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Abstract
The convergence property of sampling series, the estimate of truncation error in the
mean square sense and the almost sure results on sampling theorem for
multidimensional stochastic processes from average sampling are analyzed. These
results are generalization of the classical results which were given by Balakrishnan (IRE
Trans. Inf. Theory 3(2):143-146, 1957) and Belyaev (Theory Probab. Appl. 4(4):437-444,
1959) for random signals. Using inequalities in the mean square sense, the results of
Pogány and Peruničić (Glas. Mat. 36(1):155-167, 2001) were improved too.
MSC: 42C15; 60G10; 94A20
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1 Introduction
Many mathematicians and engineers have discussed the Shannon sampling theorem or
Whittaker-Kotel’nikov-Shannon sampling theorem (also called the WKS sampling theo-
rem by some authors) for deterministic signals [–]. Kolmogorov, who is the most fa-
mous mathematician in the last century, drew the information theorists’ attention that
Kotel’nikov had published the deterministic sampling theorem  years before Shannon
and mentioned the stationary flow of new information investigation at  Symposium
on Information theory []. Soon after that, Balakrishnan [] proved that a bandlimited ran-
dom signal can be recovered from its sampled values in an L (i.e., mean square) sense, and
Belyaev [] proved that a bandlimited random signal can be recovered from its sampled
values in the almost sure (with probability one) sense. For other results on bandlimited
random signals, see [–].
In practice, signals and their sampled values are often not given in an ideal shape. For ex-

ample, due to physical reasons, e.g., the inertia of themeasurement apparatus, the sampled
values of a signal obtained in practice may not be the exact values of X(t,ω) at times tk .
They are just local averages of X(t,ω) near tk . These are integrals of the stochastic process
X(t,ω) in small time intervals. In , Song, Sun, Yang etc. [, ] gave some surpris-
ing results on the average sampling theorems for univariate bandlimited processes in the
L sense. In , Song, Wang and Xie [] proved that second-order moment processes
can be approximated by average sampling. Recently, He and Song [] proved that a real-
valued weak stationary process can be approximated by its local average in the almost
sure sense. For reference to the results on average sampling for deterministic signals, see
Gröchenig [], Djokovic and Vaidyanathan [], Aldroubi [], Sun and Zhou [].
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Recently, quite a few researchers have started to discuss the Shannon sampling theorem
for multi-band deterministic signals; see [–]. Following their idea and using some
results on bandlimited random signals from [–], we give some results on the average
sampling theorems for multi-band processes in this paper.
Before stating the result of new work, we first introduce some notations. Lp(R) is the

space of all measurable functions on R for which ‖f ‖p < +∞, where

‖f ‖p :=
(∫ +∞

–∞

∣∣f (u)∣∣p du)/p

,  ≤ p < ∞,

‖f ‖∞ := ess sup
u∈R

∣∣f (u)∣∣, p = ∞.

Bπ�, is the set of all entire functions f of exponential type with type at most π� that
belong to L(R) when restricted to the real line; see []. By the Paley-Wiener theorem, a
square integrable function f is bandlimited to [–π�,π�] if and only if f ∈ Bπ�,.
Given a probability space (W ,A,P), a real or complex valued stochastic process X(t) :=

X(t,ω) defined on R × W is said to be stationary in a weak sense if for all t ∈ R,
E[X(t)X(t)] <∞, X(t) is the complex conjugate of X(t), and the autocorrelation function

RX(t, t + τ ) :=
∫
W

X(t,ω)X(t + τ ,ω)dP(ω)

is independent of t ∈R, i.e., RX(t, t + τ ) depends only on τ ∈R. For this reason, we will use
RX(τ ) to denote RX(t, t + τ ).
The following results on a one-dimensional real- or complex-valued stochastic process

are known. Recall that the function sinc is defined as

sinc(t) =

⎧⎨
⎩

sinπ t
π t , if t �= ;

, if t = .
(.)

