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1 Introduction
Gronwall-Bellman inequalities [, ] can be used as important tools in the study of exis-
tence, uniqueness, boundedness, stability and other qualitative properties of solutions of
differential equations and integral equations. There can be found a lot of generalizations
of Gronwall-Bellman inequalities in various cases from literature (e.g., [–]).
Agarwal et al. [] studied the inequality

u(t) ≤ a(t) +
n∑
i=

∫ bi(t)

bi(t)
gi(t, s)wi

(
u(s)

)
ds, t ≤ t < t.

Agarwal et al. [] obtained the explicit bound to the unknown function of the following
retarded integral inequality:

ϕ
(
u(t)

) ≤ c +
n∑
i=

∫ αi(t)

αi(t)
uq(s)

[
fi(s)ϕ

(
u(s)

)
+ gi(s)ϕ

(
log

(
u(s)

))]
ds.

In , Abdeldaim and Yakout [] studied the following integral inequalities:

u(t) ≤ u +
∫ t



(
f (s)u(s) + q(s)

)
ds +

∫ t


f (s)u(s)

[
u(s) +

∫ s


g(λ)u(λ)dλ

]
ds,

u(t) ≤ u +
∫ t


f (s)u(s)

[
u(s) +

∫ s


g(λ)u(λ)dλ

]p

ds.

However, the bound given on such an inequality in [] is not directly applicable in the
study of certain retarded nonlinear differential and integral equations. It is desirable to
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establish new inequalities of the above type, which can be used more effectively in the
study of certain classes of retarded nonlinear differential and integral equations.
In this paper, we discuss some new retarded nonlinear integral inequalities with iterated

integrals

u(t) ≤ u +
∫ α(t)



(
f (s)u(s) + q(s)

)
ds +

∫ α(t)


f (s)u(s)

[
u(s) +

∫ s


g(λ)u(λ)dλ

]
ds, (.)

u(t) ≤ u +
∫ α(t)



(
f (s)ϕ

(
u(s)

)
+ q(s)

)
ds

+
∫ α(t)


f (s)ϕ

(
u(s)

)[
u(s) +

∫ s


g(λ)u(λ)dλ

]
ds, (.)

u(t) ≤ u +
∫ α(t)


f (s)u(s)

[
u(s) +

∫ s


g(λ)u(λ)dλ

]p

ds, (.)

u(t) ≤ u +
∫ α(t)


f (s)φ

(
u(s)

)[
u(s) +

∫ s


g(λ)φ

(
u(λ)

)
dλ

]p

ds, (.)

where u is a positive constant, and give upper bound estimation of the unknown function
by integral inequality technique. Furthermore, we apply our result to differential-integral
equations for estimation.

2 Main result
In this section, we discuss some retarded integral inequalities with iterated integrals.
Throughout this paper, let I = [,∞).

Lemma  (Abdeldaim and Yakout []) We assume that u(t), f (t) and g(t) are nonnegative
real-valued continuous functions defined on I = [,∞) and satisfy the inequality

u(t) ≤ u +
∫ t


f (s)u(s)

[
u(s) +

∫ s


g(λ)u(λ)dλ

]p

ds

for all t ∈ I , where u and p are positive constants. Then

u(t) ≤ u exp
(∫ t


f (s)B(s)

)
ds, ∀t ∈ I,

where

B(t) =
up exp(p

∫ t
 g(s)ds)

 – pup
∫ t
 f (s) exp(p

∫ s
 g(τ )dτ )ds

,

such that pup
∫ t
 f (s) exp(p

∫ s
 g(τ )dτ )ds≤  for all t ∈ I .

Lemma  (Abdeldaim and Yakout []) We assume that u(t), f (t) and g(t) are nonnegative
real-valued continuous functions defined on I = [,∞) and satisfy the inequality

u(t) ≤ u +
∫ t



(
f (s)u(s) + q(s)

)
ds +

∫ t


f (s)u(s)

[
u(s) +

∫ s


g(λ)u(λ)dλ

]
ds, (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/236


Wang Journal of Inequalities and Applications 2012, 2012:236 Page 3 of 17
http://www.journalofinequalitiesandapplications.com/content/2012/1/236

for all t ∈ I , where u is a positive constant. Then

u(t) ≤
(
u +

∫ t


q(s) exp

(
–A(s)

)
ds

)
exp

(
A(t)

)
, ∀t ∈ I, (.)

where A(t) =
∫ t
 (f (s) + f (s)Q(s))ds, and

Q(t) = L(t) –
(L() – u) exp(A(t))

 + (L() – u)
∫ t
 f (s) exp(A(s))ds

,

where A(t) =
∫ t
 (f (s)L(s) + f (s) + g(s))ds, and L(t) is the maximal solution of the differen-

tial equation

dL(t)
dt

= q(t) + f (t)L(t) +
(
f (t) + g(t)

)
L(t), ∀t ∈ I,

such that L() > u.

