
Seyyidoglu and Tan Journal of Inequalities and Applications 2012, 2012:219
http://www.journalofinequalitiesandapplications.com/content/2012/1/219

RESEARCH Open Access

A note on statistical convergence on time
scale
M Seyyit Seyyidoglu and N Özkan Tan*

*Correspondence:
nozkan.tan@usak.edu.tr
Faculty of Sciences and Arts,
Department of Mathematics, Usak
University, 1 Eylul Campus, Usak,
64200, Turkey

Abstract
In the present paper, we will give some new notions, such as �-convergence and
�-Cauchy, by using the �-density and investigate their relations. It is important to
say that the results presented in this work generalize some of the results mentioned
in the theory of statistical convergence.
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1 Introduction and background
In [] Fast introduced an extension of the usual concept of sequential limits which he
called statistical convergence. In [] Schoenberg gave some basic properties of statistical
convergence. In [] Fridy introduced the concept of a statistically Cauchy sequence and
proved that it is equivalent to statistical convergence.
The theory of time scales was introduced byHilger in his PhD thesis supervised byAuld-

bach [] in . The measure theory on time scales was first constructed by Guseinov
[], and then further studies were performed by Cabada-Vivero [] and Rzezuchowski [].
In [] Deniz-Ufuktepe define Lebesgue-Stieltjes � and �-measures, and by using these
measures, they define an integral adapted to a time scale, specifically Lebesgue-Steltjes
�-integral.
A time scale T is an arbitrary nonempty closed subset of the real numbers R. The time

scaleT is a completemetric space with the usual metric.We assume throughout the paper
that a time scaleT has the topology that it inherits from the real numberswith the standard
topology.
For t ∈ T, we define the forward jump operator σ : T→ T by

σ (t) := inf{s ∈ T: s > t}.

In this definition, we put inf∅ = supT.
For a,b ∈ T with a≤ b, we define the interval [a,b] in T by

[a,b] = {t ∈ T: a ≤ t ≤ b}.

Open intervals and half-open intervals etc. are defined accordingly.
Let T be a time scale. Denote by S the family of all left-closed and right-open intervals

of T of the form [a,b) = {t ∈ T : a ≤ t < b} with a,b ∈ T and a ≤ b. The interval [a,a) is
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understood as an empty set. S is a semiring of subsets of T. Obviously, the set function
m : S → [,∞] defined by m([a,b)) = b – a is a countably additive measure. An outer
measurem∗ :P(T)→ [,∞] generated bym is defined by

m∗(A) = inf

{ ∞∑
n=

m(An) : (An) is a sequence of S with A⊂
∞⋃
n=

An

}
.

If there is no sequence (An) of S such that A⊂ ⋃∞
n=An, then we letm∗(A) = ∞. We define

the familyM(m∗) of allm∗-measurable subsets of T, i.e.,

M
(
m∗) = {

E ⊂ T :m∗(A) =m∗(A∩ E) +m∗(A∩ Ec) for all A⊂ T
}
.

The collectionM(m∗) of all m∗-measurable sets is a σ -algebra, and the restriction of m∗

to M(m∗), which we denote by μ�, is a countably additive measure on M(m∗). We call
this measure μ�, which is the Carathéodory extension of the set function m associated
with the family S , the Lebesgue �-measure on T.
We call f : T→R a measurable function, if f –(O) ∈M(m∗) for every open subset ofO

of R.

Theorem  (see []) For each t in T – {maxT}, the single point set {t} is �-measurable,
and its �-measure is given by

μ�

({t}) = σ (t) – t.

Theorem  (see []) If a,b ∈ T and a ≤ b, then

μ�

(
[a,b)

)
= b – a, μ�

(
(a,b)

)
= b – σ (a).

If a,b ∈ T – {maxT} and a≤ b, then

μ�

(
(a,b]

)
= σ (b) – σ (a), μ�

(
[a,b]

)
= σ (b) – a.

It can easily be seen from Theorem  that the measure of a subset of N is equal to its
cardinality.