Proposition A ([], Theorem ) Let X(t), –∞ < t < ∞, be a real or complex valued
stochastic process, stationary in the ‘wide sense’ (or ‘second-order’ stationary) and with a
spectral density vanishing outside the interval of angular frequency [–π�,π�]. Then X(t)
has the representation

X(t) = lim
∞∑

n=–∞
X

(
n
�

)
sinc(�t – n) (.)

for every t, where lim stands for limit in the mean square sense, i.e.,

lim
N→∞E

{∣∣∣∣∣X(t) –
N∑

n=–N

X
(
n
�

)
sinc(�t – n)

∣∣∣∣∣
}

= . (.)

Proposition B ([], Theorem ) Let X(t), –∞ < t < +∞ be a process with a bounded
spectrum. If its covariance has the form

RX(τ ) =
∫ π�

–π�

eiτλ dF(λ), (.)
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where F(λ) is a spectral function of X(t), then for any fixed number �* > � and almost all
sampling functions, the formula

X(t,ω) =
∞∑

k=–∞
X

(
k
�* ,ω

)
· sinc(�*t – k

)
(.)

is valid, i.e.,

P

{
X(t,ω) = lim

N→∞

N∑
k=–N

X
(

k
�* ,ω

)
· sinc(�*t – k

)}
= . (.)

Given a probability space (W ,A,P), a d-dimensional real- or complex-valued stochastic
process

–––→
X(t) :=

–––––→
X(t,ω) = (X(t),X(t), . . . ,Xd(t)) defined on R

d ×W is said to be stationary
in a weak sense if for all t ∈R and i = , , . . . ,d, E[Xi(t)Xi(t)] < ∞, and the autocorrelation
function

RXiXj (t, t + τ ) :=
∫
W

Xi(t,ω)Xj(t + τ ,ω)dP(ω)

is independent of t ∈R, i.e., the functions RXiXj (t, t + τ ) depend on τ ∈ R only. We will use
RXiXj (τ ) to denote RXiXj (t, t + τ ); see [].
A d-dimensional weak sense stationary process

–––→
X(t) is said to be bandlimited to an in-

terval [–π�,π�] if and only if R–→X ,–→X (τ ) belongs to Bπ�,. More precisely, this means that
RXjXk (τ ), j,k = , , . . . ,d belongs to Bπ�jk ,, i.e.,

RXjXk (τ ) =
∫ π�jk

–π�jk

eiτλ dFjk(λ), (.)

and � =max(�jk , j,k = , , . . . ,d).
It is well known that all metrics onR

d are equivalent. Thus, we will apply the max-norm
of

–––→
X(t):

∥∥–––→X(t)∥∥ = max
i=,,...,d

E
[
Xi(t)Xi(t)

]
. (.)

The measured sampled values for
–––→
X(t) for tk , k ∈ Z are

〈––→
X(·), –→uk

〉
=

∫ –––→
X(t) · –––→uk(t)dt (.)

for some collection of averaging functions
–––→
uk(t) = (uk(t),uk(t), . . . ,udk(t)), k ∈ Z, which

are convex functions satisfying the following properties:

suppuik ⊂ [
tk – σ ′

ik , tk + σ ′′
ik
]
,

uik(t)≥ , i = , , . . . ,d, and
∫

uik(t)dt = ,
(.)

where δi/ ≤ σ ′
ik , σ

′′
ik ≤ δi, δi are some positive numbers. In this paper, we will use notations

δ* =max{δ, δ, . . . , δd} and δ* =min{δ, δ, . . . , δd}.
The following results on a d-dimensional real stochastic process were known in .
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Proposition C ([], Theorem ) Let
–––→
X(t), –∞ < t < +∞ be a d-dimensional weak sense

stationary process with a bounded spectrum and cross-correlation functions RXjXk (τ ) sat-
isfying (.), then we have

lim
N→∞

∥∥–––→X(t) – (
X**
 (t),X

**
 (t), . . . ,X

**
d (t)

)∥∥ = , (.)

where

X**
i (t) =

Ni∑
ni=–Ni

X
(

ni
�*

ii

)
sinc

(
�*

iit – ni
)
, i = , , . . . ,d,

N =min{N,N, . . . ,Nd} and �*
ii > �ii are fixed numbers.