Lemma  Suppose that ϕ(t) is a positive and increasing function on I with ϕ() = ,
fi ∈ C(I, I), i = , ; u(t) is a nonnegative real-valued continuous function defined on I with
u() = u >  and satisfies the inequality

du(t)
dt

≤ f(t) + f(t)ϕ
(
u(t)

)
, ∀t ∈ I, (.)

then u(t) has the following estimation:

u(t) ≤ �–
(

�

(
u +

∫ t


f(s)ds

)
+

∫ t


f(s)ds

)
, ∀t ∈ [,T], (.)

where

�(r) :=
∫ r



ds
ϕ(s)

, r > , (.)

and T is the largest number such that

�

(
u +

∫ T


f(s)ds

)
+

∫ T


f(s)ds≤

∫ ∞



ds
ϕ(s)

. (.)

Remark  �(t) = ln(t) when ϕ(t) = t.

Proof Integrating both sides of (.) from  to t,

u(t) ≤ u +
∫ t


f(s)ds +

∫ t


f(s)ϕ

(
u(s)

)
ds

≤ u +
∫ T


f(s)ds +

∫ t


f(s)ϕ

(
u(s)

)
ds, ∀t ∈ [,T], (.)

where T ∈ [,T] is a positive constant chosen arbitrarily, T is defined by (.). Let

R(t) = u +
∫ T


f(s)ds +

∫ t


f(s)ϕ

(
u(s)

)
ds, ∀t ∈ [,T], (.)
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then R(t) is a nonnegative and nondecreasing function on I with R() = u +
∫ T
 f(s)ds.

Then (.) is equivalent to

u(t) ≤ R(t), ∀t ∈ [,T]. (.)

Differentiating R(t) with respect to t, from (.) and (.), we have

dR(t)
dt

= f(t)ϕ
(
u(t)

) ≤ f(t)ϕ
(
R(t)

)
, ∀t ∈ [,T]. (.)

Since R(t) > , from (.) we have

dR(t)
ϕ(R(t))dt

≤ f(t), ∀t ∈ [,T]. (.)

By taking t = s in (.) and integrating it from  to t, we get

R(t) ≤ �–
(

�
(
R()

)
+

∫ t


f(s)ds

)
, ∀t ∈ [,T], (.)

where � is defined by (.). From (.) we have

u(t) ≤ �–
(

�

(
u +

∫ T


f(s)ds

)
+

∫ t


f(s)ds

)
, ∀t ∈ [,T]. (.)

Letting t = T , from (.) we get

u(T) ≤ �–
(

�

(
u +

∫ T


f(s)ds

)
+

∫ T


f(s)ds

)
.

Because T ∈ [,T] is chosen arbitrarily, this proves (.). �

Lemma  Let fi ∈ C(I, I), i = , , ; we assume that u(t) is a nonnegative real-valued con-
tinuous function defined on I with u() = u >  and satisfies the inequality

du(t)
dt

≤ f(t) + f(t)u(t) + f(t)u(t), ∀t ∈ I, (.)

then u(t) has the following estimation:

u(t) ≤ exp

(∫ t


f(s)ds

)((
u +

∫ t


f(s)ds

)–

–
∫ t


f(s) exp

(∫ s


f(τ )dτ

)
ds

)–

, (.)

for all t ∈ [,T], where T is the largest number such that

(
u +

∫ t


f(s)ds

)–

–
∫ t


f(s) exp

(∫ s


f(τ )dτ

)
ds > , ∀t ∈ [,T]. (.)
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Proof Integrating both sides of (.) from  to t, we get

u(t) ≤ u +
∫ t


f(s)ds +

∫ t


f(s)u(s)ds +

∫ t


f(s)u(s)ds

≤ u +
∫ T


f(s)ds +

∫ t


f(s)u(s)ds

+
∫ t


f(s)u(s)ds, ∀t ∈ [,T], (.)

where T ∈ [,T] is a positive constant chosen arbitrarily, T is defined by (.). Let

R(t) = u +
∫ T


f(s)ds +

∫ t


f(s)u(s)ds

+
∫ t


f(s)u(s)ds, ∀t ∈ [,T], (.)

then R(t) is a nonnegative and nondecreasing function on I with R() = u +
∫ T
 f(s)ds.

Then (.) is equivalent to

u(t) ≤ R(t), ∀t ∈ [,T]. (.)

Differentiating R(t) with respect to t, from (.) and (.), we have

dR(t)
dt

= f(t)u(t) + f(t)u(t)≤ f(t)R(t) + f(t)R
(t), ∀t ∈ [,T]. (.)

