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Abstract
In (J. Inequal. Appl. 2006:9532, 2006), Peng and Zhu discussed interrelations among
D-preinvexity, D-semistrict preinvexity, and D-strict preinvexity for vector-valued
functions. In this note, we show that the same results or even more general ones can
be obtained under weaker assumptions. We also give a new characterization of
D-preinvexity and D-semistrict preinvexity under mild conditions.
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1 Introduction
Convexity and some generalizations of convexity play a crucial role in mathematical eco-
nomics, engineering, management science, and optimization theory. Therefore, it is im-
portant to consider wider classes of generalized convex functions and also to seek prac-
tical criteria for convexity or generalized convexity (see Refs. [–] and the references
therein). A significant generalization of convex functions is the introduction of preinvex
functions, which is due to Ben and Mond []. Yang and Li [] presented some properties
of preinvex functions; in [] they introduced two new classes of generalized convex func-
tions called semistrictly preinvex functions and strictly preinvex functions. They estab-
lished relationships between preinvex functions and semistrictly preinvex functions under
a certain set of conditions. Very recently, Peng and Zhu [] introduced the vector cases of
strict preinvexity and semistrict preinvexity and established some relations between them.
In this paper, we show that the same results or even a generalized version of their results
can be obtained under weaker assumptions. Moreover, we give a new characterization of
D-preinvexity and D-semistrict preinvexity under mild conditions. The outline of the pa-
per is as follows. In Section , we give some preliminaries. The main results of the paper
are presented in Section .

2 Preliminaries
Throughout this paper, we will use the following assumptions. Let X be a real topological
vector space and Y be a real locally convex vector space, let K ⊂ X be a nonempty subset.
Let D ⊂ Y be a nonempty pointed closed convex cone and Y * be the dual space of Y . The
dual cone D* of cone D is defined by

D* =
{
k* ∈ Y * :

〈
k*,x

〉 ≥ ,∀x ∈D
}
.
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From the bipolar theorem, we have the following

Lemma . For all q ∈D*, 〈q,d〉 ≥  if and only if d ∈D.

Now we will describe some definitions of generalized convexity.

Definition . ([]) Let the set K ⊆ X and the vector function η : X ×X → X be given. K
is said to be an invex set with respect to the function η iff

∀x, y ∈ K ,∀λ ∈ [, ] ⇒ y + λη(x, y) ∈ K .

Definition . ([]) Let K ⊆ X be an invex set with respect to η : X×X → X. The vector-
valued function f : K → Y is said to be D-preinvex on K iff, ∀x, y ∈ K , ∀λ ∈ (, ),

f
(
y + λη(x, y)

) ∈ λf (x) + ( – λ)f (y) –D.

Definition . ([]) Let K ⊆ X be an invex set with respect to η : X×X → X. The vector-
valued function f : K → Y is said to be D-semistrictly preinvex on K iff, ∀x, y ∈ K such
that f (x) �= f (y) and ∀λ ∈ (, ),

f
(
y + λη(x, y)

) ∈ λf (x) + ( – λ)f (y) – intD.

Definition. ([]) LetK ⊆ X be an invex setwith respect to η : X×X → X. The function
f : K → Y is said to be D-strictly preinvex on K iff, ∀x, y ∈ K , x �= y, ∀λ ∈ (, ),

f
(
y + λη(x, y)

) ∈ λf (x) + ( – λ)f (y) – intD.

In [], Jeyakumar et al. introduced the ∗-lower semicontinuity for a vector-valued func-
tion as follows.

Definition . ([]) The vector-valued function f : K → Y is ∗-lower semicontinuous if
for every q ∈D*, q(f )(·) = 〈q, f (·)〉 is lower semicontinuous on K .

In [], Peng et al. introduced the ∗-upper semicontinuity for a vector-valued function as
follows.

Definition . ([]) The vector-valued function f : K → Y is ∗-upper semicontinuous if
for every q ∈D*, q(f )(·) = 〈q, f (·)〉 is upper semicontinuous on K .

In order to prove ourmain result, we needConditionC introduced byMohan andNeogy
[] as follows.

Condition C Let η : X × X → X. We say that the function η satisfies Condition C iff,
∀x, y ∈ K , ∀λ ∈ [, ],

η
(
y, y + λη(x, y)

)
= –λη(x, y),

η
(
x, y + λη(x, y)

)
= ( – λ)η(x, y).
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3 Properties of D-preinvex functions
In this section, we assume always that:

(i) K ⊆ X is a nonempty invex set with respect to η : X ×X → X ;
(ii) η satisfies Condition C; f is a vector-valued function on K .
The following result was proved in Ref. []; see Theorem . in Ref. [].

