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Abstract
In this paper, a new inexact line search rule is presented, which is a modified version
of the classical Armijo line search rule. With lower cost of computation, a larger
descent magnitude of objective function is obtained at every iteration. In addition,
the initial step size in the modified line search is adjusted automatically for each
iteration. On the basis of this line search, a new cautious Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm is developed. Under some mild assumptions, the global
convergence of the algorithm is established for nonconvex optimization problems.
Numerical results demonstrate that the proposed method is promising, especially in
comparison with the existent methods.
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1 Introduction
Consider the following unconstrained optimization problem:

min
x∈Rn

f (x), ()

where f : Rn → R is a twice continuously differentiable function.
Amongst the variant methods to solve problem (), it is well known that the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method has obtained great success either in the aspect
of the theoretical research or in the field of engineering applications. In this connection,
it is referred to, for example, the literature [–] and the references therein.
Summarily, in the framework of the BFGS method, a quasi-Newton direction dk at the

current iterate point xk is first obtained by solving the following linear system of equation:

Bkdk = –gk , ()

where Bk is a given positive definite matrix, g : Rn → Rn is the gradient function of f , and
gk is the value of g at xk . At the new iterate point xk+, Bk is updated by

Bk+ = Bk –
BksksTk Bk

sTk Bksk
+
ykyTk
yTk sk

, ()

where sk = xk+ – xk , yk = gk+ – gk .
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Next, along the search direction dk , we choose a suitable stepsize αk by employing some
line search strategy. Thus, the iterate point xk is updated by

xk+ = xk + αkdk . ()

Actually, it has been reported that a choice of suitable line search rule is important to
the efficiency and convergence of the BFGSmethod (see, for example, [, –] and []).
It is well known that the Armijo line search is the cheapest and most popular algorithm to
obtain a step length among all line searchmethods. However, when the Armijo line search
algorithm is implemented to find a step length αk , Bk+ in () may not be positive definite
even ifBk is a positive definitematrix []. For this, in [] a cautious BFGSmethod(CBFGS)
associated with the Armijo line search is presented to solve the nonconvex unconstrained
optimization problems. The update formula of Bk in [] is

Bk+ =

⎧⎨
⎩
Bk –

BksksTk Bk
sTk Bksk

+ ykyTk
yTk sk

, if yTk sk
‖sk‖ ≥ ε‖gk‖γ ,

Bk , otherwise,
()

where ε and γ are positive constants.
In this paper, we shall first present a modified Armijo-type line search rule. Then, on

the basis of this line search, a new cautious BFGS algorithm is developed. It will be shown
that in our line search, a larger descentmagnitude of an objective function is obtainedwith
lower cost of computation at every iteration. In addition, the initial step size is adjusted
automatically at each iteration.
The rest of this paper is organized as follows. In Section , a modified Armijo-type in-

exact line search rule is presented and a new cautious BFGS algorithm is developed. Sec-
tion  is devoted to establishing the global convergence of the proposed algorithm under
some suitable assumptions. In Section , numerical results are reported to demonstrate
the efficiency of the algorithm. Some conclusions are given in the last section.

2 Modified Armijo-type line search rule and new cautious BFGS algorithm
The classical Armijo line search is to find αk such that the following inequality holds:

f (xk + αkdk) ≤ f (xk) + σαkgTk dk , ()

where σ ∈ (, ) is a given constant scalar. In a computer procedure, αk in () is obtained
by searching in the set {β ,βρ,βρ . . . , } such that αk is the largest component satisfying
(), where ρ ∈ (, ) and β >  are given constant scalars.
Compared with other line search methods, the computer procedure of the Armijo line

search is simplest, and the computational cost to find a feasible stepsize is very low, espe-
cially for  > ρ >  being close to . Its drawback lies in that at each iteration, there may be
only little reduction of an objective function to be obtained.
Inspired by this observation, we present a modified Armijo-type line search (MALS)

rule as follows. Suppose that g is a Lipschitz continuous function. Let L be the Lipschitz
constant. Let Lk be an approximation of L. Set

βk = –
gTk dk

(Lk‖dk‖) .
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Different from the classical Armijo line search (), we find a step size αk as the largest
component in the set {βk ,βkρ,βkρ

 . . .} such that the inequality

f (xk + αkdk) ≤ f (xk) + σαk

(
gTk dk –



αkμLk‖dk‖

)
()

holds, where σ ∈ (, ), μ ∈ [, +∞), ρ ∈ (, ) are given constant scalars.
In the following proposition, we show that the new line search () is well defined.

