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1 Introduction
The concept of complete convergence was introduced by Hsu and Robbins [] as follows.
A sequence of random variables {Un,n ≥ } is said to converge completely to a constant
C if

∑∞
n= P(|Un – C| > ε) < ∞ for all ε > . In view of the Borel-Cantelli lemma, this im-

plies that Un → C almost surely (a.s.). The converse is true if the {Un,n ≥ } are indepen-
dent. Hsu and Robbins [] proved that the sequence of arithmetic means of independent
and identically distributed (i.i.d.) random variables converges completely to the expected
value if the variance of the summands is finite. Erdös [] proved the converse. The result
of Hsu-Robbin-Erdös is a fundamental theorem in probability theory which has been gen-
eralized and extended in several directions by many authors. One of the most important
generalizations is that by Baum andKatz [] for the strong law of large numbers as follows.

Theorem A (Baum and Katz []) Let α > / and αp > . Let {Xn,n ≥ } be a sequence if
i.i.d. random variables.Assume further that EX =  if α ≤ .Then the following statements
are equivalent:

(i) E|X|p < ∞;

(ii)
∞∑
n=

nαp–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

Xi

∣∣∣∣∣ > εnα

)
<∞, for all ε > .

Many authors studied the Baum-Katz-type theorem for dependent random variables;
see, for example, Peligrad [] for a strong stationary ρ-mixing sequence, Peligrad and Gut
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[] for a ρ*-mixing sequence, Stoica [, ] for a martingale difference sequence, Stoica []
for bounded subsequences,Wang andHu [] for ϕ-mixing random variables, and so forth.
One of themost interesting inequalities to probability theory is the Rosenthal-typemax-

imal inequality. For a sequence {Xi,  ≤ i ≤ n} of i.i.d. random variables with E|X|q < ∞
for some q ≥ , there exist positive constants Cq depending only on q such that

E

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(Xi – EXi)

∣∣∣∣∣
)q

≤ Cq

{ n∑
i=

E|Xi|q +
( n∑

i=

EX
i

)q/}
.

The inequality above has been obtained for dependent random variables bymany authors.
See, for example, Shao [] for negatively associated random variables, Utev and Peligrad
[] for ρ*-mixing random variables, Wang et al. [] for ϕ-mixing random variables with
the mixing coefficients satisfying certain conditions, and so forth.
The purpose of this work is to obtain complete convergence and completemoment con-

vergence for a sequence of random variables satisfying a Rosenthal-typemaximal inequal-
ity.
Throughout the paper, let {Xn,n ≥ } be a sequence of random variables defined on a

fixed probability space (�,A,P). Let I(A) be the indicator function of the set A. Denote
Sn =

∑n
i=Xi, S = , ln+ x = lnmax(x, e), x+ = xI (x ≥ ). The symbol C denotes a positive

constant which may be different in various places.
The following definition will be used frequently in the paper.

Definition . A sequence of random variables {Xn,n ≥ } is said to be stochastically
dominated by a random variable X if there exists a positive constant C such that

P
(|Xn| > x

) ≤ CP
(|X| > x

)

for all x ≥  and n≥ .

In this paper, the present investigation is to provide the complete convergence and
complete moment convergence for a sequence of the class of random variables satis-
fying a Rosenthal-type maximal inequality and prove the equivalence of the complete
convergence and complete moment convergence. Baum-Katz-type theorem and Hsu-
Robbins-type theorem are extended to the case of the class of random variables satisfying
a Rosenthal-type maximal inequality. As a result, theMarcinkiewicz-Zygmund strong law
of large numbers for the class of random variables is obtained.

2 Main results
Theorem . Let α > /, αp ≥  and p > . Suppose that {Xn,n ≥ } is a sequence of zero
mean random variables which is stochastically dominated by a random variable X with
E|X|p < ∞. Assume that for any q ≥ , there exists a positive constant Cq depending only
on q such that

E

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(Yti – EYti)

∣∣∣∣∣
q)

≤ Cq

{ n∑
i=

E|Yti|q +
( n∑

i=

EY 
ti

)q/}
, (.)
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where Yti = –tI(Xi < –t) +XiI(|Xi| ≤ t) + tI(Xi > t) for all t > . Then

∞∑
n=

nαp–P
(
max
≤j≤n

|Sj| ≥ εnα
)
< ∞, for all ε >  (.)

and

∞∑
n=

nαp––αE
(
max
≤j≤n

|Sj| – εnα
)+

<∞, for all ε > . (.)