Theorem . Let K be a nonempty open invex set in X with respect to η : X × X → X. If
f : K → Y is ∗-upper semicontinuous and satisfies f (y+η(x, y)) ∈ f (x) –D, ∀x, y ∈ K , then f
is a D-preinvex function for the same η on K if and only if there exists an α ∈ (, ) such that

f
(
y + αη(x, y)

) ∈ αf (x) + ( – α)f (y) –D, ∀x, y ∈ K .

Now we improve the above theorem as follows.

Theorem. Let f : K → Y be ∗-upper semicontinuous and satisfy f (y+η(x, y)) ∈ f (x)–D,
∀x, y ∈ K , then f is a D-preinvex function for the same η on K if and only if there exists an
α ∈ (, ) such that

f
(
y + αη(x, y)

) ∈ αf (x) + ( – α)f (y) –D, ∀x, y ∈ K . (.)

Proof The necessity follows directly from the definition of D-preinvexity for the vector-
valued function f . We only need to prove the sufficiency. By Lemma . in Ref. [], the set
A = {α ∈ [, ] | f (y + αη(x, y)) ∈ αf (x) + ( – α)f (y) – D,∀x, y ∈ K} is dense in the interval
[, ]. Then ∀ᾱ ∈ (, ), ∃{αn} ⊆ (, ) ∩ A such that αn < ᾱ for each n and αn → ᾱ, as
n→ ∞. Give x, y ∈ K , denote

z = y + ᾱη(x, y).

Define, for each n,

yn = y +
ᾱ – αn

 – αn
η(x, y). (.)

Thus,

yn → y, n→ ∞.

Since  < αn < ᾱ < , we have

 <
ᾱ – αn

 – αn
< ,

which in turn implies that yn ∈ K , by (.) and K is invex with respect to η. From Condi-
tion C, we have

yn + αnη(x, yn) = y +
ᾱ – αn

 – αn
η(x, y) + αnη

(
x, y +

ᾱ – αn

 – αn
η(x, y)

)

= y +
ᾱ – αn

 – αn
η(x, y) + αn

(
 –

ᾱ – αn

 – αn

)
η(x, y) = y + ᾱη(x, y) = z.
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As αn ∈ A, we have

f (z) = f
(
y + ᾱη(x, y)

)
= f

(
yn + αnη(x, yn)

) ∈ αnf (x) + ( – αn)f (yn) –D.

By the ∗-upper semicontinuity of f onK , for every q ∈D*, q(f )(·) is upper semicontinuous,
it follows that for any ε > , there exists an N >  such that the following holds:

q(f )(yn) ≤ q(f )(y) + ε, ∀n >N . (.)

Hence,

q(f )(z) ≤ αnq(f )(x) + ( – αn)q(f )(yn)

≤ αnq(f )(x) + ( – αn)
(
q(f )(y) + ε

)
→ ᾱq(f )(x) + ( – ᾱ)

(
q(f )(y) + ε

)
(n→ ∞).

Since ε >  may be arbitrarily small, then for all q ∈D*, we have

q(f )(z) ≤ ᾱq(f )(x) + ( – ᾱ)q(f )(y).

Since q is linear, by Lemma ., we have

f (z) ∈ ᾱf (x) + ( – ᾱ)f (y) –D.

Hence, f is a D-preinvex function for the same η on K , this completes the proof. �

Remark . We see fromTheorem . that the condition of openness in Theorem . can
be deleted in order to obtain the same results.

Now, we state another result in Ref. []; see Theorem . in Ref. [].

Theorem . Let f be a D-preinvex function on K . If there exists an α ∈ (, ) such that,
for each pair x, y ∈ K , x �= y,

f
(
y + αη(x, y)

) ∈ αf (x) + ( – α)f (y) – intD, ∀x, y ∈ K , (.)

then f is a D-strictly preinvex function on K .

The above theorem can be improved as follows.

Theorem . Let f be a D-preinvex function with respect to η : X×X → X on K . For each
pair x, y ∈ K , x �= y, if there exists an α ∈ (, ) such that

f
(
y + αη(x, y)

) ∈ αf (x) + ( – α)f (y) – intD, ∀x, y ∈ K , (.)

then f is a strictly D-preinvex function on K .
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Proof By contradiction, suppose that there exist x, y ∈ K , x �= y, λ ∈ (, ) such that

λf (x) + ( – λ)f (y) – f
(
y + λη(x, y)

)
/∈ intD. (.)

