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1 Introduction
Optimal control problems have been studied for a long time and have a lot of practical
applications in the fields such as physics, biology and economics, etc.Hamilton systems are
derived from Pontryagin’s maximum principle, which is known as a necessary condition
for optimality. Many results have been obtained both for finite and infinite dimensional
control systems such as [–]. Regarding the state constraint problems, lots of results are
also obtained. For example, readers can refer to [, ] and the references therein.
To our best knowledge, to derive the necessary conditions of Pontryagin’s maximum

principle type for optimal control problems, there are two main perturbation methods.
When the control domain is convex, we often use the convex perturbation. When the
control domain is non-convex and does not have any linear structure, we usually use the
spike perturbation. Many relevant results have been obtained; see [, , –] and the
references therein. The twomethods have their advantages and disadvantages. The convex
variational needs the control domain being convex, but in reality it is not always satisfied.
And the spike variational needs more regularity for the coefficients and the solutions to
the state equations, especially in the stochastic case.
In , Lou [] introduced a new method to study the necessary and sufficient condi-

tions of optimal control problems in the absence of linear structure for the deterministic
case. The author gave a local linearization of the optimal control problem along the op-
timal control, and transformed the original problem into a new relaxed control problem.
Moreover, he proved the equivalence of the two problems in some sense. Being directly
inspired by [], we are also interested in applying this method to an endpoint constraints
optimal control system, which is also in the absence of linear structure. Also, Pontryagin’s
maximum principle is obtained for our problem.
The rest of this paper is organized as follows. Section  begins with a general formu-

lation of our state constraints optimal control problem and the local linearization of the
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problem is given. In Section , we give our main result and its proof. Moreover, we obtain
the variational equation, adjoint equation and Hamilton system for our optimal control
system.

2 Preliminaries
We consider the controlled ordinary differential equation in Rn

⎧⎨
⎩
ẋ(t) = f (t,x(t),u(t)), in [,T],

x() = x,
(.)

with the cost functional

J
(
x,u(·)

)
=

∫ T


l
(
t,x(t),u(t)

)
dt, (.)

where T >  is a given constant, x ∈ Rn is a decision variable and u(·) ∈U[,T] with

U[,T] =
{
v : [,T]→ V |v(·) is measurable

}
,

where V is a non-convex set in Rk .
Let Uad[,T] be the set of all elements (x,u(·)) ∈ S ×U[,T] satisfying

x(T) ∈ S,

where S and S are closed convex subsets of Rn. Let S = S × S.
Then the optimal control problem can be stated as follows.

Problem . Find a pair (x̄, ū(·)) ∈Uad[,T] such that

J
(
x̄, ū(·)

)
= inf

(x,u(·))∈Uad[,T]
J
(
x,u(·)

)
. (.)

Any (x̄, ū(·)) ∈ Uad[,T] satisfying the above identity is called an optimal control, and the
corresponding state x(·; x̄, ū(·)) � x̄(·) is called an optimal trajectory; (x̄(·), ū(·)) is called
an optimal pair.
Let the following hypotheses hold:

(H) The metric space (V ,d) is separable, and d is the usual metric in Rk .
(H) Functions f = (f , f , . . . , f n)� : [,T]× Rn ×V → Rn and l : [,T]× Rn ×V → R are

measurable in t, continuous in (x,u) and continuously differentiable in x, where �
denotes the transpose of a matrix. Moreover, there exists a constant L >  such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|f (t,x,u) – f (t,x,u)| ≤ L|x – x|,
|l(t,x,u) – l(t,x,u)| ≤ L|x – x|,
|f (t, ,u)| ≤ L, |l(t, ,u)| ≤ L,

∀(t,x,x,u) ∈ [,T]× Rn × Rn ×V ,

(.)

where | · | denotes the usual Euclidean norm.
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From the above conditions, it is easy to know that the state equation (.) has a unique
solution x(·;x,u(·)) for any (x,u(·)) ∈U[,T].
Let (x̄, ū(·)) ∈ Uad[,T] be a minimizer of J(x,u(·)) over Uad[,T], and we linearize

Uad[,T] along (x, ū(·)) (for any fixed x) in the following manner. Define

Mad[,T]�
{
x × (

( – α)δū(·) + αδu(·)
)∣∣α ∈ [, ],

(
x,u(·)