Since R(t) > , from (.) we have

R–
 (t)

dR(t)
dt

≤ f(t)R–
 (t) + f(t), ∀t ∈ [,T]. (.)

Let S(t) = R–
 (t), then S() = (u +

∫ T
 f(s)ds)–, from (.) we obtain

dS(t)
dt

+ f(t)S(t) ≥ –f(t), ∀t ∈ [,T]. (.)

Consider the ordinary differential equation

⎧⎨
⎩

dS(t)
dt + f(t)S(t) = –f(t), ∀t ∈ [,T],

S() = (u +
∫ T
 f(s)ds)–.

(.)

The solution of equation (.) is

S(t) = exp

(
–

∫ t


f(s)ds

)((
u +

∫ T


f(s)ds

)–

–
∫ t


f(s) exp

(∫ s


f(τ )dτ

)
ds

)
(.)
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for all t ∈ [,T]. Letting t = T in (.), from (.), (.), (.) and (.), we obtain

u(T) ≤ R(T) =


S(T)
≤ 

S(T)

≤ exp

(∫ T


f(s)ds

)((
u +

∫ T


f(s)ds

)–

–
∫ T


f(s) exp

(∫ s


f(τ )dτ

)
ds

)–

. (.)

Because T ∈ [,T] is chosen arbitrarily, this proves (.). �

Lemma  Suppose that ϕ(t), ϕ(t)/t are positive and increasing functions on I , fi ∈ C(I, I),
i = , , , ; u(t) is a nonnegative real-valued continuous function defined on I with u() =
u >  and satisfies the inequality

du(t)
dt

≤ f(t) + f(t)u(t) + f(t)u(t)ϕ
(
u(t)

)
+ f(t)ϕ

(
u(t)

)
,

u() = u, ∀t ∈ I,
(.)

then u(t) has the following estimation:

u(t) ≤ exp

(
�–



(
�

(
ln

(
u +

∫ t


f(s)ds

)
+

∫ t


f(s)ds

)
+

∫ t


f(s)ds

+
∫ t



f(s)ds
exp(ln(u +

∫ t
 f(τ )dτ ) +

∫ t
 f(τ )dτ )

))
, (.)

for all t ∈ [,T], where

�(r) :=
∫ r



ds
ϕ(exp(s))

, r > , (.)

and T is the largest number such that

�

(
ln

(
u +

∫ T


f(s)ds

)
+

∫ T


f(s)ds

)
+

∫ T


f(s)ds

+
∫ T



f(s)ds
exp(ln(u +

∫ T
 f(τ )dτ ) +

∫ T
 f(τ )dτ )

≤
∫ ∞



ds
ϕ(exp(s))

. (.)

Proof Integrating both sides of (.) from  to t, we get

u(t) ≤ u +
∫ t


f(s)ds +

∫ t


f(s)u(s)ds +

∫ t


f(s)u(s)ϕ

(
u(s)

)
ds +

∫ t


f(s)ϕ

(
u(s)

)
ds

≤ u +
∫ T


f(s)ds +

∫ t


f(s)u(s)ds

+
∫ t


f(s)u(s)ϕ

(
u(s)

)
ds +

∫ t


f(s)ϕ

(
u(s)

)
ds, (.)
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for all t ∈ [,T], where T ∈ [,T] is a positive constant chosen arbitrarily, T is defined
by (.). Let R(t) denote the function on the right-hand side of (.), which is a positive
and nondecreasing function on [,T] with

R() = u +
∫ T


f(s)ds. (.)

Then (.) is equivalent to

u(t) ≤ R(t), ∀t ∈ [,T]. (.)

Differentiating R(t) with respect to t and using (.), we have

dR(t)
dt

≤ f(t)R(t) + f(t)R(t)ϕ
(
R(t)

)
+ f(t)ϕ

(
R(t)

)
, ∀t ∈ [,T]. (.)

From (.) we get

R–
 (t)

dR(t)
dt

≤ f(t) + f(t)ϕ
(
R(t)

)
+ f(t)ϕ

(
R(t)

)
R–
 (t), ∀t ∈ [,T]. (.)

Integrating both sides of (.) from  to t and using (.), we get

R(t) ≤ exp

(
lnR() +

∫ t


f(s)ds +

∫ t


f(s)ϕ

(
R(s)

)
ds +

∫ t


f(s)ϕ

(
R(s)

)
R–
 (s)ds

)

≤ exp

(
ln

(
u +

∫ T


f(s)ds

)
+

∫ T


f(s)ds +

∫ t


f(s)ϕ

(
R(s)

)
ds

+
∫ t


f(s)ϕ

(
R(s)

)
R–
 (s)ds

)
, ∀t ∈ [,T], (.)

here we use the monotonicity of ϕ(t) and ϕ(t)/t. Let

R(t) = ln

(
u +

∫ T


f(s)ds

)
+

∫ T


f(s)ds +

∫ t


f(s)ϕ

(
R(s)

)
ds

+
∫ t


f(s)ϕ

(
R(s)

)
R–
 (s)ds (.)

for all t ∈ [,T], then R(t) is a positive and nondecreasing function on [,T] with

R() = ln

(
u +

∫ T


f(s)ds

)
+

∫ T


f(s)ds. (.)

