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Abstract
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1 Introduction and preliminaries
The Banach contraction principle [] is a remarkable result in the metric fixed point the-
ory. Over the years, it has been generalized in different directions and spaces by several
mathematicians. In , Alber andGuerre-Delabriere [] introduced the concept of weak
contraction in the following way.

Definition . Let (X ,d) be a metric space. A mapping T : X → X is said to be weakly
contractive provided that

d(T x,T y) ≤ d(x, y) – ϕ
(
d(x, y)

)
,

where x, y ∈ X and ϕ : [, +∞) → [, +∞) is a continuous nondecreasing function such
that ϕ(t) =  if and only if t = .

Using the concept of weak contractiveness, they succeeded in establishing the existence
of fixed points for such mappings in Hilbert spaces. Later on, Rhoades [] proved that the
results in [] are also valid in complete metric spaces. He also proved the following fixed
point theorem which is a generalization of the Banach contraction principle.

Theorem . Let (X ,d) be a complete metric space, and let T :X → X be a weakly con-
tractive mapping. Then T has a fixed point.

Weak contractive inequalities of the above type have been used to establish fixed point
results in a number of subsequent works, some of which are noted in [, ]. Since then,
fixed point theory for single-valued as well as for multivalued weakly contractive type
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mappings was studied by many authors. Fixed point theorems for multivalued mappings
are quite useful in Control theory and have been frequently used in solving problems in
Economics and Game theory.
The development of a geometric fixed point theory for multifunctions was initiated by

Nadler [] in . He used the concept of a HausdorffmetricH to establish the multival-
ued contraction principle containing the Banach contraction principle as a special case as
follows.

Theorem . Let (X ,d) be a complete metric space and T be a mapping from X into
CB(X ) such that for all x, y ∈X ,

H(T x,T y) ≤ λd(x, y),

where  ≤ λ < . Then T has a fixed point.

Since then, this discipline has been developed further, andmany profound concepts and
results have been established with considerable generality; see, for example, the works of
Itoh and Takahashi [], Mizoguchi and Takahashi [], Hussain and Abbas [], and refer-
ences cited therein. Very recently, results on commonfixed points for a pair ofmultivalued
operators have been obtained by applying various types of contractive conditions; we re-
fer the reader to [–]. In some cases, multivalued mapping T defined on a nonempty
set X assumes a compact value T x for each x in X . There are situations when, for each x
in X , T x is assumed to be a closed and bounded subset of X . To prove the existence of
a fixed point of such mappings, it is essential for mappings to satisfy certain contractive
conditions which may involve the Hausdorff metric.
Let (X ,d) be a metric space, and let N (X ) (resp. B(X )) be the class of all nonempty

(resp. nonempty bounded) subsets of X . We define functions D : N (X ) × N (X ) → R
+

and δ : B(X )×B(X )→R
+ as follows:

D(A,B) = inf
{
d(a,b) : a ∈ A,b ∈ B

}
,

δ(A,B) = sup
{
d(a,b) : a ∈ A,b ∈ B

}
,

where R
+ denotes the set of all positive real numbers. For D({a},B) and δ({a},B), we

write D(a,B) and δ(a,B), respectively. Clearly, δ(A,B) = δ(B,A). We appeal to the fact that
δ(A,B) =  if and only if A = B = {x} for A,B ∈ B(X ) and

 ≤ δ(A,B)≤ δ(A,C) + δ(C,B)

for A,B,C ∈ B(X ). Obviously, for A = B, δ(A,A) reduces to the standard notion of the
diameter of a set in a metric space (X ,d):

diam(A) = δ(A,A) = sup
{
d(x, y) : x, y ∈A

}
for any subset A ∈ B(X ).
A point x ∈X is called a fixed point of a multivalued mapping T :X →N (X ) if x ∈ T x.

If there exists a point x ∈X such that T x = {x}, then x is called an endpoint of T .
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The Fixed Point Theory has developed rapidly in metric spaces endowed with a partial
ordering. The first result in this directionwas given by Ran and Reurings [, Theorem .]
who presented its applications to matrix equations. Subsequently, Nieto and Rodríguez-
López [] extended the result of [] for nondecreasingmappings and applied it to obtain
a unique solution for a first-order ordinary differential equation with periodic boundary
conditions. Thereafter, several authors obtained many fixed point theorems in ordered
metric spaces. In [], Nashine et al. extended the results in [] by using T -weakly iso-
tone increasing mappings and relaxing other conditions without taking into account any
commutativity condition. Beg and Butt [] studied set-valuedmappings and proved com-
mon fixed point results formappings satisfying implicit relation in a partially orderedmet-
ric space. Recently, Amini [] proved endpoint theorems for multivalued mappings in a
metric space. More recently, Choudhury and Metiya [] as well as Nashine and Kadel-
burg [] also proved fixed point theorems for multivalued mappings in the framework of
a partially ordered metric space.
We will use the following terminology.

Definition . Let X be a nonempty set. Then (X ,d,�) is called a partially metric space
if:

(i) (X ,d) is a metric space,
(ii) (X ,�) is a partially ordered set.

Elements x, y ∈X are called comparable if x � y or y� x holds.

Definition . ([]) Let A and B be two nonempty subsets of a partially ordered set
(X ,�). The relation � between A and B is defined as follows:

A� B ⇐⇒ for each a ∈ A, there exists b ∈ B such that a� b.

