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Abstract
Based on a viscosity hybrid steepest-descent method, in this paper, we introduce an
iterative scheme for finding a common element of a system of equilibrium and fixed
point problems of an infinite family of strictly pseudo-contractive mappings which
solves the variational inequality 〈(γ f –μF)q,p – q〉 ≤ 0 for p ∈ ⋂∞

i=1 F(Ti). Furthermore,
we also prove the strong convergence theorems for the proposed iterative scheme
and give a numerical example to support and illustrate our main theorem.
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1 Introduction
Throughout this paper, we assume that H is a real Hilbert space with inner product 〈·, ·〉
and norm ‖ · ‖. Let C be a nonempty closed convex subset ofH . A self-mapping f : C → C
is said to be a contraction on C if there exists a constant α ∈ (, ) such that ‖f (x) – f (y)‖ ≤
α‖x – y‖, ∀x, y ∈ C. We denote by �C the collection of mappings f verifying the above
inequality and note that each f ∈ �C has a unique fixed point in C.
AmappingT : C → C is said to be λ-strictly pseudo-contractive if there exists a constant

λ ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + λ
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C, (.)

and we denote by F(T) the set of fixed points of the mapping T; that is, F(T) = {x ∈ C :
Tx = x}.
Note that T is the class of λ-strictly pseudo-contractive mappings including the class of

nonexpansive mappings T on C (that is, ‖Tx – Ty‖ ≤ ‖x – y‖, x, y ∈ C) as a subclass. That
is, T is nonexpansive if and only if T is -strictly pseudo-contractive.
A mapping F : C → C is called k-Lipschitzian if there exists a positive constant k such

that

‖Fx – Fy‖ ≤ k‖x – y‖, ∀x, y ∈ C. (.)
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F is said to be η-strongly monotone if there exists a positive constant η such that

〈Fx – Fy,x – y〉 ≥ η‖x – y‖, ∀x, y ∈ C. (.)

Definition . A bounded linear operator A is said to be strongly positive, if there exists
a constant γ̄ >  such that

〈Ax,x〉 ≥ γ̄ ‖x‖, ∀x ∈H .

In , Marino and Xu [] introduced the following iterative scheme: for x = x ∈ C,

xn+ = αnγ f (xn) + (I – αnA)Txn, n≥ . (.)

They proved that under appropriate conditions of the sequence {αn}, the sequence {xn}
generated by (.) converges strongly to the unique solution of the variational inequality
〈(γ f – A)q,p – q〉 ≤ , p ∈ F(T), which is the optimality condition for the minimization
problem

min
x∈C



〈Ax,x〉 – h(x),

where h is a potential function for γ f (i.e., h′(x) = γ f (x) for x ∈H).
In , Jung [] extended the result of Marino and Xu [] to the class of k-strictly

pseudo-contractive mappings T : C → H with F(T) �= ∅ and introduced the following it-
erative scheme: for x = x ∈ C,

⎧⎨
⎩yn = βnxn + ( – βn)PCSxn,

xn+ = αnγ f (xn) + (I – αnA)yn, n ≥ ,
(.)

where S : C →H is a mapping defined by Sx = kx+ ( – k)Tx. He proved that the sequence
{xn} generated by (.) converges strongly to a fixed point q of T , which is the unique
solution of the variational inequality

〈
γ f (q) –Aq,p – q

〉 ≤ , p ∈ F(T).

Later, Tian [] considered the following iterative method for a nonexpansive mapping
T :H →H with F(T) �= ∅,

xn+ = αnγ f (xn) + (I –μαnF)Txn, n≥ , (.)

where F is a k-Lipschitzian and η-strongly monotone operator. He proved that the se-
quence {xn} generated by (.) converges to a fixed point q in F(T), which is the unique
solution of the variational inequality

〈
(γ f –μF)q,p – q

〉 ≤ , p ∈ F(T).

In , Saeidi [] introduced the following modified hybrid steepest-descent iterative
algorithm for finding a common element of the set of solutions of a system of equilibrium
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problems for a family F = {Fj : C × C → R, j = , , . . . ,M} and the set of common fixed
points for a family of infinitely nonexpansive mappings S = {Si : C → C} with respect to
W -mappings (see []):

⎧⎨
⎩yn =WnJFMrM ,n · · · JFr,nJFr,nxn,
xn+ = βxn + ( – β)(I – λnB)yn, ∀n ∈N,

(.)

where B is a relaxed (γ , r)-cocoercive, k-Lipschitzian mapping such that r > γ k. Then,
under weaker hypotheses on coefficients, he proved the strongly convergence of the pro-
posed iterative algorithm to the unique solution of the variational inequality.
Recently, Wang [] extended and improved all the above results. He introduced a new

iterative scheme: for x = x ∈ C,

⎧⎨
⎩yn = βnxn + ( – βn)Wnxn,

xn+ = αnγ f (xn) + (I –μαnF)yn, n≥ ,
(.)

whereWn is amapping defined by (.), and F is a k-Lipschitzian and η-stronglymonotone
operatorwith  < μ < η/k. He proved that the sequence {xn} generated by (.) converges
strongly to a common fixed point of an infinite family of λi-strictly pseudo-contractive
mappings, which is a unique solution of the variational inequality

〈
(γ f –μF)q,p – q

〉 ≤ , p ∈
∞⋂
i=

F(Ti).

Very recently, He, Liu and Cho [] introduced an explicit scheme which was defined by
the following suitable sequence:

zn+ = εnγ f (zn) + (I – εnA)WnSr,nS

r,n · · ·SKrK ,n

zn, ∀n ∈N .