2 �-density,�-convergence,�-Cauchy
It is well known that the notions of statistical convergence and statistical Cauchy are
closely related to the density of the subset of N. In the present section, first of all, we will
define the density of the subset of the time scale. By using this definition, we will define
�-convergence and �-Cauchy for a real valued function defined on the time scale. Then
we will show that these notions are equivalent.
Throughout this paper, we consider the time scales which are unbounded from above

and have a minimum point.
Let A be a �-measurable subset of T and let a =minT. �-density of A in T (or briefly

�-density of A) is defined by

δ�(A) = lim
t→∞

μ�(A(t))
σ (t) – a
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(if this limit exists), where

A(t) = {s ∈ A : s≤ t} (.)

and t ∈ T.
From the identity A(t) = A ∩ [a, t], the measurability of A implies the measurability

of A(t).
If f : T → R is a function such that f (t) satisfies the property P for all t except a set of

�-density zero, then we say that f (t) satisfies P for ‘�-almost all t’, and we abbreviate this
by ‘�-a.a. t’. Let

Md := {A ∈ T :�-density of A exists in T},
M

d :=
{
A ∈ T : δ�(A) = 

}
.

Lemma 
(i) If A,B ∈Md and A⊂ B, then δ�(A) ≤ δ�(B).
(ii) If A ∈Md , then  ≤ δ�(A) ≤ .
(iii) T ∈Md and δ�(T) = .
(iv) If A ∈Md , then Ac ∈Md and δ�(A) + δ�(Ac) = .
(v) If A,B ∈Md and A⊂ B, then B –A ∈Md and δ�(B –A) = δ�(B) – δ�(A).
(vi) If A,A, . . . ,An is a mutually disjoint sequence inMd , then

⋃n
k=Ak ∈Md and

δ�

( n⋃
k=

Ak

)
=

n∑
k=

δ�(Ak).

(vii) If A,A, . . . ,An inMd and
⋃n

k=Ak ∈Md , then

δ�

( n⋃
k=

Ak

)
≤

n∑
k=

δ�(Ak).

(viii) If A is a measurable set and B ∈M
d with A⊂ B, then A ∈M

d .
(ix) If A,A, . . . ,An inM

d , then
⋃n

k=Ak ,
⋂n

k=Ak ∈M
d .

(x) Every bounded measurable subset of T belongs toM
d .

(xi) If A ∈M
d and B ∈Md , then δ�(A∪ B) = δ�(B).

Proof (i) Let A,B ∈ Md and A ⊂ B. Clearly, A(t) ⊂ B(t), and since μ� is a measure func-
tion, one has μ�(A) ≤ μ�(B). Thus, we have

δ�(A) = lim
t→∞

μ�(A(t))
σ (t) – a

≤ lim
t→∞

μ�(B(t))
σ (t) – a

= δ�(B).

(ii) Note that A(t) ⊂ [a, t]. The required inequalities follow from the following inequali-
ties:

 ≤ μ�(A(t))
σ (t) – a

≤ μ�([a, t])
σ (t) – a

=
σ (t) – a
σ (t) – a

= .
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(iii) It is clear that T is measurable. The �-density of T is obtained from the following
equalities:

δ�(T) = lim
t→∞

μ�(T(t))
σ (t) – a

= lim
t→∞

μ�([a, t])
σ (t) – a

= .

(iv) Since A is measurable, so is Ac, namely Ac(t) = {s ≤ t : s ∈ Ac} is measurable. On the
other hand, A(t)∪Ac(t) = [a, t] and

 =
μ�([a, t])
σ (t) – a

=
μ�(A(t))
σ (t) – a

+
μ�(Ac(t))
σ (t) – a

imply that the required statement holds as t → ∞.
(v) Since A and B are measurable, so are B – A. The statement can be easily shown by

considering A(t)∪ (B –A)(t)∪ Bc(t) = [a, t].
(vi) Since the �-density of for each subset Ak exists, one can write

n∑
k=

δ�(Ak) =
n∑
k=

lim
t→∞

μ�(Ak(t))
σ (t) – a

= lim
t→∞

n∑
k=

μ�(Ak(t))
σ (t) – a

= lim
t→∞

μ�(
⋃n

k=Ak(t))
σ (t) – a

= lim
t→∞

μ�((
⋃n

k=Ak)(t))
σ (t) – a

= δ�

( n⋃
k=

Ak

)
.