(.) is equivalent to

R(t) ≤ exp
(
R(t)

)
, ∀t ∈ [,T]. (.)

Differentiating R(t) with respect to t and using (.), we have

dR(t)
dt

= f(t)ϕ
(
R(t)

)
+ f(t)ϕ

(
R(t)

)
R–
 (t)

≤ f(t)ϕ
(
exp

(
R(t)

))
+ f(t)ϕ

(
exp

(
R(t)

))(
exp

(
R(t)

))–, ∀t ∈ [,T]. (.)
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From (.) we get

ϕ–(exp(R(t)
))dR(t)

dt
≤ f(t) + f(t)

(
exp

(
R(t)

))–, ∀t ∈ [,T]. (.)

Integrating both sides of (.) from  to t,

�
(
R(t)

) ≤ �
(
R()

)
+

∫ t


f(s)ds +

∫ t


f(s)

(
exp

(
R()

))– ds

≤ �

(
ln

(
u +

∫ T


f(s)ds

)
+

∫ T


f(s)ds

)
+

∫ t


f(s)ds

+
∫ t



f(s)ds
exp(ln(u +

∫ T
 f(τ )dτ ) +

∫ T
 f(τ )dτ )

(.)

for all t ∈ [,T], where � is defined by (.). From (.), (.) and (.), we have

u(t) ≤ R(t)≤ exp
(
R(t)

)

≤ exp

(
�–



(
�

(
ln

(
u +

∫ T


f(s)ds

)
+

∫ T


f(s)ds

)
+

∫ t


f(s)ds

+
∫ t



f(s)ds
exp(ln(u +

∫ T
 f(τ )dτ ) +

∫ T
 f(τ )dτ )

))
, (.)

for all t ∈ [,T]. Letting t = T , from (.) we get

u(T) ≤ exp

(
�–



(
�

(
ln

(
u +

∫ T


f(s)ds

)
+

∫ T


f(s)ds

)
+

∫ T


f(s)ds

+
∫ T



f(s)ds
exp(ln(u +

∫ T
 f(τ )dτ ) +

∫ T
 f(τ )dτ )

))
.

Because T ∈ [,T] is chosen arbitrarily, this gives the estimation (.) of the unknown
function in the inequality (.). �

Theorem  Suppose that α ∈ C(I, I) is an increasing function with α(t) ≤ t, α() = ,
∀t ∈ I ; u(t), f (t), q(t) and g(t) are nonnegative real-valued continuous functions defined on
I = [,∞) and satisfy the inequality (.). Then

u(t) ≤ exp

(
ln

(
u +

∫ α(t)


q(s)ds

)
+

∫ α(t)



(
f (s) + f (s)L

(
α–(s)

))
ds

)
(.)

for all t ∈ [,T], where

L(t) = exp

(∫ α(t)



(
f (s) + g(s)

)
ds

)((
u +

∫ α(t)


q(s)ds

)–

–
∫ α(t)


f (s) exp

(∫ s



(
f (τ ) + g(τ )

)
dτ

)
ds

)–

, (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/236
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T is the largest number such that

(
u +

∫ α(t)


q(s)ds

)–

–
∫ α(t)


f (s) exp

(∫ s



(
f (τ ) + g(τ )

)
dτ

)
ds > .

Remark  Theorem  gives the explicit estimation (.) for the inequality (.) which is
just the inequality (.) when α(t) = t. Lemma  gives the implicit estimation (.) for the
inequality (.).

Proof Let z(t) denote the function on the right-hand side of (.), which is a positive and
nondecreasing function on I with z() = u. Then (.) is equivalent to

u(t) ≤ z(t), u
(
α(t)

) ≤ z
(
α(t)

) ≤ z(t), ∀t ∈ I. (.)

Differentiating z(t) with respect to t and using (.), we have

dz(t)
dt

= α′(t)f
(
α(t)

)
u
(
α(t)

)
+ α′(t)q

(
α(t)

)

+ α′(t)f
(
α(t)

)
u
(
α(t)

)[
u
(
α(t)

)
+

∫ α(t)


g(λ)u(λ)dλ

]

≤ α′(t)q
(
α(t)

)
+

[
α′(t)f

(
α(t)

)
+ α′(t)f

(
α(t)

)
Y(t)

]
z(t), ∀t ∈ I, (.)

where

Y(t) := z(t) +
∫ α(t)


g(λ)z(λ)dλ, ∀t ∈ I. (.)