They generated Wn-mapping by {Ti} and {λn} where {Ti} is a family of nonexpansive
mappings from H into itself. They found that if {rk,n}Kk=, {εn} and {λn} satisfy appropriate
conditions and F := (

⋂K
k= SEP(GK )) ∩ (

⋂
n∈N F(Tn)) �= ∅, then {zn} converges strongly to

x* ∈ F , which satisfies the variational inequality 〈(A – γ f )x*,x – x*〉 ≥  for all x ∈ F .
In this paper, we introduce a new iterative scheme in a Hilbert spaceH which is a mixed

iterative scheme of (.) and (.). We prove that the sequence converges strongly to a
common element of the set of solutions of the system of equilibrium problems and the
set of common fixed points of an infinite family of strictly pseudo-contractive mappings
by using a viscosity hybrid steepest-descent method. The results obtained in this paper
improved and extended the above mentioned results and many others. Finally, we give a
simple numerical example to support and illustrate our main theorem in the last part.

2 Preliminaries
Let H be a real Hilbert space and C be a nonempty closed convex subset of H . We have

‖x – y‖ = ‖x‖ + ‖y‖ – 〈x, y〉, ∀x, y ∈H . (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/224
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Recall that the nearest projection PC fromH toC assigns to each x ∈ H the unique point
PCx ∈ C satisfying the property

‖x – PCx‖ =min
y∈C ‖x – y‖.

We recall some lemmas which will be needed in the rest of this paper.

Lemma . In a Hilbert space H , the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, x, y ∈ H .

Lemma. Let B be a k-Lipschitzian and η-stronglymonotone operator on aHilbert space
H with k > , η > ,  < μ < η/k and  < t < .Then S = (I – tμB) :H →H is a contraction
with a contractive coefficient  – tτ and τ = 

μ(η –μk).

Proof From (.), (.) and (.), we have

‖Sx – Sy‖ =
∥∥(x – y) – tμ(Bx – By)

∥∥

= ‖x – y‖ + tμ‖Bx – By‖ – μt〈Bx – By,x – y〉
≤ ‖x – y‖ + tμk‖x – y‖ – μtη‖x – y‖

=
[
 – tμ

(
η –μk

)]‖x – y‖

≤ ( – tτ )‖x – y‖,

where τ = 
μ(η –μk), and so, ‖Sx – Sy‖ ≤ ( – tτ )‖x – y‖.

Hence, S is a contraction with a contractive coefficient  – tτ . �

Lemma . Let H be a Hilbert space. For a given z ∈H and u ∈ C,

u = PCz ⇔ 〈u – z, v – u〉 ≥ , ∀v ∈ C.

Lemma . Let H be a real Hilbert space. For q which solves the variational inequality
〈(γ f –μB)q,p – q〉 ≤ , f ∈ �H , p ∈ F(T), the following statement is true:

〈
(γ f –μB)q,p – q

〉 ≤  ⇔ P
(I –μB + γ f )q = q, (.)

where 
 := (
⋂∞

i= F(Ti))∩ (
⋂M

j= SEP(Fj)).

Proof From Lemma (.), it follows that

q = P
(I –μB + γ f )q ⇔ 〈
q – (I –μB + γ f )q,p – q

〉 ≥ , p ∈ 
,

⇔ 〈
(μB – γ f )q,p – q

〉 ≥ 

⇔ 〈
(γ f –μB)q,p – q

〉 ≤ . �

http://www.journalofinequalitiesandapplications.com/content/2012/1/224
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Lemma . [] Let C be a closed convex subset of a Hilbert space H and T : C → C be
a nonexpansive mapping with F(T) �= ∅; if the sequence {xn} weakly converges to x and
(I – T)xn converges strongly to y, then (I – T)x = y.

Lemma . [] Let {xn} and {zn} be bounded sequences in a Banach space E and {γn} be
a sequence in [, ] which satisfies the following condition:

 < lim inf
n→∞ γn ≤ lim sup

n→∞
γn < .

Suppose that xn+ = γnxn + ( – γn)zn, n≥  and lim supn→∞(‖zn+ – zn‖– ‖xn+ – xn‖) ≤ .
Then limn→∞ ‖zn – xn‖ = .

Lemma . [, ] Let {sn} be a sequence of non-negative real numbers satisfying

sn+ ≤ ( – λn)sn + λnδn + γn, n≥ ,

where {λn}, {δn} and {γn} satisfy the following conditions:
(i) {λn} ⊂ [, ] and

∑∞
n= = ∞;

(ii) lim supn→∞ δn ≤  or
∑∞

n= λnδn < ∞;
(iii) γn ≥  (n≥ ),

∑∞
n= γn < ∞.

Then limn→∞ sn = .

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H and
T : C → C be a λ-strictly pseudo-contractive mapping. Define a mapping S : C → C by
Sx = αx + ( – α)Tx for all x ∈ C and α ∈ [λ, ). Then S is a nonexpansive mapping such
that F(S) = F(T).

In this work, we defined the mappingWn by

Un,n+ = I,

Un,n = γnT ′
nUn,n+ + ( – γn)I,

Un,n– = γn–T ′
n–Un,n + ( – γn–)I,

...

Un,k = γkT ′
kUn,k+ + ( – γk)I,

Un,k– = γk–T ′
k–Un,k + ( – γk–)I,

...

Un, = γT ′
Un, + ( – γ)I,

Wn =Un, = γT ′
Un, + ( – γ)I,

(.)

where γ,γ, . . . are real numbers such that  ≤ γn ≤ , T ′
i = θiI + ( – θi)Ti where Ti is a

λi-strictly pseudo-contractive mapping of C into itself and θi ∈ [λi, ). By Lemma ., we
know that T ′

i is a nonexpansive mapping and F(Ti) = F(T ′
i ). As a result, it can be easily

seen thatWn is also a nonexpansive mapping.

http://www.journalofinequalitiesandapplications.com/content/2012/1/224
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Lemma . [] Let C be a nonempty closed convex subset of a strictly convex Banach
space E. Let T ′

,T ′
, . . . be nonexpansive mappings of C into itself such that

⋂∞
i= F(T ′

i ) �= ∅
and γ,γ, . . . be real numbers such that  < γi ≤ b <  for each i = , , . . . . Then for any
x ∈ C and k ∈N , the limit limn→∞ Un,kx exists.

