically distributed
random variables, where the minuend random variables have subexponential tails,
and the subtrahend random variables have finite second moments. As applications to
risk theory, the customer-arrival-based insurance risk model is considered, and some
uniform asymptotics for the ruin probabilities of an insurance company are derived as
the number of customers or the time tends to infinity.
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1 Introduction andmain result
Throughout, let {Xk ,k ≥ } be a sequence of independent and identically distributed (i.i.d.)
nonnegative random variables (r.v.s) with a common distribution B, {Yk ,k ≥ } be also a
sequence of i.i.d. nonnegative r.v.s. Denote the differences by Zk = Xk – Yk , k ≥ , with a
common distribution F and a finitemeanμ < . Let {N(t), t ≥ } be a nonnegative integer-
valued process. We assume that {Xk ,k ≥ }, {Yk ,k ≥ } and {N(t), t ≥ } are mutually in-
dependent. Define a random walk process Sn =

∑n
k=Zk , n ≥ , by convention, S = . In

this paper, we are interested in the precise large deviations for the randomly index sums
(random sums) SN(t) under the assumption that the distribution B is heavy tailed. A well-
known notion in extremal value theory, the subexponentiality, describes an important
property of the right tail of a distribution. The subexponential class of distributions, de-
noted by S, is the most important class of heavy-tailed distributions. A distribution V on
[,∞) is said to belong to the class S if its tail V =  –V satisfies

lim
x→∞

Vn∗ (x)
V (x)

= n

for some (or, equivalently, for all) n ≥ , where Vn∗ denotes the n-fold convolution of
V . A related class is the dominatedly-varying-tailed distribution class denoted by D . A
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distribution V on (–∞,∞) is said to belong to the class D if for any  < y < ,

lim sup
x→∞

V (xy)
V (x)

< ∞.

Furthermore, for the distribution V on (–∞,∞), denote its upper Matuszewska index by

J+V = – lim
y→∞

logV ∗(y)
log y

with V ∗(y) := lim inf
x→∞

V (xy)
V (x)

for y > .

Precise large deviation probabilities for random sums have been extensively investigated
by many researchers who have mainly concentrated on the sequence of nonnegative r.v.s,
whose distributions belong to some subclasses of the classes S and D . Klüppelberg and
Mikosch [] dealt with the case where the distribution B is extended-regularly-varying-
tailed, and Tang et al. [] improved this result with some weaker conditions on the pro-
cess N(t). Later, Ng et al. [] investigated a more general case where B has a consistently
varying tail. For some further works, one can refer to Liu [], Wang et al. [], Yang and
Wang [] among others. We remark that Baltrūnas et al. [] obtained an important equiv-
alently precise large deviations result for the random sums of nonnegative subexponential
r.v.s. For the case of real-valued r.v.s, Yang and Wang [] derived some similar results for
the real-valued r.v.s or the differences of two nonnegative r.v.s with dominatedly-varying-
tailed distributions; however, their results are weakly equivalent and the process N(t) is
restricted to some renewal counting process. Recently, Chen and Zhang [] considered
the case of dependent real-valued r.v.s with consistently varying tails and the processN(t)
satisfying the condition

E
(
N(t)

)p{N(t)>(+δ)λ(t)} = o
(
λ(t)

)
, t → ∞ (.)

for some p > J+F and any δ > , where λ(t) := EN(t) is assumed to tend to ∞ as t → ∞. Mo-
tivated by the above contributions, in this paper we aim to establish some precise large
deviations results, which are some equivalent relations, for the random sums of the differ-
ences between two sequences of nonnegative r.v.s under a mild condition on the process
N(t):

N(t)
λ(t)

P→ , t → ∞, (.)

and

λ(t)∼ λt, t → ∞, (.)

