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Abstract
In this paper, we introduce and discuss a new system of generalized nonlinear mixed
quasivariational inclusions with (Hi ,ηi)-monotone operators in Hilbert spaces, which
includes several systems of variational inequalities and variational inclusions as special
cases. By employing the resolvent operator technique associated with
(Hi ,ηi)-monotone operators, we suggest two iterative algorithms for computing the
approximate solutions of the system of generalized nonlinear mixed quasivariational
inclusions. Under certain conditions, we obtain the existence of solutions for the
system of generalized nonlinear mixed quasivariational inclusions and prove the
convergence of the iterative sequences generated by the iterative algorithms. The
results presented in this paper extend, improve and unify many known results in
recent literature.
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1 Introduction
Variational inclusions, as important extensions of the classical variational inequalities,
provide us with simple, natural, general and unified frameworks in the study of many
fields including mechanics, physics, optimization and control, nonlinear programming,
economics and transportation equilibrium, as well as engineering sciences. Owing to their
wide applications, a lot of existence results and iterative algorithms of solutions for vari-
ous variational inclusions have been studied in recent years. For details, we refer to [–]
and the references therein. Among these methods, the resolvent operator techniques to
solve various variational inclusions are interesting and important.
In the past years, Agarwal-Huang-Tan [] introduced a system of generalized nonlinear

mixed quasivariational inclusions and investigated the sensitivity analysis of solutions for
the system of generalized nonlinear mixed quasivariational inclusions in Hilbert spaces.
Kazmi-Bhat [] introduced a system of nonlinear variational-like inclusions and gave an
iterative algorithm for finding its approximate solution. Fang-Huang [], Huang-Fang []
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and Liu-Kang-Ume [] introduced some new systems of variational inclusions in Hilbert
spaces using the resolvent operator associated with H-monotone operators, maximal
η-monotone operators,maximalmonotone operators andA-monotone operators, respec-
tively. Afterward, Fang-Huang-Thompson [] studied a class of variational inclusions with
(H ,η)-monotone operators, which provides a unifying framework for the classes of max-
imal monotone operators, maximal η-monotone operators and H-monotone operators.
Jin-Liu-Lee [] studied a class of generalized nonlinear mixed quasivariational inclusions
including relaxed Lipschitz and relaxed monotone operators.
Motivated and inspired by the above works, the goal of this paper is as follows. First,

a new system of generalized nonlinear mixed quasivariational inclusions with (Hi,ηi)-
monotone operators is introduced and studied in Hilbert spaces. Secondly, by utilizing
some properties of the resolvent operators with (Hi,ηi)-monotone operators, two new
iterative algorithms for approximating solutions of the system of generalized nonlinear
mixed quasivariational inclusions are constructed. Finally, we prove the existence of solu-
tions for the system of generalized nonlinear mixed quasivariational inclusions and show
the convergence of the iterative sequences generated by the iterative algorithms in Hilbert
spaces. Our results generalize, improve and unify a lot of previously known results in this
area.

2 Preliminaries
In this paper, we assume thatH is a real Hilbert space whose norm and inner product are
denoted by ‖ ·‖ and 〈·, ·〉, respectively. Let CB(H) denote the family of all nonempty closed
bounded subsets ofH and Ĥ(·, ·) denote the Hausdorff metric on CB(H) defined by

Ĥ(A,B) =max
{
sup
a∈A

d(a,B), sup
b∈B

d(A,b)
}
, ∀A,B ∈ CB(H),

where d(a,B) = infb∈B ‖a– b‖, d(A,b) = infa∈A ‖a– b‖. Set R = (–∞, +∞), ω and N denote
the sets of all nonnegative and positive integers, respectively.
In what follows, we recall some basic concepts, assumptions and results, which will be

used in the sequel.

Definition . Let η :H × H → H, H :H → H be two operators and M :H → H be a
set-valued operator.M is said to be
() η-monotone if 〈x – y,η(u, v)〉 ≥ , ∀u, v ∈H, x ∈ Mu, y ∈ Mv;
() (H ,η)-monotone ifM is η-monotone and (H + λM)(H) =H for all λ > .

Remark . The class of (H ,η)-monotone operators ismuchmore universal than allmax-
imal η-monotone, maximal monotone, H-monotone and η-monotone operators.