Proposition  Let f : Rn → R be a continuously differentiable function. Suppose that the
gradient function g of f is Lipschitz continuous. Let Lk >  be an approximation value of
the Lipschitz constant. If dk is a descent direction of f at xk , then there is an α >  in the set
{βk ,βkρ,βkρ

 . . .} such that the following inequality holds:

f (x + αdk) ≤ f (xk) + σα

(
gTk dk –



αμLk‖dk‖

)
()

where σ ∈ (, ), μ ∈ [, +∞), ρ ∈ (, ) are given constant scalars.

Proof In fact, we only need to prove that a step length α is obtained in finitely many steps.
If it is not true, then for all sufficiently large positive integerm, we have

f
(
x + βkρ

mdk
)
– f (xk) > σα

(
gTk dk –



βkρ

mμLk‖dk‖
)
. ()

By the mean-theorem, there is a θk ∈ (, ) such that

βkρ
mg

(
xk + θkβkρ

mdk
)Tdk > σβkρ

m
(
gTk dk –



βkρ

mμLk‖dk‖
)
. ()

Thus,

(
g
(
xk + θkβkρ

mdk
)
– gk

)Tdk > (σ – )gTk dk –


σβkρ

mμLk‖dk‖. ()

Asm → ∞, it is obtained that

(σ – )gTk dk ≤ .

From σ ∈ (, ), it follows that gTk dk ≥ . This contradicts the fact that dk is a descent
direction. �

Remark  Since the third term on the right-hand side of () is negative, it is easy to see
that the obtained step size α ensures a larger descent magnitude of the objective function
than that in ().
It is noted that () reduces to () when μ = .

Remark  In the MALS, the parameter Lk should be estimated at each iteration. In this
paper, for k > , we choose

Lk =
sTk–yk–
‖sk–‖ , ()
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where sk– = xk – xk–, yk– = gk – gk–. Actually, Lk in () is a solution of the minimization
problem

min‖Lksk– – yk–‖. ()

Therefore, it is acceptable that Lk is an approximation of L.

Based on Proposition , Remarks  and , a new cautious BFGS algorithm is developed
for solving problem ().

Algorithm  (New cautious BFGS algorithm)
Step . Choose an initial point x ∈ Rn and a positive definite matrix B. Choose σ ∈

(, ), μ ≥ , ε >  and L > . Set k := .
Step . If ‖gk‖ ≤ ε, the algorithm stops. Otherwise, go to Step .
Step . Find dk that is a solution of the following system of linear equations:

Bkdk = –gk .

Step . Determine a step size αk satisfying ().
Step . Set xk+ := xk + αkdk . Compute sk and yk . Update Bk as Bk+ by (). Set k := k + ,

return to Step .

3 Global convergence
In this section, we are going to prove the global convergence of Algorithm .
We need the following conditions.

Assumption 
. The level set 	 = {x ∈ Rn|f (x)≤ f (x)} is bounded.
. In some neighborhood N of 	, f is continuously differentiable and its gradient is

Lipschitz continuous, namely there exists a constant L >  such that

∥∥g(x) – g(y)
∥∥ ≤ L‖x – y‖, ∀x, y ∈N . ()

. The sequence {Lk},  < Lk ≤ ML, where M is a positive constant.

Before the statement of the global convergence, we first prove the following useful lem-
mas.

Lemma  Let {xk} be a sequence generated by Algorithm . If Lk >  for each k ≥ , then
for any given initial point x, the following results hold:
. {fk} is a decreasing sequence.
. {xk} ∈ 	.
.

∑∞
k=(fk – fk+) < +∞.

Proof The first and second results are directly from the condition Lk >  for each k ≥ ,
Proposition  and the definition of 	. We only need to prove the third result.
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Since {fk} is a decreasing sequence and is bounded below, it is clear that there exists a
constant f * such that

lim
k→∞

fk = f *. ()

From (), we have

∞∑
k=

(fk – fk+) = lim
N→∞

N∑
k=

(fk – fk+) = lim
N→∞(f – fk+) = f – f *. ()

Thus,

∞∑
k=

(fk – fk+) < +∞. ()

�

Lemma  Let {xk} be a sequence generated by Algorithm . Let {dk} be the sequence of
search direction. If Assumption  holds, then

∞∑
k=

(
gTk dk
‖dk‖

)

< +∞. ()

In particular,

lim
k→∞

gTk dk
‖ dk ‖ = . ()

Proof Denote

K = {k | αk = βk}, K = {k | αk < βk}.