for some λ > . Clearly, the condition (.) implies (.); see, e.g., Tang et al. [].
Hereafter, all limit relationships hold for t tending to∞ unless stated otherwise. For two

positive functions a(t) and b(t), we write a(t)∼ b(t) if lima(t)/b(t) = ; write a(t) = o(b(t))
if lima(t)/b(t) = ; and write a(t) = O(b(t)) if lim supa(t)/b(t) < ∞. Furthermore, for two
positive bivariate functions a(t,x) and b(t,x), we write a(t,x) ∼ b(t,x) uniformly for all x
in a nonempty set � if

lim
t→∞ sup

x∈�

∣∣∣∣a(t,x)b(t,x)
– 

∣∣∣∣ = .
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Asymptotic formulae that hold with such a uniformity feature are usually of higher theo-
retical and practical interests. The indicator function of an event A is denoted by A.
To formulate our main results, we firstly introduce some notations and assumptions.

Let Q(u) = – logB(u), u≥ , be the hazard function of the distribution B. We assume that
there exists a nonnegative function q such that Q(u) = Q() +

∫ u
 q(v) dv, u ≥ , which is

called the hazard rate of B. Denote the hazard ratio index by r := lim sup tq(t)/Q(t). The
following condition is essential for our purposes.

Condition A Assume that Y has a finite second moment, the distribution B is absolutely
continuous and satisfies
() r < /;

() lim inf tq(t)≥
{
 if r = ,
cB/( – r) if  < r <  for some cB >  +

√
.

Condition A is due to Condition B of Baltrūnas et al. [], which plays an important
role in proving the precise large deviations result for partial sums; see Yang []. By
Lemma .(a) of Baltrūnas et al. [], we know that if r < , then B ∈ S. (.) is a mild
restriction on the process N(t). It can be satisfied for many common nonnegative integer-
valued processes such as the renewal counting process generated by i.i.d. or some depen-
dent r.v.s (see, e.g., Theorem .. of Embrechts et al. [], Theorem. of Yang andWang
[], Theorem . of Wang and Cheng [] etc.), the compound renewal counting process
(see Theorems . and . of Tang et al. []) among others. Indeed, some recent works
proposed a common used and weaker condition than (.):

E
(
N(t)

)p{N(t)>(+δ)λ(t)} =O
(
λ(t)

)
for some p > J+F and any δ > . Comparing with this condition, (.) is weaker due to
Lemma. ofNg et al. []. The condition (.) is also satisfied for, e.g., the renewal counting
process generated by independent or some dependent r.v.s according to some elementary
renewal theorems (see, e.g., Proposition .. of Embrechts et al. [], Theorem . of
Yang and Wang [], Theorems . and . of Wang and Cheng [] etc.).
Throughout the paper, we assume that μ = E(X – Y) < . Under Condition A, we state

our main results below.

Theorem . Assume that ConditionA, (.) and (.) hold. If B ∈ D , then for any γ > |μ|,

P
(
SN(t) –μλ(t) > x

) ∼ λtB(x) (.)

holds uniformly for all x ≥ γ λ(t).

Corollary . Assume that Y has a finite second moment, (.) and (.) hold. If the haz-
ard function of r.v. X is of the form Q(u) = Q() +

∫ u
 q(v) dv, where  < lim inf tq(t) ≤

lim sup tq(t) < ∞, then for any γ > |μ|, (.) holds uniformly for all x ≥ γ λ(t).

For some applications of these results in insurance, finance and queueing system, one
can refer to Klüppelberg and Mikosch [], Mikosch and Nagaev [], Baltrūnas et al. []
among others. In Section  we consider the customer-arrival-based insurance risk model
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(CIRM) and obtain some uniformly asymptotic behavior of the accumulated risks of an
insurance company as the number of customers tends to infinity and the time tends to
infinity. The proofs of Theorem . and Corollary . will be postponed in Section .