Then Y(t) is a positive and nondecreasing function on I with Y() = z() = u and

z(t)≤ Y(t). (.)

Differentiating Y(t) with respect to t and using (.), (.) and (.), we get

dY(t)
dt

≤ α′(t)q
(
α(t)

)
+

[
α′(t)f

(
α(t)

)
+ α′(t)f

(
α(t)

)
Y(t)

]
z(t) + α′(t)g

(
α(t)

)
z(t)

≤ α′(t)q
(
α(t)

)
+

[
α′(t)f

(
α(t)

)
+ α′(t)g

(
α(t)

)]
Y(t) + α′(t)f

(
α(t)

)
Y 
 (t) (.)

for all t ∈ I . Applying Lemma  to (.), we obtain

Y(t)≤ L(t), ∀t ∈ [,T]. (.)

From (.) and (.), we get

dz(t)
dt

≤ α′(t)q
(
α(t)

)
+

[
α′(t)f

(
α(t)

)
+ α′(t)f

(
α(t)

)
L(t)

]
z(t), ∀t ∈ [,T]. (.)

Applying Lemma  to (.) and using Remark , we obtain

z(t)≤ exp

(
ln

(
u +

∫ α(t)


q(s)ds

)
+

∫ α(t)



(
f (s) + f (s)L

(
α–(s)

))
ds

)
, ∀t ∈ [,T].
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From (.), the estimation (.) of the unknown function in the inequality (.) is ob-
tained. �

Theorem  Suppose ϕ ∈ C(I, I) and α ∈ C(I, I) are increasing functions with α(t) ≤ t,
α() = , ∀t ∈ I . We assume that u(t), f (t), q(t) and g(t) are nonnegative real-valued con-
tinuous functions defined on I and satisfy the inequality (.). Then

u(t) ≤ �–
(

�

(
u +

∫ α(t)


q(s)ds

)

+
∫ α(t)



(
f (s) + f (s)L

(
α–(s)

))
ds

)
, ∀t ∈ [,T], (.)

where � is defined by (.),

L(t) = exp

(
�–



(
�

(
ln

(
u +

∫ α(t)


q(s)ds

)
+

∫ α(t)


g(s)ds

)
+

∫ α(t)


f (s)ds

+
∫ α(t)



f (s)ds
exp(ln(u +

∫ α(t)
 q(s)ds) +

∫ α(t)
 g(s)ds)

))
, ∀t ∈ [,T], (.)

� is defined by (.), T is the largest number such that

�

(
u +

∫ α(t)


q(s)ds

)
+

∫ α(t)



(
f (s) + f (s)L

(
α–(s)

))
ds≤

∫ ∞



ds
ϕ(s)

,

�

(
ln

(
u +

∫ α(T)


q(s)ds

)
+

∫ α(T)


g(s)ds

)
+

∫ α(T)


f (s)ds (.)

+
∫ α(T)



f (s)ds
exp(ln(u +

∫ α(T)
 q(s)ds) +

∫ α(T)
 g(s)ds)

≤
∫ ∞



ds
ϕ(exp(s))

.

Proof Let z(t) denote the function on the right-hand side of (.), which is a positive and
nondecreasing function on I with z() = u. Then (.) is equivalent to

u(t) ≤ z(t), u
(
α(t)

) ≤ z
(
α(t)

) ≤ z(t), ∀t ∈ I. (.)

Differentiating z(t) with respect to t and using (.), we have

dz(t)
dt

= α′(t)f
(
α(t)

)
ϕ
(
u
(
α(t)

))
+ α′(t)q

(
α(t)

)

+ α′(t)f
(
α(t)

)
ϕ
(
u
(
α(t)

))[
u
(
α(t)

)
+

∫ α(t)


g(λ)u(λ)dλ

]

≤ α′(t)q
(
α(t)

)
+

[
α′(t)f

(
α(t)

)
+ α′(t)f

(
α(t)

)
Y(t)

]
ϕ
(
z(t)

)
, ∀t ∈ I, (.)

where

Y(t) := z(t) +
∫ α(t)


g(λ)z(λ)dλ, ∀t ∈ I. (.)
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Wang Journal of Inequalities and Applications 2012, 2012:236 Page 11 of 17
http://www.journalofinequalitiesandapplications.com/content/2012/1/236

Then Y(t) is a positive and nondecreasing function on I with Y() = z() = u and

z(t) ≤ Y(t). (.)