By using Lemma ., one can define the mappingW of C into itself as follows:

Wx := lim
n→∞Wnx = lim

n→∞Un,x, x ∈ C. (.)

Such a mapping W is called the modified W -mapping generated by T,T, . . . , γ,γ, . . .
and θ, θ, . . . .

Lemma . [] Let C be a nonempty closed convex subset of a strictly convex Banach
space E. Let T ′

,T ′
, . . . be nonexpansive mappings of C into itself such that

⋂∞
i= F(T ′

i ) �= ∅
and γ,γ, . . . be real numbers such that  < γi ≤ b <  for each i = , , . . . . Then F(W ) =⋂∞

i= F(T ′
i ).

Combining Lemmas .-., one can get that F(W ) =
⋂∞

i= F(T ′
i ) =

⋂∞
i= F(Ti).

Lemma . [] Let C be a nonempty closed convex subset of a Hilbert space H , {T ′
i :

C → C} be a family of infinite nonexpansive mappings with
⋂∞

i= F(T ′
i ) �= ∅, {γi} be a real

sequence such that  < γi ≤ b < , for each i ≥ . If K is any bounded subset of C, then

lim
n→∞ sup

x∈K
‖Wx –Wnx‖ = . (.)

For solving the equilibrium problem, let us give the following assumptions on a bifunc-
tion F : C ×C →R, which were imposed in []:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C, limt↓ F(tz + ( – t)x, y) ≤ F(x, y);
(A) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.

Lemma . [] Let C be a nonempty closed convex subset of H , and let F be a bifunction
of C ×C into R satisfying (A)-(A). Then for r >  and x ∈H , there exists z ∈ C such that

F(z, y) +

r
〈y – z, z – x〉 ≥ . (.)

Lemma . [] Let C be a nonempty closed convex subset of H , and let F be a bifunction
of C ×C into R satisfying (A)-(A). For r > , define a mapping JFr :H → C as follows:

JFr (x) =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
(.)

for all x ∈ H . Then the following conclusions hold:
() JFr is single-valued;
() JFr is firmly nonexpansive, i.e., for any x, y ∈H ,

∥∥JFr (x) – JFr (y)
∥∥ ≤ 〈

JFr (x) – JFr (y),x – y
〉
;

http://www.journalofinequalitiesandapplications.com/content/2012/1/224
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() F(JFr ) = EP(F);
() EP(F) is closed and convex.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T = {Ti}Ni= be an infinite family of nonexpanxive mappings with F(T ) =

⋂∞
i= F(Ti) �= ∅ and

{γi} be a real sequence such that  < γi ≤ b <  for each i≥ . Then:
() Wn is nonexpansive and F(Wn) =

⋂n
i= F(Ti) for each n≥ ;

() for each x ∈ C and for each positive integer k, the limit limn→∞ Un,kx exists;
() the mappingW : C → C defined byWx = limn→∞ Wnx = limn→∞ Un,x is a

nonexpansive mapping satisfying F(W ) = F(T ) and it is called theW -mapping
generated by T,T, . . . and γ,γ, . . . ;

() if K is any bounded subset of C, then limn→∞ supx∈K ‖Wx –Wnx‖ = .

3 Main results
In this section, we will introduce an iterative scheme by using a viscosity hybrid steepest-
descent method for finding a common element of the set of variational inequalities, fixed
points for an infinite family of strictly pseudo-contractive mappings and the set of solu-
tions of a system of equilibrium problems in a real Hilbert space.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , let
Ti : H → H be a λi-strictly pseudo-contractive mapping with

⋂∞
i= F(Ti) �= ∅, F = {Fj : j =

, , , . . . ,M} be a finite family of bifunctions C × C into R satisfying (A)-(A) and γi

be a real sequence such that  ≤ γi ≤ b ≤  for each i ≥ . Let B be a k-Lipschitzian and η-
strongly monotone operator on C with  < μ < η/k and f ∈ �H with  < γ < μ(η– μk

 )/α =
τ /α and τ < . Assume that 
 := (

⋂∞
i= F(Ti)) ∩ (

⋂M
j= SEP(Fj)) �= ∅. Let the mapping Wn be

defined by (.). Let {xn} be the sequence generated by x ∈H and

⎧⎪⎪⎨
⎪⎪⎩
un = JFMrM,n J

FM–
rM–,n · · · JFr,n JFr,N xn,

yn = βnxn + ( – βn)Wnun,

xn+ = αnγ f (xn) + (I – αnμB)yn, ∀n ∈N and n≥ ,

(.)

where {αn} and {βn} are sequences in (, ) which satisfy the following conditions:
(C) limn→∞ αn =  and ∞

n=αn = ∞;
(C)  < lim infn→∞ βn < lim supn→∞ βn ≤ a <  for some constant a ∈ (, );
(C) lim infn→∞ rj,n > , for each j = , , . . . ,M.

Then the sequence {xn} converges strongly to q ∈ 
, where q = P
(I – μB + γ f )q, which is
the unique solution of the variational inequality

〈
(γ f –μB)q,p – q

〉 ≤ , ∀p ∈ 
, (.)

or equivalently, q is the unique solution of the minimization problem

min
x∈




〈Ax,x〉 + h(x),

where h is a potential function for γ f .

http://www.journalofinequalitiesandapplications.com/content/2012/1/224
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Proof We will divide the proof of Theorem . into several steps.
Step . We show that {xn} is bounded. Let p ∈ 
. Since for each k = , , , . . . ,M, JFkrk,n

is nonexpansive. Given �k
n = JFkrk,n J

Fk–
rk–,n J

Fk–
rk–,n · · · JFr,n JFr,n for k ∈ {, , , . . . ,M} and �

n = I , for
each n ∈N, we have

∥∥�k
nxn – p

∥∥ =
∥∥�k

nxn – �k
np

∥∥ ≤ ‖xn – p‖.