Furthermore, (.) is equivalent to (.).

Corollary . Let  < p < . Suppose that {Xn,n ≥ } is a sequence of zero mean random
variables which is stochastically dominated by a random variable X with E|X|p < ∞. As-
sume further that (.) holds, then

Sn
n/p

→  a.s.

For p = , we have the following theorem.

Theorem . Let α > . Suppose that {Xn,n≥ } is a sequence of zero mean random vari-
ables which is stochastically dominated by a random variable X with E|X| ln+ |X| < ∞.
Assume further that (.) holds, then for all ε > ,

∞∑
n=

n–E
(
max
≤j≤n

|Sj| – εnα
)+

<∞. (.)

Theorem . Let α > /, p >  and αp > . Suppose that {Xn,n ≥ } is a sequence of zero
mean random variables which is stochastically dominated by a random variable X with
E|X|p < ∞. Assume further that (.) holds, then for all ε > ,

∞∑
n=

nαp–P
(
sup
j≥n

∣∣∣∣Sjjα
∣∣∣∣ ≥ ε

)
<∞. (.)

Remark . In (.), {Yti, i ≥ } is a monotone transformation of {Xi, i ≥ }. If {Xi, i ≥ }
is a sequence of independent random variables, then (.) is clearly satisfied. There are
many sequences of dependent random variables satisfying (.) for all q ≥ . Examples in-
clude sequences of NA random variables (see Shao []), ρ*-mixing random variables (see
Utev and Peligrad []), ϕ-mixing random variables with the mixing coefficients satisfy-
ing certain conditions (seeWang et al. []), ρ–-mixing random variables with the mixing
coefficients satisfying certain conditions (see Wang and Lu []).

Remark . In Theorem ., we not only generalize the Baum-Katz-type theorem for the
class of random variables satisfying (.), but also consider the case αp = . Furthermore,
if we take α =  and p = , then we can get the Hsu-Robbins-type theorem (see Hsu and
Robbins []) for the class of random variables satisfying (.).
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3 Lemmas
In this section, the following lemmas are very useful to prove themain results of the paper.

Lemma . (cf. Wu []) Let {Xn,n ≥ } be a sequence of random variables, which is
stochastically dominated by a random variable X. Then for any a >  and b > , the follow-
ing two statements hold:

E|Xn|aI
(|Xn| ≤ b

) ≤ C
{
E|X|aI(|X| ≤ b

)
+ baP

(|X| > b
)}

and

E|Xn|aI
(|Xn| > b

) ≤ CE|X|aI(|X| > b
)
,

where C and C are positive constants.

Lemma . Under the conditions of Theorem .,

∞∑
n=

nαp––α

∫ ∞

nα

P
(
max
≤j≤n

|Sj| > t
)
dt < ∞. (.)

Proof For fixed n≥ , denote Y ′
ti = Xi – Yti, i≥ . Then it follows that

∞∑
n=

nαp––α

∫ ∞

nα

P
(
max
≤j≤n

|Sj| > t
)
dt

≤
∞∑
n=

nαp––α

∫ ∞

nα

P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(Yti – EYti)

∣∣∣∣∣ > t/

)
dt

+
∞∑
n=

nαp––α

∫ ∞

nα

P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(
Y ′
ti – EY ′

ti
)∣∣∣∣∣ > t/

)
dt

:= I + J .