Definition . An operator η : H × H → H is said to be Lipschitz continuous if there
exists a constant τ >  such that

∥∥η(u, v)
∥∥ ≤ τ‖u – v‖, ∀u, v ∈H.

Definition . Let g,m :H →H, η :H×H →H be operators. The operator g is said to
be
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() Lipschitz continuous if there exists a constant s >  such that

∥∥g(u) – g(v)
∥∥ ≤ s‖u – v‖, ∀u, v ∈H;

() strongly monotone if there exists a constant r >  satisfying

〈
g(u) – g(v),u – v

〉 ≥ r‖u – v‖, ∀u, v ∈H;

() η-monotone if 〈g(u) – g(v),η(u, v)〉 ≥ , ∀u, v ∈H;
() strictly η-monotone if g is η-monotone and 〈g(u) – g(v),η(u, v)〉 =  if and only if

u = v;
() strongly η-monotone if there exists a constant σ >  fulfilling

〈
g(u) – g(v),η(u, v)

〉 ≥ σ‖u – v‖, ∀u, v ∈H;

() m-relaxed monotone if there exists a constant k >  such that

〈
g(u) – g(v),m(u) –m(v)

〉 ≥ –k‖u – v‖, ∀u, v ∈H.

Definition. A set-valued operatorA :H → CB(H) is said to be Ĥ-Lipschitz continuous
if there exists a constant lA >  such that

Ĥ
(
A(u),A(v)

) ≤ lA‖u – v‖, ∀u, v ∈H.

Definition . ([]) Let η : H × H → H be an operator, H : H → H be a strictly
η-monotone operator and M : H → H be an (H ,η)-monotone operator. Then the re-
solvent operator JH,η

M,λ :H →H is defined by

JH,η
M,λ(u) = (H + λM)–(u), ∀u ∈H.

Lemma . ([]) Let η :H × H → H be a Lipschitz continuous operator with a constant
τ > , H :H → H be a strongly η-monotone operator with a constant σ >  and M :H →
H be an (H ,η)-monotone operator. Then the resolvent operator JH,η

M,λ :H →H is Lipschitz
continuous with a constant τ

σ
, that is,

∥∥JH,η
M,λ(u) – JH,η

M,λ(v)
∥∥ ≤ τ

σ
‖u – v‖, ∀u, v ∈H.

Lemma . ([]) Let {an}, {bn}, {cn} be three nonnegative real sequences satisfying

an+ ≤ ( – tn)an + bntn + cn, ∀n ∈ ω,

where {tn}n∈ω ⊂ [, ],
∑∞

n= tn = +∞, limn→∞ bn =  and
∑∞

n= cn < +∞. Then
limn→∞ an = .

Lemma. ([]) Let (E,d) be ametric space and T : E → CB(E) be a set-valuedmapping.
Then for any given ε >  and any given x, y ∈ E, u ∈ Tx, there exists v ∈ Ty such that

d(u, v) ≤ ( + ε)H(Tx,Ty),

where H is the Hausdorff metric on CB(E).
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In what follows, unless specified otherwise, we always assume that for each i ∈ {, },Hi

is a real Hilbert space with norm ‖ · ‖i, inner product 〈·, ·〉i and Hausdorff metric Ĥi.

Definition . Let H :H →H, F :H ×H →H be two operators. The operator F is
said to be
() Lipschitz continuous in the first argument if there exists a constant β >  such that

∥∥F(u, z) – F(v, z)
∥∥
 ≤ β‖u – v‖, ∀u, v ∈H, z ∈H;

() H-relaxed monotone in the first argument if there exists a constant α >  satisfying

〈
F(u, z) – F(v, z),H(u) –H(v)

〉
 ≥ –α‖u – v‖ , ∀u, v ∈H, z ∈H.

In a similar way, we can define the corresponding concepts for the operator F in the
second argument.