Consider,

‖yn – p‖ =
∥∥βnxn + ( – βn)Wnun – p

∥∥
=

∥∥βn(xn – p) + ( – βn)(Wnun – p)
∥∥

≤ βn‖xn – p‖ + ( – βn)
∥∥(Wnun – p)

∥∥
= βn‖xn – p‖ + ( – βn)

∥∥Wn�M
n xn – p

∥∥
≤ βn‖xn – p‖ + ( – βn)

∥∥�M
n xn – p

∥∥
≤ βn‖xn – p‖ + ( – βn)‖xn – p‖
= ‖xn – p‖. (.)

From Lemma ., (.) and (.), it follows that

‖xn+ – p‖ =
∥∥αnγ f (xn) + (I – αnμB)yn – p

∥∥
=

∥∥αn
(
γ f (xn) –μBp

)
+ (I – αnμB)yn – (I – αnμB)p

∥∥
=

∥∥(I – αnμB)(yn – p) + αn
(
γ f (xn) –μBp + γ f (p) – γ f (p)

)∥∥
≤ ∥∥(I – αnμB)(yn – p)

∥∥ + αnγ
∥∥f (xn) – f (p)

∥∥ + αn
∥∥γ f (p) –μBp

∥∥
≤ ( – αnτ )‖yn – p‖ + αnγα‖xn – p‖ + αn

∥∥γ f (p) –μBp
∥∥

≤ ( – αnτ )‖xn – p‖ + αnγα‖xn – p‖ + αn
∥∥γ f (p) –μBp

∥∥
=

[
 – αn(τ – γα)

]‖xn – p‖ + αn
τ – γα

τ – γα

∥∥γ f (p) –μBp
∥∥

≤ max

{
‖xn – p‖, ‖γ f (p) –μBp‖

τ – γα

}
; n≥ . (.)

By mathematical induction, we have

‖xn – p‖ ≤ max

{
‖x – p‖, ‖γ f (p) –μBp‖

τ – γα

}
, ∀n≥ , (.)

and we obtain {xn} is bounded. So are {yn}, {Wn�k
n(xn)} and {f (xn)}.

Step . We claim that if {xn} is a bounded sequence in C, then

lim
n→∞

∥∥�k
nxn – �k

n+xn
∥∥ =  (.)

for every k ∈ {, , , . . . ,M}. From Step  of the proof in [, Theorem .], we have for
k ∈ {, , , . . . ,M},

lim
n→∞

∥∥JFkrk,n+xn – JFkrk,nxn
∥∥ = . (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/224
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Note that for every k ∈ {, , , . . . ,M}, we have

�k
n = JFkrk,n J

Fk–
rk–,n J

Fk–
rk–,n · · · JFr,n JFr,n = JFkrk,n�k–

n .

So, we note that

∥∥�k
nxn – �k

n+xn
∥∥ =

∥∥JFkrk,n�k–
n xn – JFkrk,n+�k–

n+xn
∥∥

≤ ∥∥JFkrk,n�k–
n xn – JFkrk,n+�k–

n xn
∥∥ +

∥∥JFkrk,n+�k–
n xn – JFkrk,n+�k–

n+xn
∥∥

≤ ∥∥JFkrk,n�k–
n xn – JFkrk,n+�k–

n xn
∥∥ +

∥∥�k–
n xn – �k–

n+xn
∥∥

≤ ∥∥JFkrk,n�k–
n xn – JFkrk,n+�k–

n xn
∥∥ +

∥∥JFk–rk–,n�k–
n xn – JFk–rk–,n+�k–

n xn
∥∥

+
∥∥�k–

n xn – �k–
n+xn

∥∥
≤ ∥∥JFkrk,n�k–

n xn – JFkrk,n+�k–
n xn

∥∥ +
∥∥JFk–rk–,n�k–

n xn – JFk–rk–,n+�k–
n xn

∥∥
+ · · · + ∥∥JFr,n�

nxn – JFr,n+�
nxn

∥∥ +
∥∥JFr,nxn – JFr,n+xn

∥∥. (.)

Now, applying (.) to (.), we conclude (.).
Step . We show that limn→∞ ‖xn+ – xn‖ = .
We define a sequence {zn} by zn = (xn+ – βnxn)/( – βn), so that xn+ = βnxn + ( – βn)zn.

We now observe that

zn+ – zn =
xn+ – βn+xn+

 – βn+
–
xn+ – βnxn

 – βn

=
αn+γ f (xn+) + (I –μαn+B)yn+ – βn+xn+

 – βn+

–
αnγ f (xn) + (I –μαnB)yn – βnxn

 – βn

=
αn+(γ f (xn+) –μByn+)

 – βn+
–

αn(γ f (xn) –μByn)
 – βn

+Wn+un+ –Wnun. (.)

It follows from (.) that

‖zn+ – zn‖ ≤ αn+

 – βn+

(∥∥γ f (xn+)
∥∥ + ‖μByn+‖

)
+

αn

 – βn

(∥∥γ f (xn)
∥∥ + ‖μByn‖

)
+ ‖Wn+un+ –Wnun‖. (.)

We observe that

‖Wn+un+ –Wnun‖
=

∥∥Wn+�k
n+xn+ –Wn�k

nxn
∥∥

≤ ∥∥Wn+�k
n+xn+ –Wn+�nxn

∥∥ +
∥∥Wn+�k

nxn+ –Wn�k
nxn

∥∥, (.)

and compute

∥∥Wn+�k
nxn+ –Wn�k

nxn
∥∥ ≤ ∥∥Wn+�k

nxn+ –Wn+�k
nxn

∥∥ +
∥∥Wn+�k

nxn –Wn�k
nxn

∥∥
≤ ‖xn+ – xn‖ +

∥∥Wn+�k
nxn –Wn�k

nxn
∥∥. (.)
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Consider,

∥∥Wn+�k
nxn –Wn�k

nxn
∥∥ =

∥∥γT ′
Un+,�k

nxn – γT ′
Un,�k

nxn
∥∥

≤ γ
∥∥Un+,�k

nxn –Un,�k
nxn

∥∥
= γ

∥∥γT ′
Un+,�k

nxn – γT ′
Un,�k

nxn
∥∥

≤ · · ·
≤ γγ · · ·γn

∥∥Un+,n+�k
nxn –Un,n+�k

nxn
∥∥

≤ M

n∏
i=

γi, (.)