) ∈Uad[,T]
}
,

where δu(·) denotes the Dirac measure at u(·) onU[,T]. Let σ (·) = (–α)δū(·) +αδu(·), then
it is easy to see that (x,σ (·)) ∈Mad[,T]. Now, we define

f
(
t,x,σ (t)

) ≡
∫
U
f (t,x, v)σ (t)dv = ( – α)f

(
t,x, ū(t)

)
+ αf

(
t,x,u(t)

)
, (.)

and similarly,

l
(
t,x,σ (t)

) ≡
∫
U
l(t,x, v)σ (t)dv = ( – α)l

(
t,x, ū(t)

)
+ αl

(
t,x,u(t)

)
.

Then we define x(·) = x(·;x,σ (·)) as the solution of the following equation:

⎧⎨
⎩
ẋ(t) = f (t,x(t),σ (t)), in [,T],

x() = x,
(.)

and the corresponding cost functional is

J
(
x,σ (·)

)
=

∫ T


l
(
t,x

(
t,σ (t)

)
,σ (t)

)
dt.

We can easily find that x(·;x,u(·)) and J(x,u(·)) coincide with x(·;x, δu(·)) and J(x, δu(·))
respectively. Thus, Uad[,T] can be viewed as a subset of Mad[,T] in the sense of iden-
tifying (x,u(·)) ∈ Uad[,T] and (x, δu(·)) ∈ Mad[,T]. Because the elements of Mad[,T]
are very simple, we need neither pose additional assumptions like that the control domain
is compact as Warga [] did nor introduce the relaxed control defined by finite-additive
probability measure as Fattorini [] did. Now, we can see thatMad[,T] already has a lin-
ear structure at (x̄, ū(·)). First, we give some lemmas to show that (x̄, δū(·)) is a minimizer
of J(x,σ (·)) overMad[,T].

Lemma . (Lou []) Let (H)-(H) hold. Then there exists a positive constant C > , such
that for any (x,σ (·)) ∈Mad[,T] and t, t ∈ [,T],

⎧⎨
⎩

‖x(·;x,σ (·))‖C[,T] ≤ C,

|x(t;x,σ (·)) – x(t;x,σ (·))| ≤ C|t – t|.
(.)

Lemma . (Lou []) Let (H)-(H) hold and (x̄, ū(·)) be a minimizer of J(x,u(·)) over
Uad[,T]. Then (x̄, δū(·)) is a minimizer of J(x,σ (·)) over Mad[,T].

Remark . We can see that Lemma . shows the equivalence of the above two prob-
lems. And this lemma is essential for our following maximum principle.
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3 Pontryagin’s maximum principle
In this section, we give our main result first and then prove it. Let fx denote the derivative
of f on x, and others can be defined in the same way. 〈·, ·〉 denotes the inner product in Rn.

Theorem. (Pontryagin’smaximumprinciple) Weassume (H)-(H) hold. Let (x̄(·), ū(·))
be a solution of the optimal control problem (.). Then there exists a nontrivial pair
(ψ,p(·)) ∈ R×C([,T];Rn), i.e., (ψ,p(·)) �=  such that

ψ ≤ , (.)

p(t) = p(T) +
∫ T

t

[
fx
(
s, x̄(s), ū(s)

)
p(s)

+ψlx
(
s, x̄(s), ū(s)

)]
ds, a.e. t ∈ [,T], (.)

〈
p(),x – x̄

〉
–

〈
p(T),x – x̄(T)

〉 ≤ , ∀(x,x) ∈ S, (.)

H
(
t, x̄(t), ū(t),p(t),ψ)
= max

(x,u(·))∈Uad[,T]
H

(
t, x̄(t),u(t),p(t),ψ), a.e. t ∈ [,T], (.)

where for any (t,x,u,p,ψ) ∈ [,T]× Rn ×V × Rn × R,

H
(
t,x,u,p,ψ) = 〈

f (t,x,u),p
〉
+ψl(t,x,u), (.)

and we also have the following Hamilton system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =Hp(t,x(t),u(t),p(t),ψ), a.e. t ∈ [,T],

ṗ(t) = –Hx(t,x(t),u(t),p(t),ψ), a.e. t ∈ [,T],

x() = x, p(T) = –ψ̄ ,

H(t,x(t),u(t),p(t),ψ)

=max(x,u(·))∈Uad[,T]H(t,x(t),u(t),p(t),ψ), a.e. t ∈ [,T],

(.)

where ψ̄ will be defined in the following part.