(vii) The proof is similar to that of the previous proof.
(viii) It can be easily seen from (i).
(ix) Considering δ�(Ak) =  for k = , , . . . ,n and (vii), one can obtain

⋃n
k=Ak ∈ M

d .
And

⋂n
k=Ak ∈M

d can be obtained from (viii).
(x) Let A be a bounded set. For a sufficiently largeM ∈ T, we can write A ⊂ [a,M]. Then

one has

 ≤ μ�(A(t))
σ (t) – a

≤ μ�([a,M])
σ (t) – a

→  (t → ∞),

which implies that δ�(A) = .
(xi) (i) and (vii) yield δ�(B) ≤ δ�(A ∪ B) ≤ δ�(A) + δ�(B) = δ�(B). This completes the

proof. �

It is clear that the familyM
d is a ring of subsets of T. According to (iv), the �-density of

the complement of a subset whose �-density is  is equal to ,M
d is not closed under the

operation complement. So, it is not an algebra. Note that the �-density of a subset of N is
equal to its natural density.
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Example  Let T = [,∞), l and r be arbitrary two positive real numbers. Let also A =⋃∞
n=An, where An = [nl + nr, (n+ )l + nr]. According to Lemma (x), each An is bounded

and so δ�(An) = . In addition, let A(t) be defined as in (.), we have

μ�

(
A(t)

)
=

⎧⎨
⎩t – nr, nl + nr ≤ t ≤ (n + )l + nr,

(n + )l, (n + )l + nr ≤ t ≤ (n + )l + (n + )r

(n = , , , . . .), and hence

δ�(A) = lim
t→∞

μ�(A(t))
σ (t) – a

= lim
t→∞

μ�(A(t))
t – 

=
l

l + r
.

Note that since

l
l + r

= δ�(A) >
∞∑
n=

δ�(An) = ,

δ� does not define a measure.

Example  Let T =N. The �-density of A = {, , , . . .} in N is given by

δ�(A) = lim
t→∞

μ�(A(t))
σ (t) – a

= lim
t→∞

[t/]
t

=


.

Definition  (�-convergence) The function f : T → R is �-convergent to the number L
provided that for each ε > , there exists Kε ⊂ T such that δ�(Kε) =  and |f (t) – L| < ε

holds for all t ∈ Kε .

We will use notation �- limt→∞ f (t) = L.

Definition  (�-Cauchy) The function f : T → R is �-Cauchy provided that for each
ε > , there exists Kε ⊂ T and t ∈ T such that δ�(Kε) =  and |f (t) – f (t)| < ε holds for all
t ∈ Kε .

Proposition  Let f : T → R be a measurable function. �-limt→∞ f (t) = L if and only if,
for each ε > , δ�({t ∈ T : |f (t) – L| ≥ ε}) = .

Proof Let �- limt→∞ f (t) = L and ε >  be given. In this case, there exists a subset Kε ⊂ T

such that δ�(Kε) =  and |f (t) – L| < ε holds for all t ∈ Kε . Since Kε ⊂ {t ∈ T : |f (t) – L| < ε},
we obtain δ�({t ∈ T : |f (t) – L| < ε}) = . Hence, we get δ�({t ∈ T : |f (t) – L| ≥ ε}) = .
Another case of the proof is straightforward. �

Proposition  Let f : T → R be a measurable function. f is �-Cauchy if and only if, for
each ε > , there exists t ∈ T such that δ�({t ∈ T : |f (t) – f (t)| ≥ ε}) = .