3 A system of generalized nonlinear mixed quasivariational inclusions and
iterative algorithms

In this section, we shall introduce a new system of generalized nonlinear mixed quasivari-
ational inclusions including (Hi,ηi)-monotone operators in Hilbert spaces, and construct
a new iterative algorithm for solving the system of generalized nonlinear mixed quasivari-
ational inclusions. Furthermore, a more general and unified iterative algorithm called the
Mann perturbed iterative algorithm with mixed errors is constructed as well in Hilbert
spaces.
For each i ∈ {, }, let Hi, gi,mi : Hi → Hi, ηi : Hi × Hi → Hi be operators, Mi :

H × H → Hi be set-valued operator such that for each fixed (x, y) ∈ H × H,
M(·, y) :H → H is (H,η)-monotone and M(x, ·) :H → H is (H,η)-monotone,
F ,N : H × H → H, G,N : H × H → H be operators and A,C : H → CB(H),
B,D :H → CB(H) be four set-valued operators. Let ρ and ν be two positive constants.
For any (f , g) ∈H ×H, we consider the following problem:
Find (x, y,u, v,w, z) such that (x, y) ∈ H × H, u ∈ A(x), v ∈ B(y), w ∈ C(x), z ∈ D(y),

(g –m)(x) ∈ dom(M(·, y)), (g –m)(y) ∈ dom(M(x, ·)) and

f ∈N(u, v) + ρ
(
F(x, y) +M

(
(g –m)(x), y

))
,

g ∈N(w, z) + ν
(
G(x, y) +M

(
x, (g –m)(y)

))
,

(.)

where (gi –mi)(x′) = gi(x′) –mi(x′), ∀x′ ∈Hi, i ∈ {, }. The problem (.) is called a system
of generalized nonlinear mixed quasivariational inclusions.
Below are some special cases of the problem (.):
(A) If ρ,ν = , f = g = ,M((g –m)(x), y) =M(g(x)) andM(x, (g –m)(y)) =M(g(y))

for all (x, y) ∈ H ×H, then the problem (.) is equivalent to finding (x, y,u, v,w, z) such
that (x, y) ∈ H × H, u ∈ A(x), v ∈ B(y), w ∈ C(x), z ∈ D(y), g(x) ∈ dom(M), g(y) ∈
dom(M) and

 ∈N(u, v) + F(x, y) +M
(
g(x)

)
,

 ∈N(w, z) +G(x, y) +M
(
g(y)

)
,

(.)
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which is called the system of generalized mixed quasivariational inclusions introduced
and studied by Peng-Zhu [], and the problem (.) includes those systems of variational
inequalities and variational inclusions in [, , , ] as special cases;
(B) If N = N = , g = I (the identity map on H), g = I (the identity map on H),

η(a,x) = a – x for every a,x ∈ H, η(b, y) = b – y for any b, y ∈ H, M(x) = ∂ϕ(x) and
M(y) = ∂ψ(y), where ϕ :H →R∪{+∞} andψ :H →R∪{+∞} are two proper, convex,
lower semi-continuous functionals, ∂ϕ(x) is the subdifferential of ϕ at x, ∂ψ(y) is the sub-
differential of ψ at y, then the problem (.) reduces to the following system of nonlinear
variational inequalities introduced by Cho-Fang-Huang-Hwang []: seek (x, y) ∈H ×H

such that
〈
F(x, y),a – x

〉
 + ϕ(a) – ϕ(x)≥ ,

〈
G(x, y),b – y

〉
 +ψ(b) –ψ(y)≥ .

(.)

In brief, for suitable choices of the mappings presented in the problem (.) and the
constants ρ , ν , one can obtain various new and previously known systems of variational
inequalities and variational inclusions as special cases of the problem (.).

Lemma . Let λ and μ be two positive constants. For each i ∈ {, }, let ηi :Hi ×Hi →Hi

be an operator, Hi :Hi → Hi be a strictly ηi-monotone operator, Mi :H × H → Hi be
a set-valued operator such that for each (x, y) ∈ H × H, M(·, y) :H → H is (H,η)-
monotone and M(x, ·) :H → H is (H,η)-monotone. Then (x, y,u, v,w, z) with (x, y) ∈
H ×H, u ∈ A(x), v ∈ B(y), w ∈ C(x), z ∈D(y) is a solution of the problem (.) if and only
if

(g –m)(x) = JH,η
M(·,y),λρ

[
H(g –m)(x) + λf – λN(u, v) – λρF(x, y)

]
,

(g –m)(y) = JH,η
M(x,·),μν

[
H(g –m)(y) +μg –μN(w, z) –μνG(x, y)

]
,

where JH,η
M(·,y),λρ = (H + λρM(·, y))–, JH,η

M(x,·),μν
= (H +μνM(x, ·))– and λ, μ are both pos-

itive constants.