We recall that under the conditions (H)-(H), for any (x,u(·)) ∈ Rn × U[,T], the
state equation (.) admits a unique solution x(·) with x() = x. So, the cost functional
is uniquely determined by (x,u(·)). In the sequel, we denote the unique solution of (.)
with x() = x by x(·;x,u(·)). Now, let (x̄, ū(·)) ∈Uad[,T] be an optimal control. We de-
note x̄() = x̄.Without loss of generality, wemay assume that J(x̄, ū(·)) = ; otherwise, we
may consider the optimal control problem with a cost functional of J(x,u(·)) – J(x̄, ū(·)).
Now, we give some definitions and lemmas for Theorem ..
First, we define a penalty functional, via which, for convenience, we can transform the

original problem to another one called the approximate problem, which has no endpoint
constraint.
Let us introduce some notations. For all (x,u(·)), (x,u(·)) ∈ Rn ×U[,T], we define

d̄
((
x,u(·)

)
,
(
x,u(·)

))
= |x – x| + d

(
u(·),u(·)

)
, (.)

http://www.journalofinequalitiesandapplications.com/content/2012/231/0
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where d(u(·),u(·)) denote the measure of {t ∈ [,T]|u(t) �= u(t)} (it obviously is a met-
ric).
For ∀ε >  and ∀(x,u(·)) ∈ Rn ×U[,T], the penalty functional is defined as follows:

Jε
(
x,u(·)

)
=

{
d
S
(
x,x

(
T ;x,u(·)

))
+

[(
J
(
x,u(·)

)
+ ε

)+]} 
 , (.)

where (a)+ =max{,a}, and for any (x,x) ∈ Rn × Rn,

dS(x,x) = d
(
(x,x),S

)
� inf

(y,y)∈S
{|y – x| + |y – x|

} 
 . (.)

Obviously, dS is a convex function and it is Lipschitz continuous with the Lipschitz con-
stant being . We define the subdifferential of the function dS as follows:

∂dS(x,x) =
{
(a,b) ∈ Rn × Rn|dS

(
x′
,x

′

)
– dS(x,x)

≥ 〈
a,x′

 – x
〉
+

〈
b,x′

 – x
〉
,∀(

x′
,x

′

) ∈ Rn × Rn}, (.)

where 〈·, ·〉 denotes the inner product in Rn. For more properties of subdifferential ∂dS ,
one can see p. in [].

Lemma . Let (H)-(H) hold. Then there exists a constant C >  such that for all
(x,u(·)), (x̂, û(·)) ∈ Rn ×U[,T],

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

supt∈[,T] |x(t;x,u(·)) – x(t; x̂, û(·))|
≤ C( + |x| ∨ |x̂|)d̄((x,u(·)), (x̂, û(·))),

|J(x,u(·)) – J(x̂, û(·))|
≤ C( + |x| ∨ |x̂|)d̄((x,u(·)), (x̂, û(·))).

(.)

Proof Denote x(·) = x(t;x,u(·)) and x̂(·) = x(t; x̂, û(·)). From the state equation (.) and
condition (H), we have

∣∣x(t)∣∣ ≤ |x| +
∫ t



∣∣f (s,x(s),u(s))∣∣ds

≤ |x| +
∫ t



(∣∣f (s, ,u(s))∣∣ + ∣∣f (s,x(s),u(s)) – f
(
s, ,u(s)

)∣∣)ds

≤ |x| +
∫ t



(
L + L

∣∣x(s)∣∣)ds.

By Gronwall’s inequality, it follows that∣∣x(t)∣∣ ≤ C
(
 + |x|

)
, ∀t ∈ [,T].