Proposition D ([], Theorem ) Let
–––→
X(t), RXjXk (τ ), X

**
i (t), N and �*

ii be as in Proposi-
tion C, then we have

P
{–––→
X(t) = lim

N→∞
(
X**
 (t),X

**
 (t), . . . ,X

**
d (t)

)}
= . (.)

2 Lemmas and themain results
Let us introduce some preliminary results first.

Lemma . ([], Lemma .) For any � >  and p′,q′ >  satisfying /p′ + /q′ =  and
� > , we have

∞∑
k=–∞

∣∣sinc(�t – kπ )
∣∣q′ ≤  +

(

π

)q′
q′

q′ – 
< p′. (.)

Lemma . Suppose that X(t,ω) is a weak sense stationary stochastic process with its au-
tocorrelation function RXX belonging to Bπ�, and satisfying R′′

XX(t) ∈ C(R). For all j ∈ Z
+,

and |σ *| ≤ δ, |σ **| ≤ δ, let

D(j/�; δ) := sup
∣∣RXX(j/�) – RXX

(
j/� – σ **) – RXX

(
j/� + σ *) + RXX

(
j/� + σ * – σ **)∣∣

= sup

∣∣∣∣
∫ 

–σ **

∫ 

σ *
R′′
XX(j/� + u + v)dudv

∣∣∣∣.
Then for all r,M,N ∈ Z

+, we have

N∑
j=–M

[
D(j/�; δ)

]r ≤ (M +N + )δr
∥∥R′′

XX(t)
∥∥r

∞. (.)

Proof Since RXX is even and R′′
XX(t) ∈ C(R), we have

N∑
j=–M

[
D(j/�; δ)

]r

=
[
D(; δ)

]r + M∑
j=

[
D(j/�; δ)

]r + N∑
j=

[
D(j/�; δ)

]r
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= sup

∣∣∣∣
∫ 

–σ **

∫ 

σ *
R′′
XX(u + v)dudv

∣∣∣∣
r

+
M∑
j=

sup

∣∣∣∣
∫ 

–σ **

∫ 

σ *
R′′
XX(j/� + u + v)dudv

∣∣∣∣
r

+
N∑
j=

sup

∣∣∣∣
∫ 

–σ **

∫ 

σ *
R′′
XX(j/� + u + v)dudv

∣∣∣∣
r

≤ (
δ

∥∥R′′
XX(t)

∥∥∞
)r + (M +N)

(
δ

∥∥R′′
XX(t)

∥∥∞
)r

≤ (M +N + )δr
∥∥R′′

XX(t)
∥∥r

∞.

The proof is now completed. �

Following Belyaev’s traces in [], we easily conclude the following results.

Lemma . Suppose that X(t,ω) is a weak sense stationary stochastic process with its au-
tocorrelation function RXX belonging to Bπ�,. For any �* > �, we have

E

[∣∣∣∣∣X(t,ω) –
N∑

k=–N

X
(

k
�* ,ω

)
sinc

(
�*t – k

)∣∣∣∣∣
]

≤ E|X(t)|
πN

[(
�*|t|) + 

( –�/�*)

]
. (.)

The following results are the main results in this paper. To state these results, we intro-
duce the following notations. For any integer k,

X*
i (k/�,ω) =

∫ k/�+σ ′′
ik

k/�–σ ′
ik

uik(t)Xi(t,ω)dt (.)

and

–––––––––→
X*(k/�,ω) =

[
X*
(k/�,ω),X*

(k/�,ω), . . . ,X*
d(k/�,ω)

]
, (.)

where {uk(t)} is a sequence of continuous functions defined by (.).
For Mi,Ni ∈ Z

+, i = , , . . . ,d, we define M* = max{M,M, . . . ,Md}, N * = max{N,N,
. . . ,Nd}, andM* =min{M,M, . . . ,Md}, N* =min{N,N, . . . ,Nd},

X*
i (t,Mi,Ni,ω) =

Ni∑
k=–Mi

∫ k/�+σ ′′
ik

k/�–σ ′
ik

uik(t)Xi(t,ω)dt (.)

and

–––––––––––––––––––––––→
X*(t,M*,N *,M*,N*,ω

)
=

[
X*
(t,M,N,ω),X*

(t,M,N,ω), . . . ,X*
d(t,Md,Nd,ω)

]
. (.)