Proof Observe that

f ∈N(u, v) + ρ
(
F(x, y) +M

(
(g –m)(x), y

))
⇔ H(g –m)(x) + λf ∈ λN(u, v) + λρF(x, y) +H(g –m)(x)

+ λρM
(
(g –m)(x), y

)
⇔ (g –m)(x) = JH,η

M(·,y),λρ
[
H(g –m)(x) + λf – λN(u, v) – λρF(x, y)

]
.

Analogously, we obtain directly that

(g –m)(y) = JH,η
M(x,·),μν

[
H(g –m)(y) +μg –μN(w, z) –μνG(x, y)

]
.

This completes the proof. �

Based on Lemma . and Lemma ., we suggest the following two sorts of iterative
algorithms for the system of generalized nonlinearmixed quasivariational inclusions (.).

http://www.journalofinequalitiesandapplications.com/content/2012/1/235
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Algorithm. Let λ andμ be two positive constants. For each i ∈ {, }, let ηi :Hi×Hi →
Hi be an operator, Hi :Hi → Hi be a strictly ηi-monotone operator, Mi :H ×H → Hi

be a set-valued operator such that for each (x, y) ∈H ×H,M(·, y) :H → H is (H,η)-
monotone andM(x, ·) :H → H is (H,η)-monotone.
Step : Choose (x, y) ∈H×H and take u ∈ A(x), v ∈ B(y),w ∈ C(x), z ∈D(y).

Set n = .
Step : For any n ∈ ω, compute {(xn, yn,un, vn,wn, zn)}n∈ω by the iterative schemes

xn+ = xn – (g –m)(xn)

+ JH,η
M(·,yn),λρ

[
H(g –m)(xn) + λf – λN(un, vn) – λρF(xn, yn)

]
,

yn+ = yn – (g –m)(yn)

+ JH,η
M(xn ,·),μν

[
H(g –m)(yn) +μg –μN(wn, zn) –μνG(xn, yn)

]
,

(.)

un ∈ A(xn), ‖un+ – un‖ ≤
(
 +


n + 

)
Ĥ

(
A(xn+),A(xn)

)
,

vn ∈ B(yn), ‖vn+ – vn‖ ≤
(
 +


n + 

)
Ĥ

(
B(yn+),B(yn)

)
,

wn ∈ C(xn), ‖wn+ –wn‖ ≤
(
 +


n + 

)
Ĥ

(
C(xn+),C(xn)

)
,

zn ∈ D(yn), ‖zn+ – zn‖ ≤
(
 +


n + 

)
Ĥ

(
D(yn+),D(yn)

)
.

(.)

Step : If xn+, yn+, un+, vn+, wn+, zn+ satisfy Lemma . to sufficient accuracy, stop;
otherwise, set n := n +  and return to Step .

Algorithm . Let λ and μ be two positive constants. For each i ∈ {, } and n ∈ ω,
let ηi : Hi × Hi → Hi be an operator, Hi : Hi → Hi be a strictly ηi-monotone operator,
Mi,Mn

i : H × H → Hi be set-valued operators such that for each (x, y) ∈ H × H,
M(·, y),Mn

 (·, y) : H → H is (H,η)-monotone and M(x, ·),Mn
(x, ·) : H → H is

(H,η)-monotone. Given (x, y) ∈ H × H, compute {(xn, yn,un, vn,wn, zn)}n∈ω by the
iterative schemes

xn+ =
(
 – α*

n
)
xn + α*

n
[
xn – (g –m)(xn)

+ JH,η
Mn

 (·,yn),λρ
(
H(g –m)(xn) + λf – λN(un, vn) – λρF(xn, yn)

)]
+ en,

yn+ =
(
 – α*

n
)
yn + α*

n
[
yn – (g –m)(yn)

+ JH,η
Mn

 (xn ,·),μν

(
H(g –m)(yn) +μg –μN(wn, zn) –μνG(xn, yn)

)]
+ fn,

(.)

where {(un, vn,wn, zn)}n∈ω satisfies (.), {α*
n}n∈ω is a real sequence in [, ] and {en}n∈ω ,

{fn}n∈ω are two sequences of the elements ofH andH, respectively, which are introduced
to take into account possible inexact computation, satisfying
(a)

∑∞
n= α*

n = +∞;
(b) en = e′

n + e′′
n, ‖e′′

n‖ = ξ *
nα

*
n, ∀n ∈ ω,

∑∞
n= ‖e′

n‖ < +∞, limn→∞ ξ *
n = ;

(c) fn = f ′
n + f ′′

n , ‖f ′′
n ‖ = ς *

nα
*
n, ∀n ∈ ω,

∑∞
n= ‖f ′

n‖ < +∞, limn→∞ ς *
n = .
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Remark . Algorithm . includes several known algorithms in [–, , –] as spe-
cial cases.