Similarly,

∣∣x̂(t)∣∣ ≤ C
(
 + |x̂|

)
, ∀t ∈ [,T],

http://www.journalofinequalitiesandapplications.com/content/2012/231/0
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where the constant C is independent of controls u(·) and û(·), and may be different at
different places throughout this paper. Further, noting the definition of d̄, we have

∣∣x(t) – x̂(t)
∣∣ ≤ C|x – x̂| +C

∫ t



∣∣x(s) – x̂(s)
∣∣ds

+
∫ t



∣∣f (s,x(s),u(s)) – f
(
s,x(s), û(s)

)∣∣ds

≤ C|x – x̂| +C
(
 + |x| ∨ |x̂|

)
d
(
u(·), û(·)) +C

∫ t



∣∣x(s) – x̂(s)
∣∣ds

≤ C
(
 + |x| ∨ |x̂|

)
d̄
((
x,u(·)

)
,
(
x̂, û(·)

))
+C

∫ t



∣∣x(s) – x̂(s)
∣∣ds.

Thus, by Gronwall’s inequality, we get

∣∣x(t) – x̂(t)
∣∣ ≤ C

(
 + |x| ∨ |x̂|

)
d̄
((
x,u(·)

)
,
(
x̂, û(·)

))
eCt

≤ C
(
 + |x| ∨ |x̂|

)
d̄
((
x,u(·)

)
,
(
x̂, û(·)

))
eCT , ∀t ∈ [,T].

Taking supremum in the above inequality, the first inequality in (.) is obtained. The
second inequality can be proved similarly. �

By the definition of Jε(x,u(·)) and Lemma ., we can easily obtain the following result.

Corollary . The functional Jε(x,u(·)) is continuous on the space (Rn ×U[,T], d̄).

Remark . By the definition of Jε(x,u(·)) (.) and Corollary ., we can see that

⎧⎨
⎩
Jε(x,u(·)) > , ∀(x,u(·)) ∈ Rn ×U[,T],

Jε(x̄, ū(·)) = ε ≤ infRn×U[,T] Jε(x,u(·)) + ε.
(.)

Thus, by the Ekeland variational principle (see p. in [] for details), there exists a pair
(xε

,uε(·)) ∈ Rn ×U[,T], such that

d̄
((
xε
,u

ε(·)), (x̄, ū(·))) ≤ √
ε, (.)

Jε
(
x,u(·)

)
+

√
εd̄

((
x,u(·)

)
,
(
xε
,u

ε(·)))
≥ Jε

(
xε
,u

ε(·)), ∀(
x,u(·)

) ∈ Rn ×U[,T]. (.)

The above implies that if we let xε(·) = x(·;xε
,uε(·)), then (xε(·),uε(·)) is an optimal pair for

the problem where the state equation is (.) and the cost functional is Jε(x,u(·)).

Now, we derive the necessary conditions for (xε(·),uε(·)).

Lemma . Let (xε(·),uε(·)) be an optimal pair for the problem where the state equation is
(.) and the cost functional is Jε(x,u(·)), then there exists a nontrivial triple (ψ̄ε

, ϕ̄ε , ψ̄ε) ∈
R× Rn × Rn such that

|ϕ̄ε| + |ψ̄ε| +
∣∣ψ̄ε

∣∣ = ,

http://www.journalofinequalitiesandapplications.com/content/2012/231/0
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and

–
√

ε
(|η| +C

) ≤ 〈ϕ̄ε ,η〉 + 〈
ψ̄ε ,Xε(T)

〉
+ ψ̄ε

Yε ,

where η, Xε(·), Yε will be defined in the following proof.

Proof Similar to Section , we linearize U[,T] along uε(·) and denote σα,ε(·) = ( –
α)δuε(·) + αδu(·), xα,ε(·) = x(·;xε

 + αη,σα,ε(·)), where η ∈ B() ⊂ Rn (B() denotes the ball
whose center is  and radius is ). Recall that xε(·) = x(·;xε

,uε(·)), then we derive the vari-
ational equation.
From (.), we have

Xα,ε(t) � xα,ε(t) – xε(t)
α

=
∫ t



[
f (s,xα,ε(s),uε(s)) – f (s,xε(s),uε(s))

α

+ f
(
s,xα,ε(s),u(s)

)
– f

(
s,xα,ε(s),uε(s)

)]
ds

=
∫ t



[∫ 


fx
(
s,xε(s) + τ

(
xα,ε(s) – xε(s)

)
,uε(s)

)� dτXα,ε(s)

+ f
(
s,xα,ε(s),u(s)

)
– f

(
s,xα,ε(s),uε(s)

)]
ds,

where fx(t,x,u) denotes the transpose of the Jacobi matrix of f on x. By virtue of (H), and
using the convergence of xα,ε(t) → xε(t) (see the proof of Lemma . in []), we can easily
obtain

Xα,ε(t) → Xε(t), as α → ,∀t ∈ [,T],

where Xε(t) is the solution of the following variational equation:

⎧⎨
⎩
Ẋε(t) = fx(t,xε(t),uε(t))�Xε(t) + f (t,xε(t),u(t)) – f (t,xε(t),uε(t)),

Xε() = η.
(.)