whereM ≥  is a constant such that ‖Un+,n+un –Un,n+un‖ ≤ M for all n ≥ .
Substituting (.) and (.) into (.), we can obtain

‖zn+ – zn‖ ≤ αn+

 – βn+

(∥∥γ f (xn+)
∥∥ + ‖μByn+‖

)
+

αn

 – βn

(∥∥γ f (xn)
∥∥ + ‖μByn‖

)

+
∥∥Wn+�k

n+xn+ –Wn+�k
nxn+

∥∥ + ‖xn+ – xn‖ +M

n∏
i=

γi

≤ M

(
αn+

 – βn+
+

αn

 – βn

)
+

∥∥Wn+�k
n+xn+ –Wn+�k

nxn+
∥∥

+ ‖xn+ – xn‖ +M

n∏
i=

γi (.)

whereM = sup{‖γ f (xn)‖ + ‖μByn‖,n ≥ }.
It follows from (.) that

‖zn+ – zn‖ ≤ M

(
αn+

 – βn+
+

αn

 – βn

)
+

∥∥�k
n+xn+ – �k

nxn+
∥∥

+ ‖xn+ – xn‖ +M

n∏
i=

γi.

Hence, we have

‖zn+ – zn‖ – ‖xn+ – xn‖ ≤ M

(
αn+

 – βn+
+

αn

 – βn

)
+

∥∥�k
n+xn+ – �k

nxn+
∥∥ +M

n∏
i=

γi.

From limn→∞ ‖�k
nxn – �k

n+xn‖ =  and the condition limn→∞ αn =  and  <
limn→∞ infβn < limn→∞ supβn ≤ a <  for some a ∈ (, ), it follows that

lim
n→∞ sup

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ . (.)

By Lemma ., we obtain

lim
n→∞‖zn – xn‖ = . (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/224
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From xn+ = βnxn + ( – βn)zn and by (.), we get

‖xn+ – xn‖ = ( – βn)‖zn – xn‖. (.)

Hence,

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – βn)‖zn – xn‖ = .

Step . We claim that limn→∞ ‖xn –Wnun‖ = .

‖xn –Wnun‖ ≤ ‖xn – xn+‖ + ‖xn+ –Wnun‖
= ‖xn – xn+‖ +

∥∥αnγ f (xn) + (I – αnμB)yn –Wnun
∥∥

= ‖xn – xn+‖ +
∥∥αnγ f (xn) + yn – αnμByn –Wnun

∥∥
≤ ‖xn+ – xn‖ + αn

∥∥γ f (xn) –μByn
∥∥ + ‖yn –Wnun‖

≤ ‖xn+ – xn‖ + αn
∥∥γ f (xn) –μByn

∥∥ +
∥∥βnxn + ( – βn)Wnun –Wnun

∥∥
≤ ‖xn+ – xn‖ + αn

∥∥γ f (xn) –μByn
∥∥ + βn‖xn –Wnun‖.

It follows that

‖xn –Wnun‖ ≤ 
 – βn

‖xn – xn+‖ + αn

 – βn

∥∥γ f (xn) –μByn
∥∥.

By the conditions (C) and (C), we obtain

lim
n→∞‖xn –Wnun‖ = . (.)

Step . We show that

lim
n→∞

∥∥�k
nxn – �k+

n xn
∥∥ = , ∀k = , , . . . ,M –  (.)

for any p ∈ 
 and ∀k = , , . . . ,M – . We note that JFk+rk+,n is firmly nonexpansive by
Lemma ., then we observe that

∥∥�k+
n xn – p

∥∥ =
∥∥JFk+rk+,n�k

nxn – JFk+rk+,np
∥∥

≤ 〈
JFk+rk+,n�k

nxn – JFk+rk+,np,�k
nxn – p

〉
=

〈�k+
n xn – p,�k

nxn – p
〉

=


(∥∥�k+

n xn – p
∥∥ +

∥∥�k
nxn – p

∥∥ –
∥∥�k+

n xn – �k
nxn

∥∥),
and hence

∥∥�k+
n xn – p

∥∥ ≤ ∥∥�k
nxn – p

∥∥ –
∥∥�k+

n xn – �k
nxn

∥∥

≤ ‖xn – p‖ – ∥∥�k+
n xn – �k

nxn
∥∥. (.)
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It follows that

‖xn+ – p‖ =
∥∥αn

(
γ f (xn) –μBp

)
+ (I – αnμB)(yn – p)

∥∥

= α
n
∥∥(

γ f (xn) –μBp
)∥∥ + ( – αnτ )‖yn – p‖

+ αn
〈(
γ f (xn) –μBp

)
, (I – αnμB)(yn – p)

〉
≤ α

n
∥∥(

γ f (xn) –μBp
)∥∥ + ( – αnτ )

[
βn‖xn – p‖ + ( – βn)

∥∥�M
n xn – p

∥∥]
+αn

〈(
γ f (xn) –μBp

)
, (I – αnμB)(yn – p)

〉
≤ ( – αnτ )βn‖xn – p‖ + ( – αnτ )( – βn)

∥∥�M
n xn – p

∥∥ + cn

= ( – αnτ )βn‖xn – p‖ + (
 – αn(τ – γ )

)
( – βn)

∥∥�M
n xn – p

∥∥

+ α
nτ

( – βn)
∥∥�M

n xn – p
∥∥

– αnγ ( – βn)
∥∥�M

n xn – p
∥∥ + cn

≤ ( – αnτ )βn‖xn – p‖ + (
 – αn(τ – γ )

)
( – βn)

∥∥�M
n xn – p

∥∥

+ α
nτ

( – βn)
∥∥�M

n xn – p
∥∥ + cn

=
(
 – αn(τ – γ )