For J , noting that |Y ′
ti| ≤ |Xi|I(|Xi| > t), we have by Markov’s inequality, Lemma . and

E|X|p < ∞ that

J ≤ C
∞∑
n=

nαp––α

∫ ∞

nα

t–
n∑
i=

E
∣∣Y ′

ti
∣∣dt

≤ C
∞∑
n=

nαp––α

∫ ∞

nα

t–
n∑
i=

E|Xi|I
(|Xi| > t

)
dt

≤ C
∞∑
n=

nαp––α

∫ ∞

nα

t–E|X|I(|X| > t
)
dt

= C
∞∑
n=

nαp––α

∞∑
m=n

∫ (m+)α

mα

t–E|X|I(|X| > t
)
dt

≤ C
∞∑
n=

nαp––α

∞∑
m=n

m–E|X|I(|X| >mα
)
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= C
∞∑
m=

m–E|X|I(|X| >mα
) m∑

n=

nαp––α

≤ C
∞∑
m=

m–E|X|I(|X| >mα
)
mαp–α

= C
∞∑
m=

mαp––αE|X|I(|X| >mα
)

= C
∞∑
m=

mαp––α

∞∑
n=m

E|X|I(n < |X|/α ≤ n + 
)

≤ C
∞∑
n=

E|X|I(n < |X|/α ≤ n + 
) n∑
m=

mαp––α

≤ C
∞∑
n=

nαp–αE|X|I(n < |X|/α ≤ n + 
) ≤ CE|X|p < ∞. (.)

For I , by Markov’s inequality and (.), we have that for q ≥ ,

I ≤ Cq

∞∑
n=

nαp––α

∫ ∞

nα

t–qE

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(Yti – EYti)

∣∣∣∣∣
q)

dt

≤ Cq

∞∑
n=

nαp––α

∫ ∞

nα

t–q
n∑
i=

E|Yti|q dt +Cq

∞∑
n=

nαp––α

∫ ∞

nα

t–q
( n∑

i=

EY 
ti

)q/

dt

:= I + I. (.)

We will consider the following three cases:
Case . α > /, αp >  and p≥ .
Taking q >max(p, αp–

α– 

), which implies that αp––αq+q/ < –.We have by Lemma .

and the proof of (.) that

I ≤ Cq

∞∑
n=

nαp––α

∫ ∞

nα

t–q
n∑
i=

(
E|Xi|qI

(|Xi| ≤ t
)
+ tqP

(|Xi| > t
))
dt

≤ C
∞∑
n=

nαp––α

∫ ∞

nα

t–qE|X|qI(|X| ≤ t
)
dt +C

∞∑
n=

nαp––α

∫ ∞

nα

t–E|X|I(|X| > t
)
dt

≤ C
∞∑
n=

nαp––α

∞∑
m=n

∫ (m+)α

mα

t–qE|X|qI(|X| ≤ t
)
dt +C

≤ C
∞∑
n=

nαp––α

∞∑
m=n

mα––αqE|X|qI(|X| ≤ (m + )α
)
+C

= C
∞∑
m=

mα––αqE|X|qI(|X| ≤ (m + )α
) m∑

n=

nαp––α +C

≤ C
∞∑
m=

mαp––αqE|X|qI(mα < |X| ≤ (m + )α
)

http://www.journalofinequalitiesandapplications.com/content/2012/1/229


Wang and Hu Journal of Inequalities and Applications 2012, 2012:229 Page 6 of 12
http://www.journalofinequalitiesandapplications.com/content/2012/1/229

+C
∞∑
m=

mαp––αqE|X|qI(|X| ≤ mα
)
+C

≤ C
∞∑
m=

m–E|X|pI(mα < |X| ≤ (m + )α
)

+C
∞∑
m=

mα(p–q)–
m∑
j=

jαqP
(
j –  < |X|/α ≤ j

)
+C

≤ CE|X|p +C
∞∑
j=

jαqP
(
j –  < |X|/α ≤ j

) ∞∑
m=j

mα(p–q)– +C

≤ C
∞∑
j=

jαpP
(
j –  < |X|/α ≤ j

)
+C ≤ CE|X|p +C < ∞. (.)