2 Applications to risk theory
In this section, we apply our main results to the Customer-arrival-based Insurance Risk
Model (CIRM). Their proofs are straightforward and we omit them. Such a risk model
satisfies the following three requirements:
() The customer-arrival process {N(t), t ≥ } is a general counting process, namely a

nonnegative, nondecreasing, right continuous and integer-valued random process. De-
note the times of successive customer-arrival by τn, n = , , . . . .
() At the time τn, the nth customer purchases an insurance policy. Assume that an

insurance period lasts δ. Then in an insurance period δ, the insurance company has a
potential risk of payment.
() The potential claims {Xk ,k ≥ }, independent of {N(t), t ≥ }, are nonnegative i.i.d.

r.v.s with a common distribution B and a finite mean μB. The price of an insurance policy
is ( + ρ)μB, where the positive constant ρ is interpreted as a relative safety loading. The
net loss of the nth customer is Xn – ( + ρ)μB.
Denote by R(x, t) = x –W (t) the risk reserve process up to time t ≥ , where x is the

initial capital reserve and the claim surplus processW (t) is defined as

W (t) =
N(t)∑
k=

(
Xk – ( + ρ)μB

)
, t ≥ .

In the discrete case, the claim surplus process can be rewritten as

Wn =
n∑
k=

(
Xk – ( + ρ)μB

)
, n≥ .

This model was introduced by Ng et al. []. Clearly, Lemma . and Theorem . lead
to some precise large deviation results for the processesWn andW (t) in the CIRM.

Theorem . In the CIRM,
(i) Assume that Condition A holds, then for any γ > 

lim
n→∞ sup

x≥γn

∣∣∣∣ P(Wn > x)
nB(x + ρnμB)

– 
∣∣∣∣ = . (.)

(ii) Assume that Condition A, (.) and (.) hold. If B ∈ D , then for any γ > |μ|

lim
t→∞ sup

x≥γ λ(t)

∣∣∣∣ P(W (t) > x)
λtB(x + ρμBλ(t))

– 
∣∣∣∣ = . (.)

We address that the large deviation problems for the prospective loss processW (t) de-
scribe the uniformly asymptotic behavior of the accumulated risks.
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3 Proof of main result
In the sequel, the constant C always represents a positive constant, which may vary from
place to place. Before proving Theorem ., we require some lemmas.
We firstly introduce two auxiliary lemmas. The first one is an important precise large

deviation for partial sums, which was originally due to Baltrūnas et al. [] and modified
by Daley et al. [].

Lemma . Assume that Condition A holds, then

lim
n→∞ sup

t≥tn

∣∣∣∣P(Sn – nμ > t)
nB(t)

– 
∣∣∣∣ =  (.)

holds for any sequence {tn,n≥ } satisfying

lim
n→∞

√
n sup
u≥tn

Q(u)
u

= . (.)

The second lemma describes the relations among the hazard ratio index, the class S and
the hazard function, which can be found in Baltrūnas et al. [] or Baltrūnas et al. [].

Lemma . If r < , then
() B ∈ S;
() Q(u)/u decreases for sufficiently large u;
() for any ε > , there exist positive uε and cε such that Q(u) ≤ cεur+ε for u≥ uε .

In order to prove Theorem ., we rewrite P(SN(t) – μλ(t) > x) as the sum
∑∞

n= P(Sn –
μλ(t) > x)P(N(t) = n) and divide the sum into three parts

P
(
SN(t) –μλ(t) > x

)
=

( ∑
|n–λ(t)|≤ε(t)λ(t)

+
∑

n<(–ε(t))λ(t)

+
∑

n>(+ε(t))λ(t)

)
P
(
Sn –μλ(t) > x

)
P
(
N(t) = n

)
=: I + I + I, (.)

where ε(t) is some positive function satisfying ε(t) →  and tε(t) ↗ ∞. We proceed with
a series of lemmas below to prove Theorem ..

Lemma . Assume that Condition A, (.) and (.) hold. Let ε(t) = c log t/
√
t for some

c > . Then for any γ > ,

I ∼ λtB(x) (.)

holds uniformly for all x ≥ γ λ(t).