4 Existence and convergence theorems
At present, we seek those conditions which ensure the existence of solutions for the prob-
lem (.) and the convergence of the iterative sequence generated by Algorithm .. Fur-
thermore, based on the existence of the solutions for the problem (.), the convergence
of the Mann perturbed iterative sequence generated by Algorithm . is discussed.

Theorem . Let ρ and ν be two positive constants. For i ∈ {, }, let ηi :Hi × Hi → Hi

be Lipschitz continuous with a constant τi, Hi :Hi →Hi be strongly ηi-monotone and Lip-
schitz continuous with constants σi and δi, respectively, gi,mi :Hi → Hi be Lipschitz con-
tinuous with constants si and ti, respectively, gi be mi-relaxed monotone with a constant
ki, gi – mi be strongly monotone with a constant ri, Mi : H × H → Hi be set-valued
operators such that for each (x, y) ∈ H × H, M(·, y) : H → H is (H,η)-monotone
and M(x, ·) : H → H is (H,η)-monotone. Let A,C : H → CB(H) be Ĥ-Lipschitz
continuous with constants lA, lC , respectively, and B,D : H → CB(H) be Ĥ-Lipschitz
continuous with constants lB, lD, respectively. Let F : H × H → H be H(g – m)-
relaxed monotone in the first argument with a constant α, Lipschitz continuous in the
first and second arguments with constants β and γ, respectively. Let G :H × H → H

be H(g – m)-relaxed monotone in the second argument with a constant α, Lipschitz
continuous in the first and second arguments with constants β and γ, respectively. As-
sume that N :H × H → H is Lipschitz continuous in the first and second arguments
with constants b and c, respectively, N :H × H → H is Lipschitz continuous in the
first and second arguments with constants b and c, respectively. Assume that there exist
positive constants λ, λ, λ and μ satisfying

∥∥JH,η
M(·,y),λρ(k) – JH,η

M(·,y),λρ(k)
∥∥


≤ λ‖y – y‖, ∀(y, y,k) ∈H ×H ×H,∥∥JH,η
M(x,·),μν(m) – JH,η

M(x,·),μν(m)
∥∥


≤ λ‖x – x‖, ∀(x,x,m) ∈H ×H ×H;

(.)

max

{
θ +

τ

σ

(√
θ + λρα + λρβ

 + λθ
)
+μθ + λ,

θ ′
 +

τ

σ

(√
θ ′
 + μνα +μνβ

 +μθ ′

)
+ λθ ′

 + λ

}
< , (.)

where

θ =
√
 – r + s + k + t , θ = δ

(
s + k + t

)
,

θ ′
 =

√
 – r + s + k + t, θ ′

 = δ
(
s + k + t

)
;

θ =
τ

σ
(νγ + clD), θ = blA,

θ ′
 =

τ

σ
(ργ + clB), θ ′

 = blC .

(.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/235
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Then the problem (.) admits a solution (x, y,u, v,w, z) ∈H ×H ×A(x)×B(y)×C(x)×
D(y) and the sequence {(xn, yn,un, vn,wn, zn)}n∈ω generated by Algorithm . converges to
(x, y,u, v,w, z) as n→ ∞.

Proof Set

a*n =H(g –m)(xn) + λf – λN(un, vn) – λρF(xn, yn), ∀n ∈ ω.

Let n ∈ N. In view of (.), (.) and Lemma ., we arrive at

‖xn+ – xn‖
≤ ∥∥xn – xn– –

[
(g –m)(xn) – (g –m)(xn–)

]∥∥


+
∥∥JH,η

M(·,yn),λρ
(
a*n

)
– JH,η

M(·,yn),λρ
(
a*n–

)∥∥


+
∥∥JH,η

M(·,yn),λρ
(
a*n–

)
– JH,η

M(·,yn–),λρ
(
a*n–

)∥∥


≤ ∥∥xn – xn– –
[
(g –m)(xn) – (g –m)(xn–)

]∥∥


+
τ

σ

∥∥a*n – a*n–
∥∥
 + λ‖yn – yn–‖. (.)