)
βn‖xn – p‖ + α

nτ
βn‖xn – p‖ – αnγβn‖xn – p‖

+
(
 – αn(τ – γ )

)
( – βn)

∥∥�k+
n xn – p

∥∥

+ α
nτ

( – βn)
∥∥�M

n xn – p
∥∥ + cn

=
(
 – αn(τ – γ )

)
βn‖xn – p‖ + α

nτ
βn‖xn – p‖ – αnγβn‖xn – p‖

+
(
 – αn(τ – γ )

)
( – βn)

[‖xn – p‖ – ∥∥�k+
n xn – �k

nxn
∥∥]

+ α
nτ

( – βn)
∥∥�M

n xn – p
∥∥ + cn

≤ (
 – αn(τ – γ )

)‖xn – p‖ + α
nτ

‖xn – p‖

–
(
 – αn(τ – γ )

)
( – βn)

∥∥�k+
n xn – �k

nxn
∥∥ + cn,

where

cn = αn
〈(
γ f (xn) –μBp

)
, (I – αnμB)(yn – p)

〉
. (.)

It follows from the condition (C) that

lim
n→∞ cn = . (.)

So, we obtain

(
 – αn(τ – γ )

)
( – βn)

∥∥�k+
n xn – �k

nxn
∥∥

≤ (
 – αn(τ – γ )

)‖xn – p‖ – ‖xn+ – p‖

+ α
nτ

‖xn – p‖ + cn

≤ ‖xn – p‖ – ‖xn+ – p‖ + α
nτ

‖xn – p‖ + cn

= ‖xn – xn+‖
(‖xn – p‖ – ‖xn+ – p‖) + α

nτ
‖xn – p‖ + cn.
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Using the condition (C), (.) and (.), we obtain

lim
n→∞

∥∥�k+
n xn – �k

nxn
∥∥ = , ∀k = , , . . . ,M – . (.)

Step . We show that lim supn→∞〈(γ f –μB)q,xn – q〉 ≤ , where q = P
(I –μB + γ f )q.
The Banach contraction principle guarantees that P
(I – μB + γ f ) has a unique fixed

point q which is the unique solution of (.). Let {xnk } be a subsequence of {xn} such that

lim
k→∞

〈
(γ f –μB)q,xnm – q

〉
= lim sup

n→∞

〈
(γ f –μB)q,xn – q

〉
.

Since {xnk } is bounded, then there exists a subsequence {xnki } which converges weakly
to z ∈H . Without loss of generality, we can assume that xnk ⇀ z. We claim that z ∈ 
.
Next, we need to show that z ∈ ⋂M

j= SEP(Fj). First, by (A) and given y ∈ C and k ∈
{, , . . . ,M – }, we have


rk+,n

〈
y – �k+

n xn,�k+
n xn – �k

nxn
〉 ≥ Fk+

(
y,�k+

n xn
)
.

Thus,

〈
y – �k+

nm xnm ,
�k+
nm xnm – �k

nmxnm
rk+,nm

〉
≥ Fk+

(
y,�k+

nm xnm
)
. (.)

From (A), F(y, ·) is a lower semicontinuous and convex, and thus weakly semicontinuous.
The condition (C) and (.) imply that

�k+
nm xnm – �k

nmxnm
rk+,nm

→ , (.)

in norm. Therefore, lettingm → ∞ in (.) yields

Fk+(y, z) ≤ lim
m→∞Fk+

(
y,�k+

nm xnm
) ≤ ,

for all y ∈ H and k ∈ {, , . . . ,M – }. Replacing y with yt = ty + ( – t)z with t ∈ (, ) and
using (A) and (A), we obtain

 = Fk+(yt , yt) ≤ tFk+(yt , y) + ( – t)Fk+(yt , z) ≤ tFk+(yt , y).

Hence, Fk+(ty + ( – t)z, y) ≥ , for all t ∈ (, ) and y ∈ H . Letting t → + and using (A),
we conclude that Fk+(z, y) ≥  for all y ∈H and k ∈ {, , . . . ,M}. Therefore,

z ∈ EP(Fj), ∀j = , , . . . ,M, (.)

that is,

z ∈
M⋂
j=

SEP(Fj). (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/224
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Next, we show that z ∈ ⋂∞
i= F(Ti). By Lemma ., we have

Wnmz →Wz, ∀z ∈ C, (.)

and F(W ) =
⋂∞

i= F(Ti). Assume that z /∈ F(W ), then z �= Wz. Therefore, from the Opial
property of a Hilbert space, (.), (.) and Step , we have

lim inf
m→∞ ‖xnm – z‖ < lim inf

m→∞ ‖xnm –Wz‖
≤ lim inf

m→∞
{∥∥xnm –Wnm�M

nmxnm
∥∥

+
∥∥Wnm�M

nmxnm –Wnm�M
nmz

∥∥ +
∥∥Wnm�M

nmz –Wz
∥∥}

≤ lim inf
m→∞

{‖xnm – z‖ + ‖Wnmz –Wz‖}
≤ lim inf

m→∞ ‖xnm – z‖.

It is a contradiction. Thus z belongs to F(W ) =
⋂∞

i= F(Ti). Hence, z ∈ 
.
Hence, by Lemma ., we obtain

lim sup
n→∞

〈
(γ f –μB)q,xn – q

〉
= lim sup

m→∞
〈
(γ f –μB)q,xnm – q

〉
=

〈
(γ f –μB)q, z – q

〉 ≤ .