Differentiating Y(t) with respect to t and using (.), (.) and (.), we get

dY(t)
dt

≤ α′(t)q
(
α(t)

)
+

[
α′(t)f

(
α(t)

)
+ α′(t)f

(
α(t)

)
Y(t)

]
ϕ
(
z(t)

)
+ α′(t)g

(
α(t)

)
z(t)

≤ α′(t)q
(
α(t)

)
+ α′(t)g

(
α(t)

)
Y(t) + α′(t)f

(
α(t)

)
Y(t)ϕ

(
Y(t)

)
+ α′(t)f

(
α(t)

)
ϕ
(
Y(t)

)
(.)

for all t ∈ I . Applying Lemma  to (.), we obtain

Y(t) ≤ exp

(
�–



(
�

(
ln

(
u +

∫ α(t)


q(s)ds

)
+

∫ α(t)


g(s)ds

)
+

∫ α(t)


f (s)ds

+
∫ α(t)



f (s)ds
exp(ln(u +

∫ α(t)
 q(s)ds) +

∫ α(t)
 g(s)ds)

))

= L(t), ∀t ∈ [,T], (.)

where T and L are defined by (.) and (.) respectively. From (.) and (.), we
get

dz(t)
dt

≤ α′(t)q
(
α(t)

)
+

[
α′(t)f

(
α(t)

)

+ α′(t)f
(
α(t)

)
L(t)

]
ϕ
(
z(t)

)
, ∀t ∈ [,T]. (.)

Applying Lemma  to (.), we obtain

z(t) ≤ �–
(

�

(
u +

∫ α(t)


q(s)ds

)
+

∫ α(t)



(
f (s) + f (s)L

(
α–(s)

))
ds

)
, ∀t ∈ [,T],

where � is defined by (.). From (.), the estimation (.) of the unknown function in
the inequality (.) is obtained. �

Theorem Suppose α ∈ C(I, I) are increasing functions with α(t)≤ t, α() = , ∀t ∈ I .We
assume that u(t), f (t) and g(t) are nonnegative real-valued continuous functions defined
on I and satisfy the inequality (.). Then

u(t) ≤ u exp
(∫ t


f (s)B(s)

)
ds, ∀t ∈ I, (.)

where

B(t) =
up exp(p

∫ α(t)
 g(s)ds)

 – pup
∫ α(t)
 f (s) exp(p

∫ s
 g(τ )dτ )ds

, (.)

such that pup
∫ α(t)
 f (s) exp(p

∫ s
 g(τ )dτ )ds ≤  for all t ∈ I .
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Remark  If α(t) = t, then Theorem  reduces Lemma .

Proof Let z(t) denote the function on the right-hand side of (.), which is a positive and
nondecreasing function on I with z() = u. Then (.) is equivalent to

u(t) ≤ z(t), u
(
α(t)

) ≤ z
(
α(t)

) ≤ z(t), ∀t ∈ I. (.)

Differentiating z(t) with respect to t and using (.), we have

dz(t)
dt

= α′(t)f
(
α(t)

)
u
(
α(t)

)[
u
(
α(t)

)
+

∫ α(t)


g(λ)u(λ)dλ

]p

≤ α′(t)f
(
α(t)

)
z(t)

[
z(t) +

∫ α(t)


g(λ)z(λ)dλ

]p

= α′(t)f
(
α(t)

)
z(t)Y

p
 (t), ∀t ∈ I, (.)

where

Y(t) := z(t) +
∫ α(t)


g(λ)z(λ)dλ, ∀t ∈ I. (.)

Then Y(t) is a positive and nondecreasing function on I with Y() = z() = u and

z(t)≤ Y(t). (.)

Differentiating Y(t) with respect to t and using (.), (.) and (.), we get

dY(t)
dt

≤ α′(t)f
(
α(t)

)
z(t)Y

p
 (t) + α′(t)g

(
α(t)

)
z(t)

≤ α′(t)f
(
α(t)

)
Y +p
 (t) + α′(t)g

(
α(t)

)
Y(t), ∀t ∈ I. (.)

From (.) we have

Y–(+p)
 (t)

dY(t)
dt

– α′(t)g
(
α(t)

)
Y–p
 (t) ≤ α′(t)f

(
α(t)

)
, ∀t ∈ I. (.)

Let S(t) = Y–p
 (t), then S() = u–p . From (.) we obtain

dS(t)
dt

+ pα′(t)g
(
α(t)

)
S(t) ≤ –pα′(t)f

(
α(t)

)
, ∀t ∈ I. (.)

Consider the ordinary differential equation

⎧⎨
⎩

dS(t)
dt + pα′(t)g(α(t))S(t) = –pα′(t)f (α(t)), ∀t ∈ I,

S() = u–p .
(.)