The purpose of this paper is to prove the existence of a common endpoint for a pair
of T -weakly isotone increasing multivalued mappings under a generalized (ψ ,ϕ)-weakly
contractive condition and under a variant of so-called almost contractive conditions of
Berinde []without using the continuity of anymap and any commutativity condition in a
complete orderedmetric space. Our results generalize the results of Abbas andÐorić [],
Choudhury and Metiya [] and Hussain et al. [] for more general contractive and
weakly contractive conditions for a pair of weakly isotone increasing multivalued map-
pings. They also extend the results of Babu et al. [], Berinde [], Choudhury et al.
[] and Ćirić et al. [] from single-valued mappings in metric spaces to multivalued
mappings in ordered metric spaces. Also, the results on common fixed points of weakly
isotone increasing mappings in [] are modified to the results on common endpoints of
T -weakly isotone increasingmappings under suitable conditions. Examples are presented
to show the usage of the results and, in particular, that the order can be crucial.

2 Common endpoint results under generalized (ψ ,ϕ)-weak contractive
conditions

In this section, we prove common endpoint theorems for a pair of weakly isotone increas-
ingmultivaluedmappings under a generalized (ψ ,ϕ)-weak contractive condition. In order
to formulate the results, we extend to multivalued mappings the notion of weakly isotone
increasing mappings given by Vetro [, Definition .].
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Definition . Let (X ,�) be a partially ordered set and S ,T : X → N (X ) be two maps.
The mapping S is said to be T -weakly isotone increasing if Sx� T y� Sz for all x ∈X ,
y ∈ Sx and z ∈ T y.

Note that, for single-valued mappings in particular, T ,S : X → X , S is said to be
T -weakly isotone increasing [, Definition .] (see also []) if for each x ∈ X we have
Sx� T Sx � ST Sx.

Definition . ([]) Two set-valued mappings T ,S : X → B(X ) are said to satisfy the
property of generalized (ψ ,ϕ)-weak contraction if the inequality

ψ
(
δ(Sx,T y)

) ≤ ψ
(
M(x, y)

)
– ϕ

(
M(x, y)

)
(.)

holds for all x, y ∈X and for given functions ψ ,ϕ :R+ →R
+, where

M(x, y) =max

{
d(x, y), δ(x,Sx), δ(y,T y),



[
D(x,T y) +D(y,Sx)

]}
. (.)

The main result of this section is as follows.

Theorem . Let (X ,d,�) be a complete partially ordered metric space, and let T ,S :
X → B(X ) be two set-valuedmappings that satisfy the property of generalized (ψ ,ϕ)-weak
contraction for all comparable x, y ∈X , where
(a) ψ is a continuous nondecreasing function with ψ(t) =  if and only if t = ,
(b) ϕ is a lower semicontinuous function with ϕ(t) =  if and only if t = .
Also, suppose that S is T -weakly isotone increasing and there exists an x ∈X such that

{x} � Sx. Assume the condition
⎧⎨
⎩if {xn} ⊂X is a non-decreasing sequence with xn → z in X ,

then xn � z for all n.
(.)

Then there exists a common endpoint u ∈X of T and S , i.e. {u} = T u = Su.

Proof First of all, we show that if S or T has an endpoint, then it is a common endpoint of
S and T . Indeed, let, e.g., z be an endpoint of S . If we use the inequality (.) for x = y = z,
we have

ψ
(
δ(z,T z)

)
= ψ

(
δ(Sz,T z)

)
≤ ψ

(
M(z, z)

)
– ϕ

(
M(z, z)

)
= ψ

(
δ(z,T z)

)
– ϕ

(
δ(z,T z)

)
,

and we conclude that δ(z,T z) =  and {z} = T z. Therefore, z is a common endpoint of S
and T .
We will define a sequence {xn} ⊂ X and prove that the limit point of that sequence is a

unique common endpoint for T and S . For a given x ∈ X and a nonnegative integer n,
let

xn+ ∈ Sxn :=An and xn+ ∈ T xn+ :=An+,
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and let

an = δ(An,An+), cn = d(xn,xn+). (.)

If xn ∈ Sxn or xn ∈ T xn for some n, then the proof is finished. So, assume xn 
= xn+
for all n.
Since {x} � Sx, x ∈ Sx can be chosen so that x � x. Since S is T -weakly isotone

increasing, it is Sx � T x; in particular, x ∈ T x can be chosen so that x � x. Now,
T x � Sx (since x ∈ T x); in particular, x ∈ Sx can be chosen so that x � x.
Continuing this process, we conclude that {xn} can be an increasing sequence in X :

x � x � · · · � xn � xn+ � · · · .

The sequences {an} and {cn} are convergent. Suppose that n is an odd number. Substituting
x = xn+ and y = xn in (.) and using the properties of functions ψ and ϕ, we obtain

ψ
(
δ(An,An+)

)
= ψ

(
δ(T xn,Sxn+)

)
≤ ψ

(
M(xn,xn+)

)
– ϕ

(
M(xn,xn+)

)
≤ ψ

(
M(xn,xn+)

)
,

which implies that

δ(An,An+)≤ M(xn,xn+). (.)