Proof Along the line of Baltrūnas et al. [], we rewrite

I = B(x)
∑

|n–λ(t)|≤ε(t)λ(t)

P
(
N(t) = n

) · B(x +μλ(t) – nμ)
B(x)

× P(Sn – nμ > x +μλ(t) – nμ)
B(x +μλ(t) – nμ)

. (.)
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If γ ≥ –μ > , then x+μλ(t)–nμ ≥ (γ +μ)λ(t)–nμ ≥ n(γ –με(t))/(+ ε(t)); analogously,
if  < γ < –μ, then x+μλ(t)–nμ ≥ n(γ +με(t))/(– ε(t)). Taking account of the vanishing
of ε(t), we have that x +μλ(t) – nμ ≥ γn/ for sufficiently large t. Since Q(u)/u decreases
eventually (Lemma .()), we derive that for any ε >  satisfying r + ε < /, sufficiently
large t and |n – λ(t)| ≤ ε(t)λ(t), by Lemma .()

√
n sup
u≥x+μλ(t)–nμ

Q(u)
u

≤ √
n
Q( γ

 n)
γ

 n

≤ cε
√
n
(

γ


n
)r+ε–

→ , n → ∞ (or equivalently, t → ∞), (.)

which means that (.) is fulfilled. Using Lemma ., we can obtain that

P
(
Sn –μλ(t) > x

)
= P

(
Sn – nμ > x +μλ(t) – nμ

)
∼ nB

(
x +μλ(t) – nμ

)
(.)

holds uniformly for |n – λ(t)| ≤ ε(t)λ(t). If (n – λ(t))μ ≥ , according to the mean value
theorem, there exists some constant c = c(x) ∈ (x– (n–λ(t))μ,x) such that for the above
fixed ε >  satisfying r + ε < / and sufficiently large t,

 ≤ B(x +μλ(t) – nμ)
B(x)

= exp
{
Q(x) –Q

(
x +μλ(t) – nμ

)}
= exp

{(
n – λ(t)

)
μ · cq(c)

Q(c)
· Q(c)

c

}

≤ exp

{
(r + ε)

(
n – λ(t)

)
μ · Q(c)

c

}
. (.)

Note that by (.), c > x + (n – λt)|μ| ≥ x – ε(t)|μ|λ(t) ≥ (γ – ε(t)|μ|)λ(t) ≥ γ λt/, and
 ≤ (n – λt)μ ≤ ε(t)|μ|λ(t) ≤ C

√
t log t. Hence, by (.) and Lemma ., we have that for

sufficiently large t,

 ≤ B(x +μλ(t) – nμ)
B(x)

≤ exp

{
C

√
t log t · Q(

γ

 λt)
γ

 λt

}

≤ exp
{
Ctr+ε– 

 log t
} → . (.)

If (n– λt)μ < , the proof of (.) is analogous. Clearly, the condition (.) is equivalent to

limP
(|N(t) – λ(t)| ≤ ε(t)λ(t)

)
= . (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/248
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Therefore, it follows from (.)-(.), (.) and the dominated convergence theorem that

I ∼ B(x)
∑

|n–λ(t)|≤ε(t)λ(t)

nP
(
N(t) = n

)

∼ λ(t)B(x)P
(∣∣N(t) – λ(t)

∣∣ ≤ ε(t)λ(t)
)

∼ λtB(x)

holds uniformly for all x ≥ γ λ(t). It completes the proof of the lemma. �

Lemma . Assume that Condition A and (.) hold. Let ε(t) be any positive function
satisfying ε(t) →  and tε(t) ↗ ∞. Then for any γ > |μ|,

I = o
(
λ(t)B(x)

)
(.)

holds uniformly for all x ≥ γ λ(t).

