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1 Introduction

Let x be an arbitrary positive real number. One can easily see the inequality

(x% —1)(x2 —1) < (x% —1)(x—1),

[S28e)

for instance, is reduced to a simple polynomial inequality by putting ¢ = x%. However, at

least to the author, it seems not easy to give an elementary proof of the inequality

P ) @B C1) < L (e ),

=

which has a very similar form to the preceding one although their corresponding numer-
ical parts are different.

The purpose of this article is to show the following theorem.

Theorem 1.1 Let 0 <p,1<qand O <rwithp+r <1 +r)q.If0<wx, then

_pir

w T (@ — 1) (6 1) < 2 (7~ 1) (- ). (1)

BN

An elementary approach to proving the inequality (1) might be to consider the power

series expansion.

1+r——=

Putt=x-1,¢=—5" and

f@) = i—;((l PP D)L+ (4P —1)(A+ DT —1).
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Then we can expand f(¢) around ¢ = 0 as

f(t)=§{p+r+(p;r)n(p;r>t2+<p:;r>t3+(p;r>t4+...}.t2
e () ()= ()
o) G G ()|
(5 (D (DD

:a4t4+a5t5+a6t6+~--.

Thus, the constant term and the coefficients of ¢, t* and ¢ are 0. Further, one can obtain

2
a4=p(p+r) P+ 2pr+1-— prr ,
24q q

(p+r)(p+r—3)< <p+r)2>
— ([ +2pr+1-
48q q

and

4 2
e b 5) o) oo

-33(p+1)* +240(p + 1)’ +30(p + r)*(p* — 15) - 240(p + r)(p* - 1)

+(3p* +413)(p* - 1) }

Thus, if the assumption for the parameters p, g and r in Theorem 1.1 is satisfied, then we
have 0 < a4. However, the signature of a5 and a¢ depends on parameters, and one cannot
see any signs of a simple rule among the coefficients of higher order terms. Although f(¢)
is non-negative on a sufficiently small neighborhood of ¢ = 0, it seems difficult to show
that f(¢) is non-negative entirely on —1 < ¢ < co by such an argument as above.

Let us recall some fundamental concepts on related matrix inequalities. A capital letter
means a matrix whose entries are complex numbers. A square matrix 7 is said to be pos-
itive semidefinite (denoted by 0 < T) if 0 < (7%, ) for all vectors x. We write 0 < T if T
is positive semidefinite and invertible. For two selfadjoint matrices 77 and T of the same
size, a matrix inequality 71 < T is defined by 0 < T, — 7.

The celebrated Lowner-Heinz theorem includes:

Theorem 1.2 [1,2] Let 0 <p <1.If0 <B <A, then B? < A?.

For 1< p, 0 <B < A does not always ensure B < A”. Furuta obtained an epoch-making
extension of the Lowner-Heinz inequality by using the Lowner-Heinz inequality itself.

Theorem 1.3 [3] Let0<p,1<qand 0 <rwithp+r<(1+r)q.If0 <B<A, then

(A5BPAS)T <A'T )
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The following result by Tanahashi is a full description of the best possibility of the range
p+r<(+r)g and 1<gq
as far as all parameters are positive.

Theorem 1.4 [4] Let p, q, r be positive real numbers. If 1L +r)g<p +ror 0 < q <1, then
there exist 2 x 2 matrices A, B with 0 < B < A that do not satisfy the inequality
r ry L pir
(A2BPA2)T <AT
One notices the coincidence between the assumption on parameters in Theorem 1.1 and
Theorem 1.3. As a matter of fact, the inequality (1) is a particular conclusion of the Furuta
inequality. We should point out that Tanahashi’s argument in [4] is almost sufficient to

deduce the former from the latter. In the next section, we will prove Theorem 1.1 using
Theorem 1.3 and Tanahashi’s argument.

2 Proof of Theorem 1.1

As we mentioned above, our proof of Theorem 1.1 has a major part which is parallel to [4].

Our matrix A is a little different from that in [4], we use a variable y instead of ¢ and §. It

simplifies the argument to an extent, though the improvement is not essential.
Throughout this paper, we assume that 1 < a < b and 0 < y. We will consider matrices

ot )

(a-1)y b+y

and

( g).