Now, from (.) and from the triangle inequality for δ, we have

M(xn,xn+) = max

{
d(xn,xn+), δ(T xn,xn), δ(Sxn+,xn+),



[
D(T xn,xn+) +D(Sxn+,xn)

]}

≤ max

{
δ(An–,An), δ(An–,An), δ(An+,An),



[
D(T xn,xn+) +D(Sxn+,xn)

]}

≤ max

{
δ(An–,An), δ(An+,An),



δ(An+,An–)

}

≤ max

{
δ(An–,An), δ(An+,An),



[
δ(An,An–) + δ(An,An+)

]}

= max
{
δ(An–,An), δ(An+,An)

}
.

Now, if δ(An–,An) < δ(An+,An), then

M(xn,xn+) ≤ δ(An+,An). (.)
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From (.) and (.), it follows that

M(xn,xn+) = δ(An+,An) > δ(An–,An) ≥ .

It, furthermore, implies that

ψ
(
δ(An,An+)

)
= ψ

(
δ(T xn,Sxn+)

)
≤ ψ

(
M(xn,xn+)

)
– ϕ

(
M(xn,xn+)

)
< ψ

(
M(xn,xn+)

)
= ψ

(
δ(An+,An)

)
,

a contradiction. So, we have

δ(An+,An)≤ M(xn,xn+) ≤ δ(An,An–). (.)

In a similar way, we can establish the inequality (.) when n is an even number. There-
fore, the sequence {an} defined in (.) is nonincreasing and bounded. Let an → a when
n→ ∞. From (.), we have

lim
n→∞ δ(An,An+) = lim

n→∞M(xn,xn+) = a≥ .

Passing to the (upper) limit as n→ ∞,

lim
n→∞ψ

(
δ(An,An+)

) ≤ lim
n→∞ψ

(
M(xn,xn+)

)
– lim inf

n→∞ ϕ
(
M(xn,xn+)

)
,

and since ϕ is lower semicontinuous, we have

ψ(a)≤ ψ(a) – ϕ(a),

a contradiction unless a = . Hence,

lim
n→∞an = lim

n→∞ δ(An,An+) = . (.)

From (.) and (.), it follows that

lim
n→∞ cn = lim

n→∞d(xn,xn+) = .

Next, we prove that the sequence {xn} is a Cauchy sequence. For this, we first prove that
for each ε > , there exists n(ε) such that

m > n≥ n ⇒ δ(Am,An) < ε. (.)

We proceed by negation and suppose that the inequality in (.) is not true. That is, there
exists ε >  for which we can find nonnegative integer sequences {m(k)} and {n(k)} such
that n(k) is the smallest element of the sequence {n(k)} such that for each k ∈N,

n(k) >m(k) > k, δ(Am(k),An(k)) ≥ ε.

http://www.journalofinequalitiesandapplications.com/content/2012/1/232
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This means that

δ(Am(k),An(k)–) < ε. (.)

From (.) and the triangle inequality for δ, we have

ε ≤ δ(Am(k),An(k))

≤ δ(Am(k),An(k)–) + δ(An(k)–,An(k)–) + δ(An(k)–,An(k))

< ε + δ(An(k)–,An(k)–) + δ(An(k)–,An(k)).

Passing to the limit as k → ∞ and using (.), we can conclude that

lim
k→∞

δ(Am(k),An(k)) = ε. (.)

We note that

∣∣δ(Am(k),An(k)–) – δ(Am(k),An(k))
∣∣ ≤ δ(An(k),An(k)–),∣∣δ(Am(k)–,An(k)) – δ(Am(k),An(k))
∣∣ ≤ δ(Am(k),Am(k)–).

Using (.) and (.), we get

lim
k→∞

δ(Am(k)–,An(k)) = lim
k→∞

δ(Am(k),An(k)–) = ε, (.)

and from

∣∣δ(Am(k)–,An(k)+) – δ(Am(k)–,An(k))
∣∣ ≤ δ(An(k),An(k)–),

using (.) and (.), we get

lim
k→∞

δ(Am(k)–,An(k)–) = ε.

Also, from (.), (.) and (.), we have

lim
k→∞

M(xm(k),xn(k)+) = ε. (.)

Putting x = xm(k), y = xn(k)+ in (.), we have

ψ
(
δ(Am(k),An(k)+)

)
= ψ

(
δ(T xn(k)+,Sxm(k))

)
≤ ψ

(
M(xm(k),xn(k)+)

)
– ϕ

(
M(xm(k),xn(k)+)

)
.

Passing to the (upper) limit as k → ∞ and using (.), (.), we get

ψ(ε)≤ ψ(ε) – ϕ(ε),

http://www.journalofinequalitiesandapplications.com/content/2012/1/232
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a contradiction to ε > . Therefore, the conclusion (.) is true. From the construction of
the sequence {xn}, it follows that the same conclusion holds for {xn}. Thus, for each ε > 
there exists n(ε) such that

m,n≥ n ⇒ d(xm,xn) < ε. (.)

From (.) and (.), we conclude that {xn} is a Cauchy sequence in (X ,d) which is com-
plete. So, there exists u ∈X such that

lim
n→∞xn = u.

To prove that u is an endpoint ofS , suppose that δ(u,Su) > . From (.), we have xn+ � u
for all n ∈N. As the limit point u is independent of the choice of xn ∈An, we also get

lim
n→∞ δ(Sxn,u) = lim

n→∞ δ(T xn+,u) = . (.)