Theorem . Suppose that
–––→
X(t) is a weak sense stationary stochastic process with its cor-

relation function R–→X–→X belonging to Bπ�,. For �* > � > , Mi,Ni ≥ , i = , , . . . ,d, and

http://www.journalofinequalitiesandapplications.com/content/2012/1/246
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/δ ≥ min{MiNi} ≥ , the following is valid:

E

[∣∣∣∣∣
Ni∑

k=–Mi

[
Xi

(
k/�*,ω

)
–X*

i
(
k/�*,ω

)]
sinc

(
�*t – k

)∣∣∣∣∣
]

≤ .
∥∥R′′

XiXi (t)
∥∥∞

ln(MiNi)
MiNi

. (.)

Consequently,

lim
M*,N*→∞E

[∣∣∣∣∣
N*∑

k=–M*

[––––––––––→
X

(
k/�*,ω

)
–
–––––––––––→
X*(k/�*,ω

)]
sinc

(
�*t – k

)∣∣∣∣∣
]

= , (.)

where M* =min{M,M, . . . ,Md}, N* =min{N,N, . . . ,Nd}.

Theorem. Suppose that
–––→
X(t) is a weak sense stationary stochastic process with its corre-

lation function R–→X–→X belonging to Bπ�, and satisfying R′′
Xi ,Xi (t) ∈ C(R). Then for�* > � ≥ 

and δ ≤ /N , we have

P

{
–––––→
X(t,ω) = lim

N→∞

N∑
k=–N

–––––––––––→
X*(k/�*,ω

) · sinc(�*t – k
)}

= . (.)

Obviously, when uik(t) = δ(· – k
n ), i = , , . . . ,d, where δ stands for the Dirac delta-

function, Theorem . and Theorem . reduce to Proposition C and Proposition D, re-
spectively. When d = , we recover Proposition A and Proposition B, respectively.

3 Proof of themain results

Proof of Theorem . Using Proposition A and following the methods in [], we have

E

[∣∣∣∣∣
Ni∑

k=–Mi

[
Xi

(
k
�* ,ω

)
–X*

i

(
k
�* ,ω

)]
sinc

(
�*t – k

)∣∣∣∣∣
]

= E

[∣∣∣∣∣
Ni∑

k=–Mi

[∫ σ ′′
k

–σ ′
k

Xi

(
k
�* ,ω

)
uik

(
k
�* + s

)
ds

–
∫ σ ′′

k

–σ ′
k

uk
(
k/�* + t

)
Xi

(
k/�* + t,ω

)
dt

]
sinc

(
�*t – k

)∣∣∣∣∣
]

=
Ni∑

k=–Mi

Ni∑
j=–Mi

∫ σ ′′
ik

–σ ′
ik

∫ σ ′′
ij

–σ ′
ij

[
RXiXi

(
k – j
�*

)
– RXiXi

(
k – j
�* – v

)

– RXiXi

(
k – j
�* + u

)
+ RXiXi

(
k – j
�* + u – v

)]
uk

(
k
�* + u

)
uj

(
j

�* + v
)
dudv

× ∣∣sinc(�*t – k
)∣∣∣∣sinc(�*t – j

)∣∣
≤

Ni∑
k=–Mi

Ni∑
j=–Mi

∫ σ ′′
ik

–σ ′
ik

∫ σ ′′
ij

–σ ′
ij

D
(
k – j
�* ; δi

)
uik

(
k
�* + u

)
uij

(
j

�* + v
)
dudv

http://www.journalofinequalitiesandapplications.com/content/2012/1/246
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× ∣∣sinc(�*t – k
)∣∣∣∣sinc(�*t – j