From the definition of σα,ε(·), by Lemma ., for any fixed α, we can define

d̃
(
σα,ε(·), δuε(·)

)
= αd

(
u(·),uε(·)),

and

d̃
((
x,σα,ε(·)), (x, δuε (·))

)
= |x – x| + d̃

(
σα,ε(·), δuε (·)

)
.

So, by virtue of (.) and Lemma ., we have

Jε
(
xε
 + αη,σα,ε(·)) +√

εd̃
((
xε
 + αη,σα,ε(·)), (xε

, δuε (·)
)) ≥ Jε

(
xε
, δuε (·)

)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/231/0
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It means that when α → ,

–
√

ε
(|η| + d

(
u(·),uε(·))) ≤ lim

α→


α

(
Jε

(
xε
 + αη,σα,ε(·)) – Jε

(
xε
, δuε (·)

))

=


Jε(xε
, δuε (·))

lim
α→


α

{
d
S
(
xε
 + αη,xα,ε(T)

)
– d

S
(
xε
,x

ε(T)
)

+
[(
J
(
xε
 + αη,σα,ε(·)) + ε

)+] – [(
J
(
xε
, δuε (·)

)
+ ε

)+]}.
Note that the map (x,x) → d

S(x,x) is continuously differentiable on Rn × Rn, then we
get

lim
α→


α

{
d
S
(
xε
 + αη,xα,ε(T)

)
– d

S
(
xε
,x

ε(T)
)}

= dS
(
xε
,x

ε(T)
)(〈aε ,η〉 + 〈

bε ,Xε(T)
〉)
, (.)

with (aε ,bε) ∈ ∂dS(xε
,xε(T)) and

|aε| + |bε| = . (.)

Similarly, we can obtain

lim
α→


α

{[(
J
(
xε
 + αη,σα,ε(·)) + ε

)+] – [(
J
(
xε
, δuε (·)

)
+ ε

)+]}

= 
(
J
(
xε
, δuε (·)

)
+ ε

)+Yε , (.)

where

Yε = lim
α→

J(( – α)δuε(·) + αδu(·)) – J(δuε (·))
α

= lim
α→

∫ T



[
l(t,xα,ε(t),uε(t)) – l(t,xε(t),uε(t))

α

+ l
(
t,xα,ε(t),u(t)

)
– l

(
t,xα,ε(t),uε(t)

)]
dt

= lim
α→

∫ T



[∫ 



〈
lx

(
t,xε(t) + s

(
xα,ε(t) – xε(t)

)
,uε(t)

)
,Xα,ε(t)

〉
ds

+ l
(
t,xα,ε(t),u(t)

)
– l

(
t,xα,ε(t),uε(t)

)]
dt

=
∫ T



[〈
lx

(
t,xε(t),uε(t)

)
,Xε(t)

〉
+ l

(
t,xε(t),u(t)

)
– l

(
t,xε(t),uε(t)

)]
dt.

Combining (.) and (.), by sending α → , we obtain

–
√

ε
(|η| +C

) ≤ 〈ϕ̄ε ,η〉 + 〈
ψ̄ε ,Xε(T)

〉
+ ψ̄ε

Yε , (.)

where
⎧⎨
⎩
(ϕ̄ε , ψ̄ε) =

dS(xε
,x

ε(T))
Jε (xε

,δuε (·)) (aε ,bε),

ψ̄ε
 = (J(xε

,δuε (·))+ε)+

Jε (xε
,δuε (·)) .

(.)

http://www.journalofinequalitiesandapplications.com/content/2012/231/0
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From (.), it is obvious that

|ϕ̄ε| + |ψ̄ε| +
∣∣ψ̄ε

∣∣ = . (.)
�

Remark . By the definition of subdifferential of the function dS(·), for any (x,x) ∈ S,
we have

〈
ϕ̄ε ,x – xε


〉
+

〈
ψ̄ε ,x – xε(T)

〉 ≤ . (.)