Proof Note that  < ε <  for all sufficiently large t, then by the dominated convergence
theorem and (.), we have that

limE

(
N(t)
λ(t)

{N(t)≤(+ε)λ(t)}
)
= ,

which implies that

EN(t){N(t)>(+ε)λ(t)} = o
(
λ(t)

)
. (.)

Similarly to (.), (.) is satisfied for tn = x +μλ(t) – nμ with n > ( + ε(t))λ(t). Note that
x+μλ(t) –nμ ≥ max(x, (γ +μ)λ(t) +n|μ|) ≥ max(x,n|μ|). So, from Lemma . and (.),
we obtain that

I ∼
∑

n>(+ε(t))λ(t)

nP
(
N(t) = n

)
B
(
x +μλ(t) – nμ

)

≤ B(x)EN(t){N(t)>(+ε(t))λ(t)}

= o
(
λ(t)B(x)

)
holds uniformly for all x ≥ γ λ(t). �

Lemma . Assume that Condition A and (.) hold. Let ε(t) be any positive function sat-
isfying ε(t) →  and tε(t) ↗ ∞. If B ∈ D , then for any γ > |μ|,

I = o
(
λ(t)B(x)

)
(.)

holds uniformly for all x ≥ γ λ(t).

Proof For any ε > , by Lemma ., there exists some sufficiently large integer n such that
for all u ≥ tn and n≥ n,∣∣∣∣P(Sn – nμ > u)

nB(u)
– 

∣∣∣∣ ≤ ε. (.)
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Now we divide I into two parts.

I =
(∑
n≤n

+
∑

n<n≤(–ε(t))λ(t)

)
P
(
N(t) = n

)
P
(
Sn –μλ(t) > x

)
≡ I + I. (.)

We firstly estimate I. By r <  and Lemma .(), we know that B ∈ S. According to
Lemma .(b) of Baltrūnaset al. [], it holds that F(t) ∼ B(t), which implies F ∈ S. Hence,
by the subexponentiality and B ∈ D , we have

I ∼ F
(
x +μλ(t)

) ∑
n≤n

nP
(
N(t) = n

)

∼ B
(
x +μλ(t)

)
EN(t){N(t)≤n}

≤ C(n)B(x)

= o
(
λ(t)B(x)

)
(.)

holds uniformly for all x ≥ γ λ(t). As for I, noting that x+μλ(t)–nμ ≥ (γ +μ)λ(t)–nμ ≥
n(γ + με(t))/( – ε(t)) ≥ γn/ ≥ tn, and from (.),  < –μ < γ , B ∈ D , (.), we obtain
that

I ≤ ( + ε)
∑

n<n≤(–ε(t))λ(t)

P
(
N(t) = n

)
nB

(
x +μλ(t) – nμ

)

≤ ( + ε)
(
 – ε(t)

)
λ(t)B

(
γ +μ

γ
x
)
P
(
n <N(t)≤ (

 – ε(t)
)
λ(t)

)
≤ ( + ε)

(
 – ε(t)

)
λ(t)CB(x)P

(
n <N(t)≤ (

 – ε(t)
)
λ(t)

)
= o

(
λ(t)B(x)

)
(.)

holds uniformly for all x ≥ γ λ(t). Therefore, the desired (.) follows from (.)-(.).
�

Combining above Lemmas ., . and ., we complete the proof of Theorem ..

Proof of Corollary . Clearly, lim sup tq(t) < ∞ implies r = . By Lemma .(b) of
Baltrūnas et al. [], we have κ ≥ lim inf tq(t) >  = α(r). Hence, it only remains to prove
B ∈ D . Indeed, there exists some constant C >  such that q(t) ≤ Ct– for sufficiently
large t. For any  < θ <  and sufficiently large t, we have that

B(θ t)
B(t)

= exp

{∫ t

θ t
q(u) du

}

≤ exp

{
C

∫ t

θ t
u– du

}

= θ–C < ∞,

which implies B ∈ D . �
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