By the Lipschitz continuity of g and m, strong monotonicity of g –m and m-relaxed
monotonicity of g, we obtain that

∥∥xn – xn– –
[
(g –m)(xn) – (g –m)(xn–)

]∥∥


= ‖xn – xn–‖ – 
〈
xn – xn–, (g –m)(xn) – (g –m)(xn–)

〉
 +

∥∥g(xn) – g(xn–)
∥∥


– 
〈
g(xn) – g(xn–),m(xn) –m(xn–)

〉
 +

∥∥m(xn) –m(xn–)
∥∥


≤ θ
 ‖xn – xn–‖ . (.)

Note that

∥∥a*n – a*n–
∥∥


≤ ∥∥H(g –m)(xn) –H(g –m)(xn–) – λρ
[
F(xn, yn) – F(xn–, yn)

]∥∥


+ λρ
∥∥F(xn–, yn) – F(xn–, yn–)

∥∥
 + λ

∥∥N(un, vn) –N(un–, vn–)
∥∥
. (.)

SinceH is Lipschitz continuous, F is relaxed monotone with respect toH(g –m) in the
first argument and Lipschitz continuous in the first argument, respectively, g,m are both
Lipschitz continuous, and g ism-relaxed monotone, we derive that

∥∥H(g –m)(xn) –H(g –m)(xn–) – λρ
[
F(xn, yn) – F(xn–, yn)

]∥∥


=
∥∥H(g –m)(xn) –H(g –m)(xn–)

∥∥


– λρ
〈
F(xn, yn) – F(xn–, yn),H(g –m)(xn) –H(g –m)(xn–)

〉


+ λρ∥∥F(xn, yn) – F(xn–, yn)
∥∥


≤ (
θ + λρα + λρβ


)‖xn – xn–‖ . (.)
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Since F is Lipschitz continuous in the second argument, we get that

∥∥F(xn–, yn) – F(xn–, yn–)
∥∥
 ≤ γ‖yn – yn–‖. (.)

By virtue of the Lipschitz continuity in the first and second arguments of N, and
Ĥ-Lipschitz continuity of A and B, we arrive at

∥∥N(un, vn) –N(un–, vn–)
∥∥


≤ ∥∥N(un, vn) –N(un–, vn)
∥∥
 +

∥∥N(un–, vn) –N(un–, vn–)
∥∥


≤ b‖un – un–‖ + c‖vn – vn–‖
≤ b

(
 +


n

)
Ĥ

(
A(xn),A(xn–)

)
+ c

(
 +


n

)
Ĥ

(
B(yn),B(yn–)

)

≤
(
 +


n

)
θ‖xn – xn–‖ + c

(
 +


n

)
lB‖yn – yn–‖. (.)

By (.)-(.), we obtain that

∥∥a*n – a*n–
∥∥
 ≤

√
θ + λρα + λρβ

 ‖xn – xn–‖ + λργ‖yn – yn–‖

+ λ

(
 +


n

)
θ‖xn – xn–‖ + λc

(
 +


n

)
lB‖yn – yn–‖. (.)

Keeping in mind (.), (.) and (.), we conclude directly that

‖xn+ – xn‖ ≤
[
θ +

τ

σ

(√
θ + λρα + λρβ

 + λ

(
 +


n

)
θ

)]
‖xn – xn–‖

+
[

τ

σ
λ

(
ργ + c

(
 +


n

)
lB

)
+ λ

]
‖yn – yn–‖. (.)

In a similar way, we see that

‖yn+ – yn‖ ≤
[
θ ′
 +

τ

σ

(√
θ ′
 + μνα +μνβ

 +μ

(
 +


n

)
θ ′


)]
‖yn – yn–‖

+
[

τ

σ
μ

(
νγ + c

(
 +


n

)
lD

)
+ λ

]
‖xn – xn–‖. (.)