The solution of equation (.) is

S(t) = exp

(
–

∫ α(t)


pg(s)ds

)(
u–p –

∫ α(t)


pf (s) exp

(∫ s


pg(τ )dτ

)
ds

)
(.)
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for all t ∈ I . By (.), (.) and (.), we obtain

Yp
 (t) = S– (t)≤ S– (t) = B(t), ∀t ∈ I, (.)

where B(t) is as defined in (.). From (.) and (.), we have

dz(t)
dt

≤ α′(t)f
(
α(t)

)
z(t)B(t), ∀t ∈ I.

By taking t = s in the above inequality and integrating it from  to t, from (.) we get

u(t) ≤ z(t)≤ u exp
(∫ α(t)


f (s)B(s)

)
ds, ∀t ∈ I.

The estimation (.) of the unknown function in the inequality (.) is obtained. �

Theorem  Suppose ϕ,ϕ,α ∈ C(I, I) are increasing functions with ϕi(t) > , α(t) ≤ t,
∀t > , i = , , α() = . We assume that u(t), f (t) and g(t) are nonnegative real-valued
continuous functions defined on I = [,∞) and satisfy the inequality (.). Then

u(t) ≤ �–


[
�–



(
�

(
�(u) +

∫ α(t)


g(s)ds

)
+

∫ α(t)


f (s)ds

)]
, ∀t < T, (.)

where

�(r) :=
∫ r



dt
ϕ(t)

, r > , (.)

�(r) :=
∫ r



ϕ(�–
 (s))ds

ϕ(�–
 (s))(�–

 (s))p
, r > , (.)

and T is the largest number such that

�

(
�(u) +

∫ α(t)


g(s)ds

)
+

∫ α(t)


f (s)ds≤

∫ ∞



ϕ(�–
 (s))ds

ϕ(�–
 (s))(�–

 (s))p
,

�–


(
�

(
�(u) +

∫ α(t)


g(s)ds

)
+

∫ α(t)


f (s)ds

)
≤

∫ ∞



dt
ϕ(t)

.

Proof Let z(t) denote the function on the right-hand side of (.), which is a positive and
nondecreasing function on I with z() = u. Then (.) is equivalent to

u(t) ≤ z(t), u
(
α(t)

) ≤ z
(
α(t)

) ≤ z(t), ∀t ∈ I. (.)

Differentiating z(t) with respect to t and using (.), we have

dz(t)
dt

= α′(t)f
(
α(t)

)
ϕ

(
u
(
α(t)

))[
u
(
α(t)

)
+

∫ α(t)


g(λ)ϕ

(
u(λ)

)
dλ

]p

≤ α′(t)f
(
α(t)

)
ϕ

(
z(t)

)[
z(t) +

∫ α(t)


g(λ)ϕ

(
z(λ)

)
dλ

]p

= α′(t)f
(
α(t)

)
ϕ

(
z(t)

)
Yp
 (t), ∀t ∈ I, (.)
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where

Y(t) := z(t) +
∫ α(t)


g(λ)ϕ

(
z(λ)

)
dλ, ∀t ∈ I. (.)

Then Y(t) is a positive and nondecreasing function on I with Y() = z() = u and

z(t)≤ Y(t). (.)

Differentiating Y(t) with respect to t and using (.), (.) and (.), we get

dY(t)
dt

≤ α′(t)f
(
α(t)

)
ϕ

(
z(t)

)
Yp
 (t) + α′(t)g

(
α(t)

)
ϕ

(
z(t)

)

≤ α′(t)f
(
α(t)

)
ϕ

(
Y(t)

)
Yp
 (t) + α′(t)g

(
α(t)

)
ϕ

(
Y(t)

)
, ∀t ∈ I. (.)

Since ϕ(Y(t)) > , ∀t > , from (.) we have

dY(t)
ϕ(Y(t))

≤ α′(t)f
(
α(t)

)ϕ(Y(t))Y
p
 (t)

ϕ(Y(t))
dt + α′(t)g

(
α(t)

)
dt, ∀t ∈ I.

By taking t = s in the above inequality and integrating it from  to t, we get

�
(
Y(t)

) ≤ �
(
Y()

)
+

∫ t


α′(s)f

(
α(s)

)ϕ(Y(s))Y
p
 (s)

ϕ(Y(s))
ds

+
∫ t


α′(s)g

(
α(s)

)
ds, (.)

for all t ∈ I , where � is defined by (.). From (.) we have

�
(
Y(t)

) ≤ �
(
Y()

)
+

∫ T


α′(s)g

(
α(s)

)
ds

+
∫ t


α′(s)f

(
α(s)

)ϕ(Y(s))Y
p
 (s)

ϕ(Y(s))
ds (.)

for all t < T , where  < T < T is chosen arbitrarily. Let Y(t) denote the function on the
right-hand side of (.), which is a positive and nondecreasing function on I with Y() =
�(u) +

∫ T
 α′(s)g(α(s))ds and

Y(t) ≤ �–


(
Y(t)

)
, ∀t < T . (.)