Then we have 0 < B < A. The eigenvalues of A are
2ab +2(a+b-2)y.

by£/d
%,whered=u2+b2+y2—

Lemma2.1 O<d<(a+b+y)?anda-b—-y—~/d#0.
Proof Obviously,
d:(a—h)2+y(y+2(a+b—2)) >0,

d=(a+b+y)*—4(ab+y)<(a+b+y)>

Ifa—b—y—+/d=0,then we would have a = 1 or y = 0, which is contrary to the assump-
tion. 0

Let

2 (a-1)y
_a—b—y—«/g

Cc
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and

1 1
Uu=—n-|¢ .
2+1\1 —

Then U is unitary and

. 1
wau=1(4 ©° )
2\0 4,

where
d1:u+b+y+«/2, d2=a+b+y—«/2.
By the assumption and Theorem 1.3, A and B satisfy the inequality (2). Then
L b

v o T * w7 1
(U A5 UL BP UL AT U) T < U'A'T U,

hence we have

1
2 (1 2 q
d; 0£ U 0 U d; 01 <0 °. 3)
0 d} 0 b 0 d} 0 d,f

Denote

d? Oru*loudl% 0\_ 1 (4 4
0 d} 0 v 0 di) +1\4s A)

where

shs
S

|
o

Al Zd{(cz +bp),

Ay =di(1+ csz),

As=didic(1-b") = ((a+b+y)?*—d) c(1-b) = (dab + 4y) 5 c(1 - ).
Lemma 2.2 Let p, q, r be positive real numbers. Then A, < Ay and A3 < 0.

Proof Since dy < d; and 0 < r, we have d}, < dj. Moreover,
(E+0")-(1+)=(-1)(1-V), 1-P<0
and

62_12_2(a—b)2+2y2+4(b—a)y+2(b—a+y)«/3<0’

(@a-b-y-+d)>

hence we have 1 + ¢2b” < ¢ + b?. Thus A < A;.
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It is obvious that 1 — #” < 0 and 0 < ¢, and hence A3 < 0. O
Let
o 1 (m A )
VA A2\ -yE VA A ra)
where

281 = —Al +A2 +4/ (A1 —A2)2 + 4-A§

Then it is easy to see that A3 = —v/(A; — A3 + €1)e1, V is unitary and

V# A1 A3 V= A1+81 0 )
A3 A2 0 A2_81

The following lemma is one of the most important points in Tanahashi’s argument. Al-
though the substance is presented in the whole proof of [4, Theorem], we should restate
and prove it in our context for the readers’ convenience.

Lemma 2.3

pir 1 1 pir
afrd,” —(Ay-e)1 (A +e)7 - yd,)" }

ptr p+r

ptr 1 = 1
<@ -Ay+e)yd)” —(Ar+e)i}{yd,” —(Ar—e)7}, (4)
wherey:(i,—fl)%.

Proof The formula (3) implies

1 £__

1 (A 4y 0 T A

(@) iy (Arre) BT - (5)
0 (Ay — 1)

Write the left-hand matrix as

_1 B, B
(02 + 1) 7(A; — Ay +26;)7" el
B; B,

where

B =(A1-Ay+e)(Ar + 81)% +61(As - 81)%,

Q=

1
By =¢1(A1+ 1)1 + (A1 — Ay + &1)(Ay — &1) 4,

1
B = —A1— Ay + 1 /e {(A1 + )T — (Ay — £1)

Q=

Then, by the formula (5), we have

pr
)/(Al — A2 + 281)d1 7 _ Bl —Bg
— pir

—Bg )/(Al —A2 + 281)6127 — Bz
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So, its determinant is also non-negative. We expand it to obtain

prr ptr pir
0 <y%(A—Ay+261)°d," d, —y(A1—Ay +261)d," By
pir
— ]/(Al —A2 + 281)d2q Bl + BlBQ —B% (6)
Now,
BB, - B

= {(Al — Az +e1)(Ar + 81)% +e1(Ay - 81)%}{81(141 + 81)%’ + (A1 — Ay +1)(A —81)‘1?}
— (A1 —Ay + 81)81{(141 + 81)%’ — (A2 —81)% }2

1 1
= (A1 — Ay +261)*(A) + £1)7(Ay — £1)1.

Hence, the formula (6) implies

p+r pir p+r p+r

0< (A1 —Az + 281){]/2(A1 —A2 + 281)le dzT - )/leBQ - )/d?Bl}
1 1
+ (A1 — Ay +261)% (A1 + 1) 7 (Ay — £1) 7.
Cancel the common positive factor A; — A, + 2¢; and substitute the definitions for By
and B;. Then a simple calculation shows that

pr pir pir ptr 1

pir pir pir 1 2 1 1 1
—er{y?d," dy' —yd," (A1 +61)7 —ydy" (A3 —e1)7 + (A1 +61)7(Ay — 1)1}

<(A1—-Ay+¢)

p+r pir pHr pHr

prr pir pr 1 = 1 1 1
: {Vzdlq d," —yd," (Ay—e1))1 —yd," (A1 +e1)7 + (4 +€1)q(A2—81)"}~

By factorizing, we have

pir ptr

—81{1/011T - (A2 _81)%1}{Vd27 —(Ar+e)7}

—_

ptr pir

pir 1 = 1
<A -Ar+e)|yd,” —(Ar+e)i}{yd," —(Ar—e))7}.
This completes the proof of Lemma 2.3. d

Now, we estimate each term of the inequality (4) with respect to y — +0. A key point in

making use of the inequality (4) is that both estimations of the factor &; on the left-hand
ptr

side and the factor yle — (A1 + 81)% on the right-hand side contain a common subfactor y.
After the cancellation of this y, we will derive the desired functional inequality by letting
y — +0, a — 1 + 0 and applying 'Hopital’s rule. Terms in other factors can be roughly
estimated.