For k ∈ K, we have

fk – fk+ ≥ –σαk

(
gTk dk –



αkμLk‖dk‖

)

= –σ
–gTk dk
Lk‖dk‖

(
gTk dk –




–gTk dk
Lk‖dk‖ μLk‖dk‖

)

= σ

(
 +



μ

)
(gTk dk)

Lk‖dk‖

≥ σ ( +μ)
ML

(
gTk dk
‖dk‖

)

. ()

For k ∈ K, it follows from () that

f
(
xk + ρ–αkdk

)
– f (xk) > σρ–αk

(
gTk dk –



ρ–αkμLk‖dk‖

)
. ()
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By the mean-theorem, there is a θk ∈ (, ) such that

ρ–αkg
(
xk + θkρ

–αkdk
)Tdk > σρ–αk

(
gTk dk –



ρ–αkμLk‖dk‖

)
. ()

Hence,

(
g
(
xk + θkρ

–αkdk
)
– gk

)Tdk > (σ – )gTk dk –


σρ–αkμLk‖dk‖. ()

From the Lipschitz continuity of g , it is obtained that
(
L +



σμLk

)
ρ–αk‖dk‖ > (σ – )gTk dk . ()

It reads

αk > –
ρ( – σ )
L + σμLk

gTk dk
‖dk‖ . ()

From () and (), it is deduced that

fk – fk+ ≥ –σαk

(
gTk dk –



αkμLk‖dk‖

)

≥ –σ
–ρ( – σ )
L + σμLk

gTk dk
‖dk‖ g

T
k dk

≥ ρσ ( – σ )
L + σμML

(
gTk dk
‖dk‖

)

. ()

Denote

η =min

{
σ ( +μ)
ML

,
ρσ ( – σ )
L + σμML

}
. ()

Then from (), we obtain

fk – fk+ ≥ η

(
gTk dk
‖dk‖

)

. ()

From Lemma , it is clear that

∞∑
k=

η

(
gTk dk
‖dk‖

)

< +∞. ()

That is to say

∞∑
k=

(
gTk dk
‖dk‖

)

< +∞, ()

since η > . It is certain that

lim
k→∞

gTk dk
‖ dk ‖ = . ()

�
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Lemma  Let {xk} be a sequence generated by Algorithm . Suppose that there exist con-
stants a,a >  such that the following relations hold for infinitely many k:

‖Bksk‖ ≤ a‖sk‖, a‖sk‖ ≤ sTk Bksk . ()

Then

lim inf
k→∞

‖gk‖ = . ()

Proof Let � be the indices set of k satisfying ().
From () and gk = –Bkdk , it follows that for each k ∈ �,

a‖dk‖ ≤ dT
k Bkdk = –gTk dk . ()

Thus,

a‖dk‖ ≤ –
gTk dk
‖dk‖ . ()

Combined with (), it yields

lim
k∈�,k→∞

‖dk‖ = . ()

On the other hand, from () and gk = –Bkdk , it is deduced that for each k ∈ �,

 ≤ ‖gk‖ = ‖Bkdk‖ ≤ a‖dk‖. ()

From () and (), it is easy to see that

lim
k∈�,k→∞

‖gk‖ = . ()

The desired result () is proved. �

Lemma  indicates that for the establishment of the global convergence, it suffices to
show that () holds for infinitely many k in Algorithm . The following lemma gives suf-
ficient conditions for () to hold (see Theorem . in []).

Lemma  Let B be a symmetric and positive matrix and Bk be updated by (). Suppose
that there are positive constants m,m (m <m) such that for all k ≥ ,

yTk sk
‖sk‖ ≥ m,

‖yk‖
yTk sk

≤ m. ()

Then there exist constants a, a such that for any positive integer t, () holds for at least
[t/] values of k ∈ {, , . . . , t}.

http://www.journalofinequalitiesandapplications.com/content/2012/1/241
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Now, we come to establish the global convergence for Algorithm . For the sake of con-
venience, we define an index set

K̃ =
{
i
∣∣∣ yTi si
‖si‖ ≥ ε‖gi‖γ

}
. ()

Theorem  Let {xk} be a sequence generated by Algorithm . Under Assumption , ()
holds.

Proof From Lemma , we only need to show that () holds for infinitely many k.
If K̃ is a finite set, then Bk remains a constant matrix after a finite number of iterations.

Hence, there are constants a, a such that () holds for all k sufficiently large. The proof
of the result is completed.
In the following, we prove () in the case that K̃ is a infinite set.
Suppose that () is not true. Then there is a constant δ >  such that ‖gk‖ ≥ δ for all k.