From

M(u,xn+) = max

{
d(u,xn+), δ(u,Su), δ(T xn+,xn+),



[
D(Su,xn+) +D(T xn+,u)

]}
,

we haveM(u,xn+)→ δ(u,Su) as n→ ∞. Since

ψ
(
δ(Su,T xn+)

) ≤ ψ
(
M(u,xn+)

)
– ϕ

(
M(u,xn+)

)
passing to the (upper) limit as n→ ∞ and using (.), we obtain

ψ
(
δ(Su,u)

) ≤ ψ
(
δ(Su,u)

)
– ϕ

(
δ(Su,u)

)
,

which implies ϕ(δ(Su,u)) = . Hence, δ(Su,u) =  and Su = {u} and this proves that u is
an endpoint of S and also an endpoint of T . The proof is completed. �

If T and S are two single-valued mappings, then we obtain the following consequence.

Corollary . Let (X ,d,�) be a complete partially ordered metric space, and let T ,S :
X →X be two mappings that satisfy, for all comparable x, y ∈X ,

ψ
(
d(T x,Sy)

) ≤ ψ
(
M(x, y)

)
– ϕ

(
M(x, y)

)
,

where ϕ, ψ are as in Theorem . and

M(x, y) =max

{
d(x, y),d(T x,x),d(y,Sy), 


[
d(y,T x) + d(x,Sy)

]}
.

Also, suppose that S is T -weakly isotone increasing. If the condition (.) holds, then S and
T have a common fixed point z ∈X , i.e., Sz = T z = z.

http://www.journalofinequalitiesandapplications.com/content/2012/1/232
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Putting S = T in Theorem ., we obtain the following

Corollary . Let (X ,d,�) be a complete partially ordered metric space, and let T :X →
B(X ) be a set-valued mapping that satisfies

ψ
(
δ(T x,T y)

) ≤ ψ
(
M(x, y)

)
– ϕ

(
M(x, y)

)
, (.)

for all comparable x, y ∈X , where

M(x, y) =max

{
d(x, y), δ(x,T x), δ(y,T y),



[
D(x,T y) +D(y,T x)

]}

and where ϕ, ψ are as in Theorem .. Also, suppose that T x � T (T x) for all x ∈ X and
there is x ∈ X such that {x} � T x. If the condition (.) holds, then there exists an
endpoint u ∈X of T , i.e., that {u} = T u.

If T is a single-valued mapping in Corollary ., then we have the following

Corollary . Let (X ,d,�) be a complete partially ordered metric space, and let T :X →
X be a mapping that satisfies, for all comparable x, y ∈X ,

ψ
(
d(T x,T y)

) ≤ ψ
(
M(x, y)

)
– ϕ

(
M(x, y)

)
, (.)

where ϕ, ψ are as in Theorem . and

M(x, y) =max

{
d(x, y),d(T x,x),d(y,T y),



[
d(y,T x) + d(x,T y)

]}
.

Also, suppose that T x � T (T x) for all x ∈X . If the condition (.) holds, then T has a fixed
point z ∈X , i.e., T z = z.

Remark . In [, Corollary .], it was proved that if

every pair of elements has a lower bound and an upper bound, (.)

then for every x ∈X ,

lim
n→∞T n(x) = y,

where y is a fixed point of T such that

y = lim
n→∞T n(x),

and hence T has a unique fixed point. If the condition (.) fails, it is possible to find
examples of mappings T with more than one fixed point (cf. []).

We illustrate the results of this section with two simple examples. The first one shows
how amultivalued variant (Corollary .) can be used. The other shows that (in the single-
valued case) the use of order can be crucial.

http://www.journalofinequalitiesandapplications.com/content/2012/1/232
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Example . Let X = {A,B,C}, where A = (, ), B = (, ), C = (, ) ∈ R
. Metric d is

defined as d((x, y), (x, y)) = max{|x – x|, |y – y|} so that d(A,B) = , d(A,C) =  and
d(B,C) = . Order � is introduced by (x, y) � (x, y) iff x ≥ x and y ≥ y, so that A� B
and A � C, while B and C are incomparable.
Consider the mapping T :X → B(X ) given by

T =

(
A B C

{A} {A} {A,B}

)
,

and functions ψ ,ϕ : [, +∞) → [, +∞) given by ψ(t) = 
 t, ϕ(t) = 

 t. To prove that the
condition (.) of Corollary . holds, it is enough to check that it is satisfied for x = A,
y = B and for x = A, y = C (in the case when x = y (.) is trivially satisfied).
If x = A, y = B, then T x = T y = {A} and δ(T x,T y) = , M(x, y) = d(A,B) = , so (.)

holds. If x = A, y = C, then

δ(T x,T y) = δ
({A}, {A,B}) = d(A,B) = ,

and

M(x, y) = max

{
d(A,C), δ

(
A, {A}), δ(C, {A,B}), 


(
D

(
A, {A,B}) +D

(
C, {A}))}

= max

{
, , ,



( + )

}
= .

Hence, ψ(δ(T x,T y)) = 
 ≤  – 

 = ψ(M(x, y)) – ϕ(M(x, y)). Note also that T x � T (T x)
holds for all x ∈ X (only the case x = C is nontrivial, when T x = {A,B}, T (T x) = {A}, and
for B ∈ T x, there is A ∈ T (T x) such that B � A). All other conditions of Corollary . are
fulfilled and T has an endpoint A.