)∣∣
=

Ni∑
k=–Mi

Ni∑
j=–Mi

D
(
k – j
�* ; δi

)∣∣sinc(�*t – k
)∣∣∣∣sinc(�*t – j

)∣∣.
Applying Hölder’s inequality, we get

Ni∑
k=–Mi

Ni∑
j=–Mi

D
(
k – j
�* ; δi

)∣∣sinc(�*t – k
)∣∣ · ∣∣sinc(�*t – j

)∣∣

≤ p*
( Ni∑
k=–Mi

∣∣∣∣∣
Ni∑

j=–Mi

D
(
k – j
�* ; δi

)∣∣sinc(�*t – j
)∣∣∣∣∣∣∣

p*)/p*

,

where /p* + /q* = . By the Hausdorff-Young inequality (see [], p.), we have

( Ni∑
k=–Mi

∣∣∣∣∣
Ni∑

j=–Mi

D
(
k – j
�* ; δ

)∣∣sinc(�*t – j
)∣∣∣∣∣∣∣

p*)/p*

≤ (Ni + Mi + )/r
*∥∥R′′

XiXi (t)
∥∥∞


MiNi

( ∞∑
j=–∞

∣∣sinc(�*t – jπ
)∣∣s*)/s*

,

where  ≤ /s* +/r* – = /p*. Let r* = ln(MiNi)/.Notice thatMi,Ni ≥  andMiNi ≥ ,
we have

(Ni + Mi + )/r* ≤ .e.

Let s* = r*/(r* – ) and s′ = r*. Then /s* + /s′ =  and p* = r* = ln(MiNi)/. We get

( ∞∑
j=–∞

∣∣sinc(�*t – jπ
)∣∣s*)/s*

≤  +

π

(
s*

s* – 

)/s*

=
(


p*

+

π

(
p*

)/p*)p* ≤ ln(MiNi)
π

.

Hence, it holds

E

[∣∣∣∣∣
Ni∑

k=–Mi

[
Xi

(
k
�* ,ω

)
–

∫ k/�*+σ ′′
ik

k/�*–σ ′
ik

uik(t)Xi(t,ω)dt
]
sinc

(
�*t – k

)∣∣∣∣∣
]

≤ .
∥∥R′′

X(t)
∥∥∞

ln(MiNi)
MiNi

.

Thus (.) is valid. The second assertion of the theorem follows immediately. This com-
pletes the proof. �

Proof of Theorem . Define

YN
Xi (t,ω) := Xi(t,ω) –X*

i (t,N ,N ,N ,N ,ω), (.)

ZN
Xi (t,ω) := Xi(t,ω) –

N∑
k=–N

Xi

(
k
�* ,ω

)
sinc

(
�*t – k

)
, (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/246
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WN
Xi (t,ω) :=

N∑
k=–N

Xi

(
k
�* ,ω

)
sinc

(
�*t – k

)
–X*

i (t,N ,N ,N ,N ,ω). (.)

Using Theorem ., we have

E
∣∣YN

Xi (t,ω)
∣∣

≤ .
∥∥R′′

XiXi (t)
∥∥∞

(
lnN
N

)

+
E|X

i (t)|
πN

[(
�*|t|) + 

( –�/�*)

]
. (.)

Thus, for any fixed t, we have

∞∑
n=N

E
∣∣YN

Xi (t,ω)
∣∣ < ∞. (.)

Thus, the series converges uniformly if t lies in any bounded interval. Using the Chebyshev
inequality, for all ε > , t lies in any bounded interval, we have

P
{
max

i

∣∣Xi(t,ω) –X*
i (t,N ,N ,N ,N ,ω)

∣∣ ≥ ε, i = , , . . . ,d
}
<

∞∑
n=N

O
(
n–

)
<∞. (.)

Using the famous Borel-Cantelli lemma, we have

P
{
max

i

∣∣Xi(t,ω) –X*
i (t,N ,N ,N ,N ,ω)

∣∣ ≥ ε, i = , , . . . ,d
}
= . (.)

In other words,

P

{
–––––→
X(t,ω) = lim

N→∞

N∑
k=–N

–––––––––––→
X*(k/�*,ω

) · sinc(�*t – k
)}

= . (.)

The proof is completed. �

Conclusions
In this paper, we have analyzed the convergence property of sampling series, the estimate
of truncation error in the mean square sense and the almost sure results on sampling the-
orem for multidimensional random signals from average sampling. The proposed results
significaently improve the classical Shannon sampling theorem.
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