Note that EX < ∞ if E|X|p < ∞ for p≥ . We have that

I ≤ C
∞∑
n=

nαp––α

∫ ∞

nα

t–q
( n∑

i=

EX
i

)q/

dt

≤ C
∞∑
n=

nαp––α

∫ ∞

nα

t–q
( n∑

i=

EX

)q/

dt

≤ C
∞∑
n=

nαp––α+q/
∫ ∞

nα

t–q dt

≤ C
∞∑
n=

nαp––αq+q/ < ∞.

Case . α > /, αp >  and  < p < .
Take q = . Similar to the proofs of (.) and (.), we have that

I ≤ C
∞∑
n=

nαp––α

∫ ∞

nα

t–
n∑
i=

(
EX

i I
(|Xi| ≤ t

)
+ tP

(|Xi| > t
))
dt

≤ C
∞∑
n=

nαp––α

∞∑
m=n

m–α–EXI
(|X| ≤ (m + )α

)
+C

= C
∞∑
m=

m–α–EXI
(|X| ≤ (m + )α

) m∑
n=

nαp––α +C

≤ C
∞∑
m=

mαp––αEXI
(
mα < |X| ≤ (m + )α

)

+C
∞∑
m=

mαp––αEXI
(|X| ≤ mα

)
+C

≤ C
∞∑
m=

m–E|X|pI(mα < |X| ≤ (m + )α
)

+C
∞∑
m=

mα(p–)–
m∑
j=

jαP
(
j –  < |X|/α ≤ j

)
+C

http://www.journalofinequalitiesandapplications.com/content/2012/1/229
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≤ CE|X|p +C
∞∑
j=

jαP
(
j –  < |X|/α ≤ j

) ∞∑
m=j

mα(p–)– +C

≤ C
∞∑
j=

jαpP
(
j –  < |X|/α ≤ j

)
+C

≤ CE|X|p +C < ∞. (.)

Case . α > /, αp =  and p > .
Take q = . Note that / < α <  if αp = . Similar to the proofs of (.), it follows that

I < ∞. From the statements above, (.) is proved. The proof of the lemma is completed.
�

Lemma. (cf. Sung []) Let {Yn,n≥ } and {Zn,n≥ } be sequences of randomvariables.
Then for any q > , ε >  and a > ,

E

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(Yi + Zi)

∣∣∣∣∣ – εa

)+

≤
(


εq

+


q – 

)


aq–
E max

≤j≤n

∣∣∣∣∣
j∑

i=

Yi

∣∣∣∣∣
q

+ E max
≤j≤n

∣∣∣∣∣
j∑

i=

Zi

∣∣∣∣∣.

4 The proofs of main results

Proof of Theorem . First, we prove (.). For fixed n ≥ , let Xni = –nαI(Xi < –nα) +
XiI(|Xi| ≤ nα) + nαI(Xi > nα) and X ′

ni = Xi –Xni, i≥ . Then it is easy to have that

∞∑
n=

nαp–P
(
max
≤j≤n

|Sj| ≥ εnα
)

≤
∞∑
n=

nαp–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(Xni – EXni)

∣∣∣∣∣ ≥ εnα/

)

+
∞∑
n=

nαp–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(
X ′
ni – EX ′

ni
)∣∣∣∣∣ ≥ εnα/

)

:= I* + J *.

For J *, noting that |X ′
ni| ≤ |Xi|I(|Xi| > nα), we have by Markov’s inequality, Lemma . and

the proof of (.) that

J * ≤ C
∞∑
n=

nαp––α

n∑
i=

E
∣∣X ′

ni
∣∣

≤ C
∞∑
n=

nαp––α

n∑
i=

E|Xi|I
(|Xi| > nα

)

≤ C
∞∑
n=

nαp––αE|X|I(|X| > nα
)

≤ CE|X|p < ∞. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/229
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For I*, by Markov’s inequality and (.), we have that for any q ≥ ,

I* ≤ Cq

∞∑
n=

nαp––αqE

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(Xni – EXni)

∣∣∣∣∣
q)

≤ Cq

∞∑
n=

nαp––αq
n∑
i=

E|Xni|q +Cq

∞∑
n=

nαp––αq

( n∑
i=

EX
ni

)q/

:= I* + I*. (.)