Step . We claim that xn converges strongly to q = P
(I –μB + γ f )q. We observe that

‖xn+ – q‖ =
∥∥αnγ f (xn) + (I –μαnB)yn – q

∥∥

=
∥∥αnγ f (xn) + (I –μαnB)yn – q +μαnBq –μαnFq

∥∥

≤ ∥∥(I –μαnB)yn – (I –μαnB)q
∥∥ + αn

〈
γ f (xn) –μBq,xn+ – q

〉
≤ ( – αnτ )‖yn – q‖

+ αn
〈
γ f (xn) – γ f (q),xn+ – q

〉
+ αn

〈
γ f (q) –μBq,xn+ – q

〉
≤ ( – αnτ )‖xn – q‖ + αnγα

(‖xn – q‖ + ‖xn+ – q‖)
+ αn

〈
γ f (q) –μBq,xn+ – q

〉
≤ ( – αnτ )

 – αnγα
‖xn – q‖ + αnγα

 – αnγα
‖xn – q‖

+
αn

 – αnγα

〈
γ f (q) –μBq,xn+ – q

〉

=
(
 –

αn(τ – γα) + α
nτ



 – αnγα

)
‖xn – q‖ + αn

 – αnγα

〈
γ f (q) –μBq,xn+ – q

〉

=
(
 –

αn(τ – γα)
 – αnγα

)
‖xn – q‖

+
αn(τ – γα)
 – αnγα

(


(τ – γα)
〈
γ f (q) –μBq,xn+ – q

〉

+
αnτ



(τ – γα)
‖xn – q‖

)

http://www.journalofinequalitiesandapplications.com/content/2012/1/224


Witthayarat et al. Journal of Inequalities and Applications 2012, 2012:224 Page 15 of 20
http://www.journalofinequalitiesandapplications.com/content/2012/1/224

=
(
 –

αn(τ – γα)
 – αnγα

)
‖xn – q‖

+
αn(τ – γα)
 – αnγα

(


(τ – γα)
〈
γ f (q) –μBq,xn+ – q

〉
+

αnτ


(τ – γα)
M

)
,

where M = supn≥ ‖xn – q‖. Put λn = αn(τ–γ α)
–αnγ α

and δn = 
τ–γ α

〈γ f (q) – μBq,xn+ – q〉. It
follows that

‖xn+ – q‖ ≤ ( – λn)‖xn – q‖ + λnδn + γn.

From (C), (C) and Step , it follows that
∑∞

n= λn = ∞ and lim supn→∞ δn ≤ . Hence,
by Lemma ., the sequence {xn} converges strongly to q. �

Using Theorem ., we obtain the following corollaries.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
{Ti} be an infinite family of nonexpansive mappings with

⋂∞
i= F(Ti) �= ∅, F = {Fj : j =

, , , . . . ,M} be a finite family of bifunctions C × C into R satisfying (A)-(A) and γi

be a real sequence such that  ≤ γi ≤ b ≤  for each i ≥ . Let B be a k-Lipschitzian and η-
strongly monotone operator on C with  < μ < η/k and f ∈ �H with  < γ < μ(η– μk

 )/α =
τ /α and τ < . Assume that 
 := (

⋂∞
i= F(Ti)) ∩ (

⋂M
j= SEP(Fj)) �= ∅. Let the mapping Wn be

defined by (.). Let {xn} be the sequence generated by x ∈H and

⎧⎨
⎩yn = βnxn + ( – βn)WnJFMrM,n J

FM–
rM–,n · · · JFr,n JFr,N xn,

xn+ = αnγ f (xn) + (I – αnμB)yn, ∀n ∈N and n≥ ,

where {αn} and {βn} are the sequences in (, ) which satisfy the following conditions:
(C) limn→∞ αn =  and ∞

n=αn = ∞;
(C)  < lim infn→∞ βn < lim supn→∞ βn ≤ a <  for some constant a ∈ (, );
(C) lim infn→∞ rj,n > , for each j = , , . . . ,M .

Then the sequence {xn} converges strongly to q ∈ 
 where q = P
(I – μB + γ f )q, which is
the unique solution of the variational inequality

〈
(γ f –μB)q,p – q

〉 ≤ , ∀p ∈ 
.

Remark . Corollary . extends and improves Theorem . from f an infinite family of
nonexpansive mappings to a family of strictly pseudo contractive mappings.

IfM =  in Theorem ., we obtain the following corollary.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
{Ti} be an infinite family of nonexpansive mappings with

⋂∞
i= F(Ti) �= ∅, F = {Fj : j =

, , , . . . ,M} be a finite family of bifunctions C × C into R satisfying (A)-(A) and γi

be a real sequence such that  ≤ γi ≤ b ≤  for each i ≥ . Let B be a k-Lipschitzian and η-
strongly monotone operator on C with  < μ < η/k and f ∈ �H with  < γ < μ(η– μk

 )/α =
τ /α and τ < . Assume that 
 := (

⋂∞
i= F(Ti)) ∩ (

⋂M
j= SEP(Fj)) �= ∅. Let the mapping Wn be
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defined by (.). Let {xn} be the sequence generated by x ∈H and

⎧⎪⎪⎨
⎪⎪⎩
F(un, y) + 

r 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

yn = βnxn + ( – βn)Wnun,

xn+ = αnγ f (xn) + (I – αnμB)yn, ∀n ∈N and n≥ ,

where {αn} and {βn} are the sequences in (, ) which satisfy the following conditions:
(C) limn→∞ αn =  and ∞

n=αn = ∞;
(C)  < lim infn→∞ βn < lim supn→∞ βn ≤ a <  for some constant a ∈ (, );
(C) lim infn→∞ rj,n > , for each j = , , . . . ,M.

Then the sequence {xn} converges strongly to q ∈ 
, where q = P
(I – μB + γ f )q, which is
the unique solution of the variational inequality

〈
(γ f –μB)q,p – q

〉 ≤ , ∀p ∈ 
.