Adding the inequalities (.) and (.), we have

‖xn+ – xn‖ + ‖yn+ – yn‖ ≤ ζn
(‖xn – xn–‖ + ‖yn – yn–‖

)
, (.)

where

ζn = max

{
θ +

τ

σ

(√
θ + λρα + λρβ

 + λ

(
 +


n

)
θ

)

+
τ

σ
μ

(
νγ + c

(
 +


n

)
lD

)
+ λ,

θ ′
 +

τ

σ

(√
θ ′
 + μνα +μνβ

 +μ

(
 +


n

)
θ ′


)
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+
τ

σ
λ

(
ργ + c

(
 +


n

)
lB

)
+ λ

}

→ ζ =max

{
θ +

τ

σ

(√
θ + λρα + λρβ

 + λθ
)
+μθ + λ,

θ ′
 +

τ

σ

(√
θ ′
 + μνα +μνβ

 +μθ ′

)
+ λθ ′

 + λ

}
as n→ ∞. (.)

In view of (.) and (.), we know that  < ζ <  and so (.) implies that {xn}n∈ω , {yn}n∈ω

are both Cauchy sequences. Thus, there exist x ∈ H and y ∈ H satisfying xn → x and
yn → y as n→ ∞.
It follows from the Lipschitz continuity of A and (.) that

‖un – un–‖ ≤
(
 +


n

)
lA‖xn – xn–‖,

which together with (.), (.) and (.) yields that {un}n∈ω is a Cauchy sequence. Sim-
ilarly, we infer that {vn}n∈ω , {wn}n∈ω , {zn}n∈ω are Cauchy sequences as well. Further, there
exist u,w ∈H, v, z ∈H such that un → u, vn → v, wn → w, zn → z as n→ ∞. Moreover,

d
(
u,A(x)

) ≤ ‖u – un‖ + Ĥ
(
A(xn),A(x)

)
≤ ‖u – un‖ + lA‖xn – x‖ →  as n→ ∞.

Since A(x) is closed, we have u ∈ A(x). In a similar way, we obtain that v ∈ B(y), w ∈ C(x),
z ∈ D(y). On account of the continuity of gi, mi, Hi, F , G, Ni, JH,η

M(·,y),λρ , J
H,η
M(x,·),μν and Algo-

rithm ., we find that (x, y,u, v,w, z) satisfy the following relations:

(g –m)(x) = JH,η
M(·,y),λρ

[
H(g –m)(x) + λf – λN(u, v) – λρF(x, y)

]
,

(g –m)(y) = JH,η
M(x,·),μν

[
H(g –m)(y) +μg –μN(w, z) –μνG(x, y)

]
.

It follows that (x, y,u, v,w, z) is a solution of the problem (.) from Lemma .. This com-
pletes the proof. �

Remark . Theorem . generalizes and unifies those results in [–, , –] from
the following aspects:
(d) The problem (.) includes the variational inequalities and variational inclusions in

[, –] as special cases;
(d) For every i ∈ {, }, the (Hi,ηi)-monotone operators and Hi(gi –mi)-relaxed

monotone operators we utilized here are much more universal than those used in
[, , , , ];

(d) Algorithm . is very different from those in [–, , –] for finding
approximate solutions.

Theorem . Let ρ , ν , ηi, Hi, gi, mi, A, B, C, D, F , G, Ni, Mi, i ∈ {, }, be the same
as in Theorem .. For n ∈ ω, let Mn

 : H × H → H , Mn
 : H × H → H be set-

valued operators such that Mn
 (·, y) :H → H is (H,η)-monotone for each fixed y ∈H,

http://www.journalofinequalitiesandapplications.com/content/2012/1/235
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Mn
(x, ·) : H → H is (H,η)-monotone for each fixed x ∈ H. Assume that there exist

positive constants λ, λ, λ and μ satisfying (.)-(.),

∥∥JH,η
Mn

 (·,y),λρ(k) – JH,η
Mn

 (·,y),λρ(k)
∥∥


≤ λ‖y – y‖, ∀(y, y,k) ∈H ×H ×H,∥∥JH,η
Mn

 (x,·),μν
(m) – JH,η

Mn
 (x,·),μν

(m)
∥∥


≤ λ‖x – x‖, ∀(x,x,m) ∈H ×H ×H

(.)

and

lim
n→∞ JH,η

Mn
 (·,y),λρ(k) = JH,η

M(·,y),λρ(k), ∀(y,k) ∈H ×H,

lim
n→∞ JH,η

Mn
 (x,·),μν

(m) = JH,η
M(x,·),μν

(m), ∀(x,m) ∈H ×H.
(.)