We consider the following three cases:
Case . α > /, αp >  and p≥ .
Take q >max(p, αp–

α– 

), which implies that αp –  – αq + q/ < –.

For I* , we have by Cr ’s inequality, the proofs of (.) and (.) that

I* ≤ C
∞∑
n=

nαp––αq
n∑
i=

(
E|Xi|qI

(|Xi| ≤ nα
)
+ nαqP

(|Xi| > nα
))

≤ C
∞∑
n=

nαp––αq
n∑
i=

(
E|X|qI(|X| ≤ nα

)
+ nαqP

(|X| > nα
))

≤ C
∞∑
n=

nαp––αqE|X|qI(|X| ≤ nα
)
+C

∞∑
n=

nαp––αE|X|I(|X| > nα
)

< ∞. (.)

For I*, note that EX <∞ if E|X|p <∞ for p≥ . We have that

I* ≤ C
∞∑
n=

nαp––αq

( n∑
i=

EX
i

)q/

≤ C
∞∑
n=

nαp––αq

( n∑
i=

EX

)q/

≤ C
∞∑
n=

nαp––αq+q/ < ∞.

Case . α > /, αp >  and  < p < .
Take q = . Similar to the proofs of (.), (.), (.) and (.), we have that

I* ≤ C
∞∑
n=

nαp––α
n∑
i=

(
EX

i I
(|Xi| ≤ nα

)
+ nαP

(|Xi| > nα
))

≤ C
∞∑
n=

nαp––αEXI
(|X| ≤ nα

)
+C

∞∑
n=

nαp––αE|X|I(|X| > nα
)

< ∞. (.)

Case . α > /, αp =  and p > .
Take q = . Note that / < α <  if αp = . Similar to the proof of (.), it follows that

I* < ∞. From all the statements above, we have proved (.).

http://www.journalofinequalitiesandapplications.com/content/2012/1/229
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Next, we prove (.). Since Sj =
∑j

i=Xi and Xi = (Xni –EXni) + (X ′
ni –EX ′

ni), i = , , . . . ,n.
By Lemma ., the proofs of (.) and I* < ∞, it follows that

∞∑
n=

nαp––αE
(
max
≤j≤n

|Sj| – εnα
)+

≤ C
∞∑
n=

nαp––αqE

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(Xni – EXni)

∣∣∣∣∣
q)

+
∞∑
n=

nαp––αE

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(
X ′
ni – EX ′

ni
)∣∣∣∣∣

)

≤ C
∞∑
n=

nαp––αqE

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(Xni – EXni)

∣∣∣∣∣
q)

+C
∞∑
n=

nαp––α

n∑
i=

E|Xi|I
(|Xi| > nα

)
< ∞.

Hence (.) holds.
We will prove the equivalence of (.) and (.). First, we prove that (.) implies (.).

In fact, for all ε > , we have by Lemma . that

∞∑
n=

nαp––αE
(
max
≤j≤n

|Sj| – εnα
)+

=
∞∑
n=

nαp––α

∫ ∞


P
((

max
≤j≤n

|Sj| – εnα
)+

> t
)
dt

=
∞∑
n=

nαp––α

∫ ∞


P
(
max
≤j≤n

|Sj| – εnα > t
)
dt

=
∞∑
n=

nαp––α

∫ nα


P
(
max
≤j≤n

|Sj| – εnα > t
)
dt

+
∞∑
n=

nαp––α

∫ ∞

nα

P
(
max
≤j≤n

|Sj| – εnα > t
)
dt

≤
∞∑
n=

nαp–P
(
max
≤j≤n

|Sj| ≥ εnα
)

+
∞∑
n=

nαp––α

∫ ∞

nα

P
(
max
≤j≤n

|Sj| > t
)
dt < ∞.

Next, we prove that (.) implies (.). It is easy to see that

∞∑
n=

nαp––αE
(
max
≤j≤n

|Sj| – εnα
)+

=
∞∑
n=

nαp––α

∫ ∞


P
(
max
≤j≤n

|Sj| – εnα > t
)
dt

http://www.journalofinequalitiesandapplications.com/content/2012/1/229
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≥
∞∑
n=

nαp––α

∫ εnα


P
(
max
≤j≤n

|Sj| > εnα + t
)
dt

≥ ε

∞∑
n=

nαp–P
(
max
≤j≤n

|Sj| ≥ εnα
)
. (.)