IfM = ,Wn =W , γ = , A = I and μ =  in Theorem ., we obtain the following corol-
lary:

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
{Ti} be an infinite family of nonexpansive mappings with

⋂∞
i= F(Ti) �= ∅, F = {Fj : j =

, , , . . . ,M} be a finite family of bifunctions C × C into R satisfying (A)-(A) and γi

be a real sequence such that  ≤ γi ≤ b ≤  for each i ≥ . Let B be a k-Lipschitzian and η-
strongly monotone operator on C with  < μ < η/k and f ∈ �H with  < γ < μ(η– μk

 )/α =
τ /α and τ < . Assume that 
 := (

⋂∞
i= F(Ti)) ∩ (

⋂M
j= SEP(Fj)) �= ∅. Let the mapping Wn be

defined by (.). Let {xn} be the sequence generated by x ∈H and

⎧⎨
⎩yn = βnxn + ( – βn)WJFMrM,n J

FM–
rM–,n · · · JFr,n JFr,N xn,

xn+ = αnf (xn) + (I – αnμB)yn, ∀n ∈N and n ≥ ,

where {αn} and {βn} are the sequences in (, ) which satisfy the following conditions:
(C) limn→∞ αn =  and ∞

n=αn = ∞;
(C)  < lim infn→∞ βn < lim supn→∞ βn ≤ a <  for some constant a ∈ (, );
(C) lim infn→∞ rj,n > , for each j = , , . . . ,M.

Then the sequence {xn} converges strongly to q ∈ 
 where q = P
(I – μB + γ f )q, which is
the unique solution of the variational inequality

〈
(γ f –μB)q,p – q

〉 ≤ , ∀p ∈ 
.

4 Numerical example
In this section, we give a real numerical example of Theorem . as follows.

Example. LetH =R,C = [,  ],Tn = I . Fk(x, y) = ,∀x, y ∈H , rk,n = , k ∈ {, , , . . . ,K},
B = I , f (x) = x, βn = 

 , αn = 
n for every n ∈N and μ = . Then {xn} is the sequence gener-

ated by

xn+ =
xn
n

+
(
 –


n

)
xn, (.)
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and z →  as n→ ∞, where  is the unique solution of the minimization problem

min
x∈C

x


+
x


+C, (.)

where C is a constant.

Proof We divide the proof into four steps.
Step . Using the idea in [], we can show that

Jkrk,nx = PCx, ∀x ∈H ,k ∈ {, , . . . ,K}, (.)

where

PCx =

⎧⎨
⎩

x
|x| , x ∈H –C,

x, x ∈ C.
(.)

Since Fk(x, y) = , ∀x, y ∈ C, k ∈ {, , . . . ,K}, with the definition of Jr(x), ∀x ∈ H in
Lemma ., we have

JFr (x) =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
. (.)

By the equivalent property of the nearest projection PC fromH to C, we can conclude that
if we take x ∈ C, Jkrk,nx = PCx = Ix. By () in Lemma ., we have

K⋂
k=

SEP(Fk) = C. (.)

Step . We show that

Wn = I. (.)

Since T ′
i = θiI + ( – θi)Ti, where Ti is a λi-strictly pseudo-contractive mapping and θi ∈

[λi, ), it can be easily seen that T ′
i is a nonexpansive mapping. By (.), we have

W =U, = γT ′
U, + ( – γ)I,

W =U, = γT ′
U, + ( – γ)I = γT ′


(
γT ′

U, + ( – γ)I
)
+ ( – γ)I

= γγT ′
T

′
 + γ( – γ)T ′

 + ( – γ)I,

W =U, = γT ′
U, + ( – γ)I = γT ′


(
γT ′

U, + ( – γ)I
)
+ ( – γ)I

= γγT ′
T

′
U, + γ( – γ)T ′

 + ( – γ)I

= γγT ′
T

′

(
γT ′

U, + ( – γ)I
)
+ γ( – γ)T ′

 + ( – γ)I

= γγγT ′
T

′
T

′
 + γγ( – γ)T ′

T
′
 + γ( – γ)T ′

 + ( – γ)I,
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and we compute (.) in the same way as above, so we obtain

Wn = Un, = γγ · · ·γnT ′
T

′
 · · ·T ′

n + γγ · · ·γn–( – γn)T ′
T

′
 · · ·T ′

n–

+ γγ · · ·γn–( – γn–)T ′
T

′
 · · ·T ′

n– + · · · + γ( – γ)T ′
 + ( – γ)I.

Since T ′
n = I , γn = β , n ∈N, hence,

Wn =
[
βn + βn–( – β) + · · · + β( – β) + ( – β)

]
I = I.

Step . We prove

xn+ =
xn
n

+
(
 –


n

)
xn and xn →  as n→ ∞,

where  is the unique solution of the minimization problem

min
x∈C

x


+
x


+C.

Since we let B = I , γ is a real number, so we choose γ = . From (.), (.) and (.), we
can obtain a special sequence {xn} of Theorem . as follows:

xn+ =
xn
n

+
(
 –


n

)
xn.

Since Tn = I , n ∈N, we have

⋂
n∈N

F(Tn) =H .

Combining it with (.), we obtain


 :=

( K⋂
k=

SEP(Fk)

)
∩

( ⋂
n∈NF(Tn)

)
= C =

[
,




]
.

It is obvious that xn → ,  is the unique solution of theminimization problemminx∈C x
 +

x
 +C, where C is a constant number.
Step . In this step, we give the numerical results that support our main theorem as

shown by plotting graphs using Matlab ... We choose two different initial values as
x = . and x = . in Table , Figure , and Figure , respectively. From the example, we
can see that {xn} converges to . �
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Table 1 The sequence values on each different iteration step

Iteration step (n) x(1) = 0.1 x(1) = 0.15 Iteration step (n) x(1) = 0.1 x(1) = 0.15

0 0.1000 0.1500 7 0.0015 0.0033
1 0.0100 0.0225 8 0.0013 0.0029
2 0.0051 0.0115 9 0.0011 0.0026
3 0.0034 0.0077 203 0.0001 0.0001
4 0.0025 0.0058 204 0.0000 0.0001
5 0.0020 0.0046 205 0.0000 0.0001
6 0.0017 0.0039 250 0.0000 0.0000

Figure 1 The initial value x(1) = 0.1 and iteration steps n = 250.

Figure 2 The initial value x(1) = 0.15 and iteration steps n = 250.
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