Denote

z = y + λη(x, y).

Since f is D-preinvex, we have

λf (x) + ( – λ)f (y) – f
(
y + λη(x, y)

) ∈ D. (.)

We note that the pair x, z and the pair z, y are both distinct under condition (.). There
exist β,β ∈ (, ) such that

βf (x) + ( – β)f (z) – f
(
z + βη(x, z)

) ∈ intD, (.)

βf (z) + ( – β)f (y) – f
(
y + βη(z, y)

) ∈ intD. (.)

Denote

x̄ = z + βη(x, z), ȳ = y + βη(z, y).

From Condition C,

x̄ = z + βη(x, z) = y + λη(x, y) + βη
(
x, y + λη(x, y)

)
= y + λη(x, y) + ( – λ)βη(x, y)

= y +
(
λ + ( – λ)β

)
η(x, y),

ȳ = y + βη(z, y) = y + βη
(
y + λη(x, y), y

)
= y + βη

(
y + λη(x, y), y + λη(x, y) – λη(x, y)

)
= y + βη

(
y + λη(x, y), y + λη(x, y) + η

(
y, y + λη(x, y)

))
= y – βη

(
y, y + λη(x, y)

)
= y + λβη(x, y).

Let μ = λ + ( – λ)β, μ = λβ, μ = λ–μ
μ–μ

. It is easy to verify that μ,μ,μ ∈ (, ). Again
from Condition C,

ȳ +μη(x̄, ȳ) = y +μη(x, y) +μη
(
y +μη(x, y), y +μη(x, y)

)
= y +μη(x, y) +μη

(
y +μη(x, y), y +μη(x, y) + (μ –μ)η(x, y)

)

= y +μη(x, y) +μη

(
y +μη(x, y), y +μη(x, y)

+
(

μ –μ

 –μ

)
η
(
x, y +μη(x, y)

))
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= y +μη(x, y) –
(

μ(μ –μ)
 –μ

)
η
(
x, y +μη(x, y)

)

= y +μη(x, y) –μ(μ –μ)η(x, y)

= y +
(
μ –μ(μ –μ)

)
η(x, y)

= y + λη(x, y)

= z.

Since f is D-preinvex, we have

μf (x̄) + ( –μ)f (ȳ) – f (z) ∈D. (.)

Thus, from (.)-(.), we have

μf (x̄) + ( –μ)f (ȳ) – f (z) +μ
(
βf (x) + ( – β)f (z) – f (x̄)

)
+ ( –μ)

(
βf (z) + ( – β)f (y) – f (ȳ)

) ∈ intD

⇒ μβf (x) +
(
μ( – β) + ( –μ)β

)
f (z) + ( –μ)( – β)f (y) – f (z) ∈ intD

⇒ μβf (x) +
(
μ( – β) + ( –μ)β

)(
λf (x) + ( – λ)f (y)

)
+ ( –μ)( – β)f (y) – f (z) ∈ intD

⇒ (
μβ + λμ( – β) + λβ( –μ)

)
f (x) +

(
( –μ)( – β)

+ ( – λ)μ( – β) + ( – λ)β( –μ)
)
f (y) – f (z) ∈ intD

⇒ λf (x) + ( – λ)f (y) – f (z) ∈ intD.

Where

μβ + λμ( – β) + λβ( –μ)

= μ
(
λ + β( – λ) – λβ

)
+ λβ

= μ
(
λ + β( – λ) –μ

)
+μ

= μ(μ –μ) +μ

= λ,

( –μ)( – β) + ( – λ)μ( – β) + ( – λ)β( –μ)

= ( –μ)( –μ) +μ( –μ)

=  –μ +μ(μ –μ)

=  – λ,

which contradicts (.). This completes the proof. �

Remark . In Theorem ., a uniform α ∈ (, ) is needed, while in Theorem . this
condition has been weakened to great extent.

By Theorem . in Ref. [] and Theorem . above, we have the following corollary.
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Corollary . Let f be a ∗-lower semicontinuous function on K and satisfy f (y + η(x, y)) ∈
f (x) –D, ∀x, y ∈ K . For each pair x, y ∈ K , x �= y, if there exists an α ∈ (, ) such that

f
(
y + αη(x, y)

) ∈ αf (x) + ( – α)f (y) – intD, ∀x, y ∈ K ,

then f is a strictly D-preinvex function on K .