In order to pass to the limit as ε → , we give the following lemma first, which is neces-
sary for the derivation of our maximum principle.

Lemma . It holds that

lim
ε→

[∣∣xε
 – x̄

∣∣ + sup
t∈[,T]

∣∣Xε(t) –X(t)
∣∣ + |Yε – Y |

]
= ,

where X(t) and Y satisfy the following equations:

⎧⎨
⎩
Ẋ(t) = fx(t, x̄(t), ū(t))�X(t) + f (t, x̄(t),u(t)) – f (t, x̄(t), ū(t)),

X() = η,
(.)

Y =
∫ T



[
lx

(
t, x̄(t), ū(t)

)�X(t) + l
(
t, x̄(t),u(t)

)
– l

(
t, x̄(t), ū(t)

)]
dt. (.)

Proof By (.) and the definition of d̄, it is easy to see that

lim
ε→

∣∣xε
 – x̄

∣∣ = . (.)

From (.) and (.), we have

∣∣Xε(t) –X(t)
∣∣ ≤

∫ t



∣∣fx(s,xε(s),uε(s)
)�Xε(s) + f

(
s,xε(s),u(s)

)
– f

(
s,xε(s),uε(s)

)

–
(
fx
(
s, x̄(s), ū(s)

)�X(s) + f
(
s, x̄(s),u(s)

)
– f

(
s, x̄(s), ū(s)

))∣∣ds
≤

∫ t



[∣∣fx(s,xε(s),uε(s)
)�∣∣∣∣Xε(s) –X(s)

∣∣
+
∣∣fx(s,xε(s),uε(s)

)� – fx
(
s, x̄(s), ū(s)

)�∣∣∣∣X(s)∣∣
+

∣∣f (s,xε(s),u(s)
)
– f

(
s, x̄(s),u(s)

)∣∣
+

∣∣f (s,xε(s),uε(s)
)
– f

(
s, x̄(s), ū(s)

)∣∣]ds. (.)

By virtue of Lemma ., then

sup
t∈[,T]

∣∣xε(t) – x̄(t)
∣∣

≤ C
(
 +

∣∣xε

∣∣ ∨ |x̄|

)
d̄
((
xε
,u

ε(·)), (x̄, ū(·))) → , as ε → . (.)

http://www.journalofinequalitiesandapplications.com/content/2012/231/0
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Now, combining the condition (H) and (.), we deduce that

∣∣Xε(t) –X(t)
∣∣

≤ C
(
 +

∣∣xε

∣∣ ∨ |x̄|

)
d̄
((
xε
,u

ε(·)), (x̄, ū(·))) +C
∫ t



∣∣Xε(s) –X(s)
∣∣ds. (.)

Then by Gronwall’s inequality, we obtain

lim
ε→

sup
t∈[,T]

∣∣Xε(t) –X(t)
∣∣ = . (.)

Similarly, we can prove that

lim
ε→

|Yε – Y | = . (.)

Thus, the proof of this lemma is completed. �

Remark . Now, we can let ε → . By (.), it is obvious that for any (x,x) ∈ S, we
have

〈ϕ̄ε ,x – x̄〉 +
〈
ψ̄ε ,x – x̄(T)

〉 ≤ (∣∣xε
 – x̄

∣∣ + ∣∣xε(T) – x̄(T)
∣∣) 

 � δε → . (.)

Hence, combining (.) and (.), for any (x,x) ∈ S, we obtain

〈
ϕ̄ε ,η – (x – x̄)

〉
+

〈
ψ̄ε ,X(T) –

(
x – x̄(T)

)〉
+ ψ̄ε

Y

≥ –
√

ε
(|η| +C

)
– δε –

∣∣Xε(T) –X(T)
∣∣ – |Yε – Y |. (.)

From (.), we can find a subsequence (still denoted by itself ) such that

(
ϕ̄ε , ψ̄ε , ψ̄ε

) → (
ϕ̄, ψ̄ , ψ̄) �= . (.)