Example. Consider the samepartially orderedmetric space (X ,d,�) as in the previous
example and the mapping T :X →X defined by

T =

(
A B C
A A B

)
.

Let againψ ,ϕ : [, +∞) → [, +∞) be given byψ(t) = 
 t, ϕ(t) =


 t. It is again easy to show

that in the cases x = A, y = B, as well as x = A, y = C, the condition (.) of Corollary .
is satisfied, and it follows that T has a fixed point A. However, for (incomparable) points
x = B, y = C, the condition (.) is not satisfied, and so the respective result in the metric
space without order cannot be applied to reach the conclusion. Indeed, in this case, T x =
A, T y = B,

d(T x,T y) = d(A,B) = ,

M(x, y) =max

{
, , ,



( + )

}
= ,

and ψ(d(T x,T y)) = 
 >


 = ψ(M(x, y)) – ϕ(M(x, y)).

http://www.journalofinequalitiesandapplications.com/content/2012/1/232
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3 Common endpoint for almost contractive conditions
In this section, we prove common endpoint theorems for T -weakly isotone increasing
multivalued mappings satisfying a variant of an almost contractive condition.

Theorem. Let (X ,d,�) be a complete partially orderedmetric space.Assume that there
is a continuous function ϕ : [, +∞) → [, +∞) with ϕ(t) < t for each t > , ϕ() =  and
that T ,S :X → B(X ) are multivalued mappings such that

δ(T x,Sy)≤ M(x, y) + Lmin
{
ϕ
(
δ(x,T x)

)
,ϕ

(
δ(y,Sy)

)
,ϕ

(
δ(x,Sy)

)
,ϕ

(
δ(y,T x)

)}
, (.)

for all comparable x, y ∈X , where L ≥ , and

M(x, y) =max

{
ϕ
(
d(x, y)

)
,ϕ

(
δ(x,T x)

)
,ϕ

(
δ(y,Sy)

)
,ϕ

(D(x,Sy) +D(y,T x)


)}
. (.)

Also, suppose that S is T -weakly isotone increasing and there exists an x ∈ X such that
{x} � Sx. If the condition (.) holds, then S and T have a common endpoint.

Proof First of all, we show that if S or T has an endpoint, then it is a common endpoint of
S and T . Indeed, let z be an endpoint of S and assume δ(z,T z) > . If we use the inequality
(.) for x = y = z and the properties of ϕ, we have

δ(T z,Sz)

≤ max

{
ϕ
(
d(z, z)

)
,ϕ

(
δ(z,T z)

)
,ϕ

(
δ(z,Sz)

)
,ϕ

(D(z,Sz) +D(z,T z)


)}

+ Lmin
{
ϕ
(
δ(z,T z)

)
,ϕ

(
δ(z,Sz)

)
,ϕ

(
δ(z,Sz)

)
,ϕ

(
δ(z,T z)

)}
=max

{
ϕ
(
δ(z,T z)

)
,ϕ

(


D(z,T z)

)}

< δ(z,T z),

a contradiction. Thus δ(z,T z) = , and so z is a common endpoint of S and T .
Let x ∈X be arbitrary. Define a sequence {xn} ⊂X as follows:

x = x, xn+ ∈ Sxn :=An, xn+ ∈ T xn+ :=An+ for n≥ . (.)

If xn ∈ Sxn or xn ∈ T xn for some n, then the proof is finished. So, assume xn 
= xn+
for all n.
Since {x} � Sx, x ∈ Sx can be chosen so that x � x. Since S is T -weakly isotone

increasing, it is Sx � T x; in particular, x ∈ T x can be chosen so that x � x. Now,
T x � Sx (since x ∈ T x); in particular, x ∈ Sx can be chosen so that x � x.
Continuing this process, we conclude that {xn} can be an increasing sequence in X :

x � x � · · · � xn � xn+ � · · · . (.)

If there exists a positive integer N such that xN = xN+, then xN is a common endpoint of
T and S . Hence, we shall assume that xn 
= xn+ for all n≥ .
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Now, we claim that for all n ∈N, we have

δ(An,An+) < δ(An–,An). (.)

From (.), we have that xn ≺ xn+ for all n ∈ N. Then from (.) with x = xn, y = xn+ and
n = k – , k ∈N, we get

δ(An,An+)

= δ(T xn,Sxn+)

≤ M(xn,xn+) + Lmin
{
ϕ
(
δ(xn,T xn)

)
,

ϕ
(
δ(xn+,Sxn+)

)
,ϕ

(
δ(xn,Sxn+)

)
,ϕ

(
δ(xn+,T xn)

)}
≤ M(xn,xn+) + Lmin

{
ϕ
(
δ(An,An–)

)
,ϕ

(
δ(An+,An)

)
,

ϕ
(
δ(An–,An+)

)
,ϕ

(
δ(An,An)

)}
. (.)

By (.), we have

M(xn,xn+)

=max

{
ϕ
(
d(xn,xn+)

)
,ϕ

(
δ(xn,T xn)

)
,ϕ

(
δ(xn+,Sxn+)

)
,

ϕ

(D(xn,Sxn+) +D(xn+,T xn)


)}

≤ max

{
ϕ
(
δ(An,An–)

)
,ϕ

(
δ(An,An–)

)
,ϕ

(
δ(An,An+)

)
,

ϕ

(
δ(An–,An+) + δ(An,An)



)}

=max

{
ϕ
(
δ(An,An–)

)
,ϕ

(
δ(An,An+)

)
,ϕ

(


δ(An–,An+)

)}
.