Then the problem (.) admits a solution (x, y,u, v,w, z) ∈H ×H ×A(x)×B(y)×C(x)×
D(y) and the sequence {(xn, yn,un, vn,wn, zn)}n∈ω generated by Algorithm . converges to
(x, y,u, v,w, z) as n→ ∞.

Proof It follows from Theorem . that the problem (.) possesses a solution (x, y,u,
v,w, z) ∈H ×H ×A(x)× B(y)×C(x)×D(y). Further, we get that by Lemma .

x =
(
 – α*

n
)
x + α*

n
[
x – (g –m)(x) + JH,η

M(·,y),λρ
(
a*

)]
,

y =
(
 – α*

n
)
y + α*

n
[
y – (g –m)(y) + JH,η

M(x,·),μν

(
b*

)]
,

(.)

where

a* =H(g –m)(x) + λf – λN(u, v) – λρF(x, y),

b* =H(g –m)(y) +μg –μN(w, z) –μνG(x, y).

As in the proof of Theorem ., we conclude that by (.) and (.)

‖xn+ – x‖
≤ (

 – α*
n
)‖xn – x‖ + α*

n
[∥∥xn – x –

(
(g –m)(xn) – (g –m)(x)

)∥∥


+
∥∥JH,η

Mn
 (·,yn),λρ

(
a*n

)
– JH,η

Mn
 (·,y),λρ

(
a*n

)∥∥


+
∥∥JH,η

Mn
 (·,y),λρ

(
a*n

)
– JH,η

Mn
 (·,y),λρ

(
a*

)∥∥
 + Pn

]
+ ‖en‖

≤ (
 – α*

n
)‖xn – x‖ + α*

n

[
θ‖xn – x‖ + λ‖yn – y‖ + τ

σ

∥∥a*n – a*
∥∥
 + Pn

]
+ ‖en‖

=
[
 – α*

n + α*
n

(
θ +

τ

σ

(√
θ + λρα + λρβ

 + λ

(
 +


n

)
θ

))]
‖xn – x‖

+ α*
n

[
τ

σ
λ

(
ργ + c

(
 +


n

)
lB

)
+ λ

]
‖yn – y‖ + α*

nPn + ‖en‖, (.)
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where Pn = ‖JH,η
Mn

 (·,y),λρ(a
*) – JH,η

M(·,y),λρ(a
*)‖. Similarly, we get directly that

‖yn+ – y‖
≤

[
 – α*

n + α*
n

(
θ ′
 +

τ

σ

(√
θ ′
 + μνα +μνβ

 +μ

(
 +


n

)
θ ′


))]
‖yn – y‖

+ α*
n

[
τ

σ
μ

(
νγ + c

(
 +


n

)
lD

)
+ λ

]
‖xn – x‖ + α*

nQn + ‖fn‖, (.)

where Qn = ‖JH,η
Mn

 (x,·),μν
(b*) – JH,η

Mn
 (x,·),μν

(b*)‖. Adding (.) and (.), we conclude that

‖xn+ – x‖ + ‖yn+ – y‖
≤ [

 – α*
n( – ζn)

](‖xn – x‖ + ‖yn – y‖
)
+ α*

nPn + α*
nQn + ‖en‖ + ‖fn‖, (.)

here, ζn and ζ are defined by (.). Thus, ζn → ζ as n → ∞ and  < ζ < . Hence, for
θ = +ζ

 , there exist n ∈N such that ζn < θ for every n≥ n. By (b) and (c) in Algorithm .
and (.), we gain that

‖xn+ – x‖ + ‖yn+ – y‖
≤ [

 – α*
n( – θ )

](‖xn – x‖ + ‖yn – y‖
)
+ α*

nPn

+ α*
nQn + ξ *

nα
*
n + ς *

nα
*
n +

∥∥e′
n
∥∥
 +

∥∥f ′
n
∥∥
. (.)

On the grounds of (.), (a)-(c) in Algorithm . and Lemma ., we obtain that xn → x
and yn → y as n→ ∞. The remainder of the proof is the same as that in Theorem . and
is omitted. This completes the proof. �

Remark . Theorem . improves and extends those corresponding results in [, , ,
, –, ].
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