Now, by Lemma . and sending ε →  in (.), for any (x,x) ∈ S, u(·) ∈ U[,T] and
η ∈ B(), we have

〈
ϕ̄,η – (x – x̄)

〉
+

〈
ψ̄ ,X(T) –

(
x – x̄(T)

)〉
+ ψ̄Y ≥ . (.)

Based on the above preparation, now we start to prove Theorem . by the duality rela-
tions.

Proof of Theorem . Let p(t) solve the adjoint equation

⎧⎨
⎩
ṗ(t) = –fx(t, x̄(t), ū(t))p(t) –ψlx(t, x̄(t), ū(t)),

p(T) = –ψ̄ ,
(.)

where ψ = –ψ̄.

http://www.journalofinequalitiesandapplications.com/content/2012/231/0


Wang and Liu Journal of Inequalities and Applications 2012, 2012:0 Page 11 of 12
http://www.journalofinequalitiesandapplications.com/content/2012/231/0

So, by virtue of (.), we get

〈ϕ̄,x – x̄ – η〉 + 〈
p(T),X(T) –

(
x – x̄(T)

)〉
+ψY ≤ . (.)

Simultaneously, we have the following duality equality:

〈
p(T),X(T)

〉
–

〈
p(),η

〉
+ψY

=
∫ T



〈
–fx

(
t, x̄(t), ū(t)

)
p(t) –ψlx

(
t, x̄(t), ū(t)

)
,X(t)

〉

+
〈
p(t), fx

(
t, x̄(t), ū(t)

)�X(t) + f
(
t, x̄(t),u(t)

)
– f

(
t, x̄(t), ū(t)

)〉
dt

+ψ
∫ T



[
lx

(
t, x̄(t), ū(t)

)�X(t) + l
(
t, x̄(t),u(t)

)
– l

(
t, x̄(t), ū(t)

)]
dt

=
∫ T



〈
p(t), f

(
t, x̄(t),u(t)

)
– f

(
t, x̄(t), ū(t)

)〉
+ψ(l(t, x̄(t),u(t)) – l

(
t, x̄(t), ū(t)

))
dt

=
∫ T



[
H

(
t, x̄(t),u(t),p(t),ψ) –H

(
t, x̄(t), ū(t),p(t),ψ)]dt, (.)

where H is the Hamilton function defined in (.). Now, setting η =  and (x,x) =
(x̄, x̄(T)) in (.), we obtain

∫ T



[
H

(
t, x̄(t),u(t),p(t),ψ) –H

(
t, x̄(t), ū(t),p(t),ψ)]dt ≤ .

AsU is separable and (x,u(·)) ∈Uad[,T] is arbitrary, the above inequality can be written
as

H
(
t, x̄(t),u(t),p(t),ψ) –H

(
t, x̄(t), ū(t),p(t),ψ) ≤ , a.e. t ∈ [,T]. (.)

Thus,

H
(
t, x̄(t), ū(t),p(t),ψ)
= max

(x,u(·))∈Uad[,T]
H

(
t, x̄(t),u(t),p(t),ψ), a.e. t ∈ [,T]. (.)

Next, by taking u(t) = ū(t) and (x,x) = (x̄, x̄(T)) in (.), using the duality equality
(.), we get

〈ϕ̄,η〉 ≥ 〈
p(T),X(T)

〉
+ψY =

〈
p(),η

〉
, ∀η ∈ B(). (.)

Thus, ϕ̄ = p(). Then taking η =  and u(t) = ū(t) in (.), combining with the duality
equality (.), we obtain the transversality condition

〈
p(),x – x̄

〉
–

〈
p(T),x – x̄(T)

〉 ≤ , ∀(x,x) ∈ S. (.)

Finally, we claim that (ψ,p(·)) �= . Otherwise, in particular, we have that

ψ̄ = –p(T) = , ϕ̄ = p() = . (.)

http://www.journalofinequalitiesandapplications.com/content/2012/231/0
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Note that ψ =  in this case, so this gives a contradiction to (.). The Hamilton system
(.) is obvious. Then the proof of the maximum principle is completed. �

Remark . We give some important special cases of our control problem.
(i) The control problem with fixed endpoints. In this case, the constraint set is

S = {(x,xT )} and the endpoint constraint becomes of the following form:

x() = x, x(T) = xT .

(ii) The control problem with a terminal state constraint, i.e.,

x() = x, x(T) ∈ S.
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