If M(xn,xn+) = ϕ(δ(An,An+)), by (.) and using the fact that ϕ(t) < t for all t > , we
have

δ(An,An+)≤ ϕ
(
A(xn,An+)

)
< δ(An,An+),

a contradiction.
IfM(xn,xn+) = ϕ( δ(An–,An+)), we get

δ(An,An+)≤ ϕ

(


δ(An–,An+)

)
<


δ(An–,An+).

On the other hand, by the triangular inequality, we have



δ(An–,An+) ≤ 


δ(An–,An) +



δ(An,An+).

Thus, we have

δ(An,An+) <


δ(An–,An) +



δ(An,An+),
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which implies that

δ(An,An+) < δ(An–,An).

IfM(xn,xn+) = ϕ(δ(An–,An)), we get

δ(An,An+)≤ ϕ
(
δ(An–,An)

)
< δ(An–,An).

Thus, in all cases, we have δ(An,An+) < δ(An–,An) for all n = k – , k ∈N. Similarly, we
can prove that δ(An–,An) < δ(An–,An–) for all n = k, k ∈ N. Therefore, we conclude
that (.) holds.
Now, from (.), it follows that the sequence {δ(An–,An)} is decreasing. Therefore, there

is some λ ≥  such that

lim
n→∞ δ(An–,An) = λ. (.)

We are able to prove that λ = . In fact, by the triangular inequality, we get



δ(An–,An+) ≤ 


δ(An–,An) +



δ(An,An+).

By (.), we have



δ(An–,An+) ≤ δ(An–,An). (.)

From (.), taking the upper limit as n→ ∞, we get

lim sup
n→∞



δ(An–,An+) ≤ lim

n→∞ δ(An–,An).

If we set

lim sup
n→∞



δ(An–,An+) = b, (.)

then clearly  ≤ b ≤ λ. As ϕ is continuous, taking the upper limit on both sides of (.),
we get

lim sup
n→+∞

δ(An,An+) ≤ max

{
ϕ
(
lim sup
n→+∞

δ(An,An+)
)
,ϕ

(
lim sup
n→+∞

δ(An,An–)
)
,

ϕ

(



(
lim sup
n→+∞

δ(An–,An+)
))}

.

Hence, by (.) and (.), we deduce

λ ≤ max
{
ϕ(λ),ϕ(b)

}
.

If we suppose that λ > , then we have

λ ≤ max
{
ϕ(λ),ϕ(b)

}
<max{λ,b} = λ,
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a contradiction. Thus λ = , and consequently,

lim
n→∞ δ(An–,An) = . (.)

From (.) and (.), it follows that

lim
n→∞d(xn,xn+) = . (.)

Now, we prove that {xn} is a Cauchy sequence. To this end, it is sufficient to verify that
{xn} is a Cauchy sequence. Suppose, on the contrary, that it is not. Then there exists an
ε >  such that for each even integer k there are even integers n(k), m(k) with m(k) >
n(k) > k such that

rk = δ(An(k),Am(k)) ≥ ε for k ∈ {, , . . . }. (.)

For every even integer k, let m(k) be the smallest number exceeding n(k) satisfying the
condition (.) for which

δ(An(k),Am(k)–) < ε. (.)

From (.), (.) and the triangular inequality, we have

ε ≤ rk ≤ δ(An(k),Am(k)–) + δ(Am(k)–,Am(k)–) + δ(Am(k)–,Am(k))

≤ ε + δ(Am(k)–,Am(k)–) + δ(Am(k)–,Am(k)).

Hence, by (.), it follows that

lim
k→∞

rk = ε. (.)

Now, from the triangular inequality, we have

∣∣δ(An(k),Am(k)–) – δ(An(k),Am(k))
∣∣ ≤ δ(Am(k)–,Am(k)).

Passing to the limit as k → ∞ and using (.) and (.), we get

lim
k→∞

δ(An(k),Am(k)–) = ε. (.)

On the other hand, we have

δ(An(k),Am(k))

≤ δ(An(k),An(k)+) + δ(An(k)+,Am(k))

≤ δ(An(k),An(k)+) + δ(Sxn(k),T xm(k)–)

≤ δ(An(k),An(k)+) +M(xm(k)–,xn(k)) + Lmin
{
ϕ
(
δ(xm(k)–,T xm(k)–)

)
,

ϕ
(
δ(xn(k),Sxn(k))

)
,ϕ

(
δ(xm(k)–,Sxn(k))

)
,ϕ

(
δ(xn(k),T xm(k)–)

)}
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≤ δ(An(k),An(k)+) +M(xm(k)–,xn(k)) + Lmin
{
ϕ
(
δ(Am(k)–,Am(k)–)

)
,

ϕ
(
δ(An(k)–,An(k))

)
,ϕ

(
δ(Am(k)–,An(k))

)
,ϕ

(
δ(An(k)–,Am(k)–)

)}
, (.)

where

M(xm(k)–,xn(k))

=max

{
ϕ
(
d(xm(k)–,xn(k))

)
,ϕ

(
δ(Am(k)–,Am(k)–)

)
,ϕ

(
δ(An(k)–,An(k))

)
,

ϕ

(
δ(An(k)–,xm(k)–) + δ(Am(k)–,An(k))



)}
.