In the following, 0 means o(y), that is

9—>0 (y > +0),
y
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and o(1) denotes a term such that o(1) — 0 (y — +0).
One can establish the following formulae:

Vd = (b—a){l + &:;_ba_)zzjwo(y)},

p+r b-1
+—‘b(b-a)y+°(y)}’

pir +r — 1
d,? =(2a)pq{1+p+r . Ly+o(y)},

H p+r
d," =2b)T {1

q alb-a)
_ -2y/(a-1)y _ . Na-1[  b-1
C_“—b—y—(b—a+%y+o(y))_ﬁ b—a{ (b—a)2y+0(y)}’
a-1
62+lzl+my+o(y),
(@ +1)7d,*
St bfyprr bl
_{1+Wy+o(y)}(2b) {1+ 7 b(b—a)y+0(y)}
pr 1
=(2b) @ {1+ 7qh(b—a)2 ((oz—l)b+(p+r)(b—1)(b—a))y+o(y)},
(+ 1)501;% = (20)7 (1+0(1)),
r(b-1) -

A1=(2b)’{1+ y+0(y)}{b”+a71)2y+o(y)}

b(b-a) (b-a

1
= 2’bp”{1 + m(r(b—l)(b—a) +b' P (a - 1))y+ o(y)},

Az = (2a) (1 +0(1)),

A} = (4ab + 4y)’yﬁ( ( Z __:)2 (1-8")*(1+0(1)),

1(A a1+ 1 4A2 A2
g1 = —(A] — -1+ 1+ = fo
T (A — Ar)? A -Ay

y¥a'b (a-1)(b-a)1- 1)’ (1+0(1))
2 (14 0(1) - (2a) (1 + o(1))
92’ d' b (a-1)(1-b)
- (b —a)2(b?* — a’)

1+o(1)(1- b"’)2 =yd'a’b’

(1 + 0(1)),

(Ay + 1)

= (2%"”{1 + b(bl )2 (”(h—l)(b—a) +bl_p(a—1))y+o(y)}

Y2 a'b (a—1)(1 - b?)>? i
by 100

ropir
=24dbpa {1

(r(b “Db-a)+bPla-1)+

1
" qb(b — a)? brr —gr

+om}

a'b?(a -1)(1 - b*)? >
y
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(A, _51)5 —2igi (1 + 0(1)),

Now, we have the estimation of the most delicate factor in the formula (4), whose con-

stant term is canceled by subtraction.

ptr

1
yd," — (A1 +¢)7

P pHr
q

-(2b) T {1 + m«a—l)b+ (p+ r)(b—l)(b—a))y+0(y)}

5 <r(b ~Db-a)+bPa-1)+

T bb-a)

a'b?(a—-1)(1 - b?)?
bp+r —a’ y

- 22—{(a-1)b+p(b-1)(b-a)-blP(a-1)

a’b?(a-1)(1 - b’)?
b —ay i} }y

bp+r —a’
. (1 + 0(1))

Substitute these estimations for the inequality (4), cancel the positive factor y, and let
y — +0, then we have

pHr

.2%([7 q

prr ptr

T r _ _ 2 . ,
2"a"b"(a-1)(1 - b*) —aé)-zﬁ(bT—aT)

(b _ ﬂ)Z(bpﬂ' _ ar)
< 2r(bp+r _ ar)

2y _
r b 1y a’b?(a—-1)(1 - b?)?
-2‘1q(b_a)z{(a—l)b+p(b—1)(b—a)—b (@a-1)- T }
-2%(4% —a%),

and hence

aV(1-p) (b7 ~al) (b7 ~a'T)

< (bp+r_ar)2
2 ripl-p(,, _ _ 2
- {(a—1)b+p(b—1)(b—a>—b1-f’(a—1)—“b o }
q bp+r_dr
pir
17 —a

a

QU

a—1
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Letting a — 1 + 0 and applying 'Hopital’s rule, we have
2
- 2, BT 2 , 2,2 p 2
b(1-p) (b7 -1) <V -1)b ;(b—l) .

This implies that, for arbitrary 1 < b,

1+r—1%

b (B —1) (b7 1) < B - 1) -1). )

BN

For arbitrary O < x < 1, substitute % for b in (7) and multiply by x, x7, xP*7, "7 both sides.
It is easy to see that «x itself satisfies (7). This completes the proof of Theorem 1.1.
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