Differentiating Y(t) with respect to t and using the hypothesis on ϕ/ϕ, from (.) we
have

dY(t)
dt

≤ α′(t)f
(
α(t)

)ϕ(Y(t))Y
p
 (t)

ϕ(Y(t))

≤ α′(t)f
(
α(t)

)ϕ(�–
 (Y(t)))(�–

 (Y(t)))p

ϕ(�–
 (Y(t)))

, ∀t < T . (.)
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By the definition of � in (.), from (.) we obtain

�
(
Y(t)

) ≤ �
(
Y()

)
+

∫ t


α′(s)f

(
α(s)

)
ds

≤ �

(
�(u) +

∫ α(T)


g(s)ds

)
+

∫ α(t)


f (s)ds, ∀t < T . (.)

Let t = T , from (.) we have

�
(
Y(T)

) ≤ �

(
�(u) +

∫ α(T)


g(s)ds

)

+
∫ α(T)


f (s)ds, ∀t < T . (.)

Since  < T < T is chosen arbitrarily, from (.), (.), (.) and (.), we have

u(t) ≤ �–


[
�–



(
�

(
�(u) +

∫ α(t)


g(s)ds

)
+

∫ α(t)


f (s)ds

)]
, ∀t < T.

This proves (.). �

3 Application
In this section we apply our Theorem  to the following differential-integral equation:

⎧⎨
⎩

dx(t)
dt =H(t,x(α(t)),

∫ t
 K(s,x(α(s)))ds), ∀t ∈ I,

x() = x,
(.)

where K ∈ C(R × R,R), H ∈ C(R,R), |x| >  is a constant, satisfy the following condi-
tions:

∣∣K(
t,x(t)

)∣∣ ≤ g(t)ψ
(∣∣x(t)∣∣), (.)∣∣∣∣H

(
t,x

(
α(t)

)
,
∫ t


K

(
s,x

(
α(s)

))
ds

)∣∣∣∣
≤ f (t)ψ

(∣∣α(t)∣∣)
(∣∣x(t)∣∣ +

∫ t



∣∣K(
s,x

(
α(s)

))∣∣ds
)p

, (.)

where f , g are nonnegative real-valued continuous functions defined on I .

Corollary  Consider the nonlinear system (.) and suppose that K , H satisfy the con-
ditions (.) and (.), and ψ,ψ,ψ/ψ,α ∈ C(I, I) are increasing functions with
α(t) ≤ t, ψi(t) > , ∀t > , i = , , α() = . Then all the solutions of equation (.) ex-
ist on I and satisfy the following estimation:

∣∣x(t)∣∣ ≤ 	–


[
	–



(
	

(
	

(|x|) +
∫ α(t)



g(α–(s))
α′(α–(s))

ds
)

+
∫ α(t)



f (α–(s))
α′(α–(s))

ds
)]

(.)
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for all t < T, where

	(r) :=
∫ r



dt
	(t)

, r > ,

	(r) :=
∫ r



	(	–
 (s))ds

	(	–
 (s))(	–

 (s))p
, r > ,

and T is the largest number such that

	

(
	

(|x|) +
∫ α(t)



g(α–(s))
α′(α–(s))

ds
)
+

∫ α(t)



f (α–(s))
α′(α–(s))

ds ≤
∫ ∞



ϕ(�–
 (s))ds

ϕ(�–
 (s))(�–

 (s))p
,

	–


(
	

(
	

(|x|) +
∫ α(t)



g(α–(s))
α′(α–(s))

ds
)
+

∫ α(t)



f (α–(s))
α′(α–(s))

ds
)

≤
∫ ∞



dt
ϕ(t)

.

Proof Integrating both sides of equation (.) from  to t, we get

x(t) = x +
∫ t


H

(
s,x

(
α(s)

)
,
∫ s


K

(
τ ,x

(
α(τ )

))
dτ

)
ds, ∀t ∈ I. (.)

Using the conditions (.) and (.), from (.) we obtain

∣∣x(t)∣∣ ≤ |x| +
∫ t


f (s)ϕ

(∣∣x(α(s))∣∣)
(∣∣x(α(s))∣∣ +

∫ s


g(τ )ϕ

(∣∣x(α(τ ))∣∣)dτ

)p

ds

≤ |x| +
∫ α(t)



f (α–(s))
α′(α–(s))

ϕ
(∣∣x(s)∣∣)

×
(∣∣x(s)∣∣ +

∫ s



g(α–(τ ))
α′(α–(τ ))

ϕ
(∣∣x(τ )∣∣)dτ

)p

ds (.)

for all t ∈ I . Applying Theorem  to (.), we get the estimation (.). This completes
the proof of Corollary . �
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