From

δ(Am(k)–,An(k))

≤ δ(Am(k)–,xm(k)–) + δ(Am(k)–,An(k)+) + δ(An(k)+,An(k)),

taking the upper limit as k → ∞, using (.) and (.), we get

lim sup
k→∞

δ(Am(k)–,An(k)) ≤ ε.

On the other hand, we have

ε ≤ δ(Am(k)–,An(k)–)

≤ δ(Am(k)–,Am(k)–) + δ(Am(k)–,An(k)) + δ(An(k),An(k)–),

and taking the lower limit as k → ∞, we get

ε ≤ lim inf
k→∞

δ(Am(k)–,An(k)–) ≤ lim inf
k→∞

d(Am(k)–,An(k)).

It follows that

ε ≤ lim inf
k→∞

δ(Am(k)–,An(k)),

and so

lim
k→∞

δ(xm(k)–,An(k)) = ε. (.)

Now, using (.), (.), (.), (.) and the continuity of ϕ, we get

lim
k→∞

M(xm(k)–,xn(k)) =max
{
ϕ(ε), , ,ϕ(ε)

}
= ϕ(ε). (.)

Passing to the limit as k → ∞ in (.), we obtain

ε ≤ ϕ(ε) < ε,
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a contradiction. Thus, the assumption (.) is wrong. Hence, {xn} is a Cauchy sequence.
From the completeness of X , there exists a z ∈X such that

lim
n→∞xn = z.

As the limit point z is independent of the choice of xn ∈An, we also get

lim
n→∞ δ(Sxn, z) = lim

n→∞ δ(T xn+, z) = .

Now, we show that z is a common endpoint of S and T .
Suppose, to the contrary, that δ(z,Sz) > . By the assumption (.), xn � z for all n. Then

using the triangular inequality for δ and taking x = xn+ and y = z in (.), we have

δ(z,Sz) ≤ δ(z,Txn+) + δ(T xn+,Sz)

≤ δ(z,Txn+) +max

{
ϕ
(
d(xn+, z)

)
,ϕ

(
δ(xn+,T xn+)

)
,ϕ

(
δ(z,Sz)

)
,

ϕ

(D(z,T xn+) +D(xn+,Sz)


)}
+ Lmin

{
ϕ
(
δ(xn+,T xn+)

)
,

ϕ
(
δ(z,Sz)

)
,ϕ

(
δ(xn+,Sz)

)
,ϕ

(
δ(z,T xn+)

)}
.

Passing to the limit as n→ ∞ and using the properties of ϕ, we have

δ(z,Sz) ≤ max
{
ϕ
(
δ(z,Sz)

)
,ϕ

(
δ(z,Sz)/

)}
< δ(z,Sz),

a contradiction. Hence, δ(z,Sz) = , and so {z} = Sz. It follows that z is an endpoint of S ,
and also of T . This finishes the proof. �

Remark .
(i) The condition

δ(T x,Sy) ≤ ϕ
(
M(x, y)

)
+Lmin

{
ϕ
(
δ(x,T x)

)
,ϕ

(
δ(y,Sy)

)
,ϕ

(
δ(x,Sy)

)
,ϕ

(
δ(y,T x)

)}
, (.)

where

M(x, y) =max

{
d(x, y), δ(x,T x), δ(y,Sy), D(y,T x) +D(x,Sy)



}
,

implies the condition (.).
(ii) The condition (.) is equivalent to the condition (.) if we suppose that ϕ is a

non-decreasing function.
(iii) From Theorem . we can derive a corollary involving the condition (.).
(iv) Under the hypothesis that ϕ is a non-decreasing function, we can state many other

corollaries using the equivalences established by Jachymski in [] for single-valued
mappings.
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Example . Let X = [,+∞) be equipped with the standard metric d and order � given
by

x � y ⇐⇒ x≥ y.

Consider the following mappings T ,S :X → B(X ):

T x = [.x, .x], Sx = [.x, .x], x ∈ [, +∞).

First, we check that S is T -weakly isotone increasing. Suppose that y ∈ Sx = [.x, .x]
and z ∈ Sx = [.x, .x]. Then u ∈ T y implies that u ≤ . · .x = .x ≤ z and so z � u.
This means that for any x ∈ X , we have Sx � T y for all y ∈ Sx. Similarly, one can prove
that for each y ∈ Sx, we have T y� Sz for all z ∈ T y.
Let ϕ(t) = 

 t for t ∈ [, +∞) and L = . Now, we check that the condition (.) holds for
all x, y ∈X . Consider the following two possibilities.
. x� y, i.e., x ≥ y. Denote y = tx,  ≤ t ≤ . Then

δ(T x,Sy) = δ
(
[.x, .x], [.y, .y]

)
= .x – .y = x(. – .t)≤ .x,

M(x, y) =


max

{
x – y, .x, .y,



[
(x – .y) +D(y,T x)

]}

=


xmax

{
 – t, ., .t,



[
( – .t) +ψ(t)

]}

≥ 


· .x = .x,

m(x, y) =min
{
ϕ
(
δ(x,T x)

)
,ϕ

(
δ(y,Sy)

)
,ϕ

(
δ(x,Sy)

)
,ϕ

(
δ(y,T x)

)}
=


xmin

{
., .t,  – .t,max

{|t – .|, |t – .|}} ≥ .