From (), the inequality

yTk sk
‖sk‖ ≥ εδγ ()

holds for all k ∈ K̃ .
Combined with (), it is obtained that

‖yk‖
yTk sk

≤ ‖yk‖
εδγ ‖sk‖ ≤ L

εδγ
. ()

FromLemma , it follows that there exist constants a, a such that () holds for infinitely
many k. It contradicts the result in Lemma .
The proof is completed. �

4 Numerical experiments
In this section, we report the numerical performance of Algorithm . The numerical ex-
periments are carried out on a set of  test problems from []. We make comparisons
with the cautious BFGS method associated with the ordinary Armijo line search rule.
In order to study the numerical performance of Algorithm , we record the run time of

CPU, the total number of function evaluations required in the process of line search and
the total number of iterations for each algorithm.
All MATLAB procedures run in the following computer environment: GHz CPU, GB

memory based operating system ofWINDOWsXP. The parameters are chosen as follows:

ε = –, B = In×n, ρ = ., σ = ., μ = , L = .

As to the parameters in the cautious update (), we first let γ = . if ‖gk‖ ≥ , and γ = 
if ‖gk‖ < .
The performance of algorithms and the solution results are reported in Table . In this

table, we use the following denotations:

Dim: the dimension of the objective function;

http://www.journalofinequalitiesandapplications.com/content/2012/1/241
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Table 1 Comparison of efficiency with other method

Functions Algorithm Dim GV NI NF CT

Rosenbrock CBFGS 2 6.2782e-007 35 74 0.0310s
NCBFGS 2 1.1028e-007 40 70 0.0310s

Freudenstein and Roth CBFGS 2 7.9817e-007 28 82 0.0310s
NCBFGS 2 2.7179e-007 11 25 0.0320s

Beale CBFGS 2 7.2275e-007 40 55 0.0310s
NCBFGS 2 3.1136e-007 18 23 0.0470s

Brown badly CBFGS 2 7.7272e-007 36 223 0.0310s
NCBFGS 2 0 29 50 0.0620s

Broyden tridiagonal CBFGS 4 7.5723e-007 26 126 0.0320s
NCBFGS 4 3.8712e-007 15 21 0.0310s

Powell singular CBFGS 4 9.9993e-007 13,993 14,031 2.4530s
NCBFGS 4 9.4607e-007 31 38 0.0320s

Kowalik and Osborne CBFGS 4 9.9783e-007 3126 3128 2.1250s
NCBFGS 4 4.4454e-007 30 45 0.0470s

Brown almost-linear CBFGS 6 9.5864e-007 263 300 0.1100s
NCBFGS 6 1.2290e-007 22 30 0.0160s

Discrete boundary CBFGS 6 8.6773e-007 79 85 0.0470s
NCBFGS 6 3.3650e-007 14 17 0.0320s

Variably dimensioned CBFGS 8 3.4688e-008 7 51 0.0470s
NCBFGS 8 3.1482e-007 10 21 0.0320s

Extended Rosenbrock CBFGS 8 8.2943e-007 91 190 0.0470s
NCBFGS 8 7.7959e-007 99 149 0.0320s

Extended Powell singular CBFGS 8 9.9975e-007 6154 6199 1.4690s
NCBFGS 8 6.5685e-007 42 55 0.0630s

Brown almost-linear CBFGS 8 9.8392e-007 364 379 0.1880s
NCBFGS 8 4.8080e-007 20 27 0.0780s

Broyden tridiagonal CBFGS 9 4.4261e-007 38 86 0.0470s
NCBFGS 9 6.2059e-007 41 56 0.0310s

Linear-rank1 CBFGS 10 - - - -
NCBFGS 10 2.6592e-007 4 15 0.0310s

Linear-full rank CBFGS 12 9.5231e-007 18 36 0.0160s
NCBFGS 12 9.4206e-016 2 3 0.0150s

GV : the gradient value of the objective function when the algorithm stops;
NI : the number of iterations;
NF : the number of function evaluations;
CT : the run time of CPU;
CBFGS: the CBFGS method associated with Armijo line search rule;
NCBFGS: the new BFGS method proposed in this paper.

In Table  it is shown that the developed algorithm in this paper is promising. In some
cases, it requires less number of iterations, less number of function evaluation or less CPU
time to find an optimal solution with the same tolerance than another algorithm.

5 Conclusions
Amodified Armijo-type line search with an automatical adjustment of initial step size has
been presented in this paper. Combined with the cautious BFGS method, a new BFGS
algorithm has been developed. Under some assumptions, the global convergence was es-
tablished for nonconvex optimization problems. Numerical results demonstrate that the
proposed method is promising.
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