Hence, by (.), (.) implies (.). The proof of the theorem is completed. �

Proof of Corollary . Taking αp =  in Theorem ., we have that for all ε > ,

∞∑
n=

n–P
(
max
≤j≤n

|Sj| ≥ εn/p
)
< ∞.

The rest of the proof is similar to that of Theorem . in Dung and Tien [] and is omit-
ted. �

Proof of Theorem . We use the same notation as that in the proof of Theorem.. Taking
q =  and a = nα in Lemma ., by (.) and Lemma ., it follows that

∞∑
n=

n–E
(
max
≤j≤n

|Sj| – εnα
)+

≤ C
∞∑
n=

n–α–E

(
max
≤j≤n

( j∑
i=

(Xni – EXni)

))
+

∞∑
n=

n–E

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(
X ′
ni – EX ′

ni
)∣∣∣∣∣

)

≤ C
∞∑
n=

n–α–
n∑
i=

(
EX

i I
(|Xi| ≤ nα

)
+ nαP

(|Xi| > nα
))

+
∞∑
n=

n–
n∑
i=

E|Xi|I
(|Xi| > nα

)

≤ C
∞∑
n=

n–α–EXI
(|X| ≤ nα

)
+C

∞∑
n=

n–E|X|I(|X| > nα
)

≤ C
∞∑
n=

n–α–
n∑

m=

mαP
(
m –  < |X|/α ≤ m

)

+C
∞∑
n=

n–
∞∑
m=n

E|X|I(m < |X|/α ≤ m + 
)

= C
∞∑
m=

mαP
(
m –  < |X|/α ≤ m

) ∞∑
n=m

n–α–

+C
∞∑
m=

E|X|I(m < |X|/α ≤ m + 
) m∑

n=

n–

≤ C
∞∑
m=

mαP
(
m –  < |X|/α ≤ m

)
+C

∞∑
m=

E|X|I(m < |X|/α ≤ m + 
)
ln+m

≤ CE|X| +CE|X| ln+ |X| < ∞.

Hence, (.) holds. �
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Proof of Theorem . Inspired by the proof of Theorem . of Gut [], we have that

∞∑
n=

nαp–P
(
sup
j≥n

∣∣∣∣Sjjα
∣∣∣∣ ≥ ε

)
=

∞∑
m=

m–∑
n=m–

nαp–P
(
sup
j≥n

∣∣∣∣Sjjα
∣∣∣∣ ≥ ε

)

≤ C
∞∑
m=

P
(

sup
j≥m–

∣∣∣∣Sjjα
∣∣∣∣ ≥ ε

) m–∑
n=m–

m(αp–)

≤ C
∞∑
m=

m(αp–)P
(

sup
j≥m–

∣∣∣∣Sjjα
∣∣∣∣ ≥ ε

)

= C
∞∑
m=

m(αp–)P
(
sup
k≥m

max
k–≤j<k

∣∣∣∣Sjjα
∣∣∣∣ ≥ ε

)

≤ C
∞∑
m=

m(αp–)
∞∑
k=m

P
(
max
≤j≤k

|Sj| ≥ εα(k–)
)

≤ C
∞∑
k=

P
(
max
≤j≤k

|Sj| ≥ εα(k–)
) k∑

m=

m(αp–)

≤ C
∞∑
k=

k(αp–)P
(
max
≤j≤k

|Sj| ≥ εα(k–)
)

≤ C
∞∑
k=

k+–∑
n=k

nαp–P
(
max
≤j≤n

|Sj| ≥
(

ε

α

)
nα

)

≤ C
∞∑
n=

nαp–P
(
max
≤j≤n

|Sj| ≥
(

ε

α

)
nα

)
. (.)

The desired result (.) follows from (.) and (.) immediately. �
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