Hence, the condition (.) is satisfied.
. x � y, i.e., x < y and x = ty for some t ∈ (, ). Then

δ(T x,Sy) = yδ
(
[.t, .t], [., .]

)
= y×

⎧⎪⎪⎨
⎪⎪⎩
. – .t,  < t < 



., 
 ≤ t < 



.t – ., 
 ≤ t < 

≤ .y,

M(x, y) =


ymax

{
 – t, .t, .,



[
ψ(t) + ( – .t)

]}

≥ 


· .y≥ .y,

m(x, y)≥ .

Again, the condition (.) is satisfied. Thus, all the conditions of Theorem . are fulfilled,
and T and S have an endpoint (z = ).

Similar corollaries can be obtained as in the previous section. For example, putting
S = T in Theorem ., we obtain immediately the following result.
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Corollary . Let (X ,d,�) be a complete partially ordered metric space. Assume that
there is a continuous function ϕ : [, +∞) → [, +∞) with ϕ(t) < t for each t > , ϕ() = 
and that T :X → B(X ) is a multivalued mapping such that

δ(T x,T y) ≤ M(x, y) + Lmin
{
ϕ
(
δ(x,T x)

)
,ϕ

(
δ(y,T y)

)
,ϕ

(
δ(x,T y)

)
,ϕ

(
δ(y,T x)

)}
for all comparable x, y ∈X , where L ≥ , and

M(x, y) =max

{
ϕ
(
d(x, y)

)
,ϕ

(
δ(x,T x)

)
,ϕ

(
δ(y,T y)

)
,ϕ

(D(x,T y) +D(y,T x)


)}
.

Also, suppose that T x � T (T x) for all x ∈ X and that there is x ∈ X such that {x} ≺

T x. If the condition (.) holds, then T has an endpoint.

To conclude this section, we provide a sufficient condition to ensure the uniqueness of
the endpoint in Theorem .,

Theorem . Adding to the hypotheses of Theorem . the condition

lim
n→∞diam

(
(T ◦ S)n(X )

)
= ,

where ◦ denotes the composition of mappings, we obtain the uniqueness of the common
endpoint of S and T .

Proof Let z and z′ be two common fixed points of S and T , that is,

z ∈ T z ∩ Sz and z′ ∈ T z′ ∩ Sz′.

It is immediate to show that for all n ∈N, we have

(T ◦ S)nx = x, for all x ∈ {
z, z′}.

Then

d
(
z, z′) = δ

(
(T ◦ S)nz, (T ◦ S)nz′) ≤ diam

(
(T ◦ S)n(X )

) →  as n → ∞.

Hence, z = z′ and the proof is completed. �
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4. Ćirić, L, Hussain, N, Cakic, N: Common fixed points for Ciric type f -weak contraction with applications. Publ. Math.

(Debr.) 76(1-2), 31-49 (2010)
5. Nashine, HK: New fixed point theorems for mappings satisfying generalized weakly contractive condition with

weaker control functions. Ann. Pol. Math. 104, 109-119 (2012)
6. Nadler, SB Jr.: Multivalued contraction mappings. Pac. J. Math. 30, 475-488 (1969)
7. Itoh, S, Takahashi, W: Single-valued mappings, multivalued mappings and fixed point theorems. J. Math. Anal. Appl.

59, 514-521 (1977)
8. Mizoguchi, N, Takahashi, W: Fixed point theorem for multivalued mappings on complete metric spaces. J. Math. Anal.

Appl. 141, 177-188 (1989)
9. Hussain, N, Abbas, M: Common fixed point results for two new classes of hybrid pairs in symmetric spaces. Appl.

Math. Comput. 218, 542-547 (2011)
10. Hussain, N, Amini-Harandi, A, Cho, YJ: Approximate endpoints for set-valued contractions in metric spaces. Fixed

Point Theory Appl. 2010, Article ID 614867 (2010)
11. Hong, SH: Fixed points for mixed monotone multivalued operators in Banach spaces with applications. J. Math. Anal.

Appl. 337, 333-342 (2008)
12. Hong, SH: Fixed points of multivalued operators in ordered metric spaces with applications. Nonlinear Anal. 72,

3929-3942 (2010)
13. Hong, SH, Guan, D, Wang, L: Hybrid fixed points of multivalued operators in metric spaces with applications.

Nonlinear Anal. 70, 4106-4117 (2009)
14. Rouhani, BD, Moradi, S: Common fixed point of multivalued generalized ϕ-weak contractive mappings. Fixed Point

Theory Appl. 2010, Article ID 708984 (2010)
15. Ran, ACM, Reurings, MCB: A fixed point theorem in partially ordered sets and some applications to matrix equations.

Proc. Am. Math. Soc. 132, 1435-1443 (2004)
16. Nieto, JJ, Rodríguez-López, R: Contractive mapping theorems in partially ordered sets and applications to ordinary

differential equations. Order 22, 223-239 (2005)
17. Nashine, HK, Samet, B, Vetro, C: Monotone generalized nonlinear contractions and fixed point theorems in ordered

metric spaces. Math. Comput. Model. 54, 712-720 (2011)
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