Corollary . Let f be a ∗-upper semicontinuous function on K and satisfy f (y+ η(x, y)) ∈
f (x) –D, ∀x, y ∈ K . If there exists an α ∈ (, ) such that, for each pair x, y ∈ K , x �= y,

f
(
y + αη(x, y)

) ∈ αf (x) + ( – α)f (y) – intD, ∀x, y ∈ K ,

then f is a strictly D-preinvex function on K .

Proof This result is obtained by Theorems . and . above. �

Theorem . Let f be a ∗-lower semicontinuous function on K and satisfy f (y + η(x, y)) ∈
f (x) –D, ∀x, y ∈ K . If there exists an α ∈ (, ) such that, for each pair x, y ∈ K , f (x) �= f (y)
implies

f
(
y + αη(x, y)

) ∈ αf (x) + ( – α)f (y) – intD, ∀x, y ∈ K , (.)

then f is both a D-preinvex function on K and a D-semistrictly preinvex function on K .

Proof First, we prove that f is a D-preinvex function on K . By Theorem . in Ref. [], we
need to show that for each x, y ∈ K , there exists λ ∈ (, ) such that

f
(
y + λη(x, y)

) ∈ λf (x) + ( – λ)f (y) –D.

Assume, by contradiction, that there exists x, y ∈ K such that

f
(
y + λη(x, y)

)
/∈ λf (x) + ( – λ)f (y) –D, ∀λ ∈ (, ). (.)

If f (x) �= f (y), condition (.) implies

f
(
y + αη(x, y)

) ∈ αf (x) + ( – α)f (y) – intD⊂ αf (x) + ( – α)f (y) –D,

which contradicts (.). Thus, we have f (x) = f (y), and then (.) implies

f
(
y + λη(x, y)

)
/∈ f (x) –D = f (y) –D, ∀λ ∈ (, ). (.)

Since D is a closed convex pointed cone, by the strong separation theorem for a convex
set, it follows that there exists k* ∈ D*\{} such that

〈
k*,λf (x) + ( – λ)f (y) – f

(
y + λη(x, y)

)〉
=

〈
k*, f (y) – f

(
y + λη(x, y)

)〉
< , ∀λ ∈ (, ). (.)
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Let λ = α–
α– ∈ (, ), and let z = y + λη(x, y), then the above inequality reduces to

〈
k*, f (x) – f (z)

〉
< , (.)

and

〈
k*, f (y) – f (z)

〉
< . (.)

Define

z = z + αη(x, z), z = z + αη(y, z).

From Condition C, we obtain

z = y + λη(x, y) + αη
(
x, y + λη(x, y)

)
= y + λη(x, y) + α( – λ)η(x, y)

= y +
(
α + λ( – α)

)
η(x, y)

= y +


 – α
η(x, y),

z = y +


 – α
η(x, y) + αη

(
y, y +


 – α

η(x, y)
)

= y +
(


 – α

+
–α

 – α

)
η(x, y)

= y +
 – α

 – α
η(x, y)

= y + λη(x, y)

= z.

Since 
–α

∈ (, ), it follows from (.) that

〈
k*, f (y) – f (z)

〉
< . (.)

Conditions (.) and (.) give

f (z) = f
(
z + αη(x, z)

) ∈ αf (x) + ( – α)f (y) – intD.

It follows that

〈
k*,αf (x) + ( – α)f (z) – f (z)

〉
> ,

which together with (.) yields

〈
k*, f (z) – f (z)

〉
> . (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/240
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From (.) and condition (.), we get

f (z) = f
(
z + αη(y, z)

) ∈ αf (y) + ( – α)f (z) – intD.

It follows that

〈
k*,αf (y) + ( – α)f (z) – f (z)

〉
> ,

which together with (.) yields

〈
k*, f (z) – f (z)

〉
=

〈
k*, f (z) – f (z)

〉
> ,

which contradicts (.), hence f is a D-preinvex function on K . Next, the D-semistrict
preinvexity of f on K follows from Theorem . of Ref. []. �

4 Conclusions
In this paper, we firstly obtain a property of D-preinvex functions. We then get a suf-
ficient condition of the strictly D-preinvex functions in terms of intermediate-point D-
preinvex functions. We finally obtain a sufficient condition of D-preinvex functions and
D-semistrictly preinvex functions. Our results improve and extend the existing ones in
the literature.
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