Example  Let I[,∞) be irrational numbers andQ[,∞) be rational numbers in [,∞). Let
us consider the function f : T = [,∞)→R defined as follows:

f (t) =

⎧⎨
⎩, t ∈Q[,∞),

, t ∈ I[,∞).

http://www.journalofinequalitiesandapplications.com/content/2012/1/219
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Since μ�(Q[,∞)) = , the density of the subset Q[,∞) in the time scale T is zero. This
implies that δ�(I[,∞)) = . So, for each ε >  and for all t ∈ I[,∞), one has  = |f (t) – | < ε,
and as a corollary, we get �- limt→∞ f (t) = .

Proposition  The �-limit of a function f : T→R is unique.

Proof Let�- limt→∞ f (t) = L and�- limt→∞ f (t) = L. Let ε >  be given. Then there exist
subsets K,K ⊂ T such that for every t ∈ K with |f (t) –L| < ε/ and for every t ∈ K with
|f (t) – L| < ε/, where δ�(K) =  and δ�(K) = . From Lemma (iv), we have K ∩K = ∅.
Thus, for every t ∈ K ∩K, one has

|L – L| ≤
∣∣f (t) – L

∣∣ + ∣∣f (t) – L
∣∣ < ε.

Thus, L = L. �

Proposition  If f , g : T → R with �- limt→∞ f (t) = L and �- limt→∞ g(t) = L, then the
following statements hold:

(i) �- limt→∞(f (t) + g(t)) = L + L,
(ii) �- limt→∞(cf (t)) = cL (c ∈R).

Proposition  If f : T →R with limt→∞ f (t) = L, then �- limt→∞ f (t) = L.

Proof Let limt→∞ f (t) = L. In this case, for a given ε > , we can find a t ∈ T such that
|f (t) – L| < ε holds for every t > t. The set Kε = {t ∈ T : t > t} is measurable, and from
Lemma (iv) and (x), one has δ�(Kε) = . By the definition of �-convergence, we get
�- limt→∞ f (t) = L. �

Theorem  Let f : T → R be a measurable function. The following statements are equiv-
alent:

(i) f is �-convergent,
(ii) f is �-Cauchy,
(iii) There exists a measurable and convergent function g : T→R such that f (t) = g(t)

for �-a.a. t.

Proof (i) ⇒ (ii): Let �- limt→∞ f (t) = L and ε >  be given. Then |f (t) – L| < ε/ holds for
�-a.a. t. We can choose t ∈ T such that |f (t) – L| < ε/ holds. So,

∣∣f (t) – f (t)
∣∣ ≤ ∣∣f (t) – L

∣∣ + ∣∣f (t) – L
∣∣ < ε, �-a.a. t.

This shows that f satisfies the property of �-Cauchy.
(ii) ⇒ (iii): We can choose an element t ∈ T. We can define an interval I = [f (t) –

, f (t)+] which contains f (t) for�-a.a. t. By the samemethod, we can choose an element
t∗ ∈ T and define an interval I ′ = [f (t∗) – /, f (t∗) + /] which contains f (t) for �-a.a. t.
We can write

{
t ≤ s : f (t) /∈ I ∩ I ′

}
=

{
t ≤ s : f (t) /∈ I

} ∪ {
t ≤ s : f (t) /∈ I ′

}
.
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Since f is a measurable function, the two terms that appear on the right-hand side of the
last equality are also measurable. By using Lemma (vii), we obtain

δ�

({
t ∈ T : f (t) /∈ I ∩ I ′

}) ≤ δ�

({
t ∈ T : f (t) /∈ I

})
+ δ�

({
t ∈ T : f (t) /∈ I ′

})
= .

So, f (t) is in the closed interval I = I ∩ I ′ for �-a.a. t. It is clear that the length of the
interval I is less than or equal to . Now we can choose t ∈ T with I ′′ = [f (t) – /, f (t) +
/] containing f (t) for �-a.a. t. Undoubtedly, the closed interval I = I ∩ I ′′ contains
f (t) for �-a.a. t and the length of the interval I is less than or equal to /. With the
same procedure, for eachm, we can obtain a sequence of closed intervals (Im)∞m=such that
Im+ ⊂ Im and the length of each interval Im is less than or equal to –m.Moreover, f (t) ∈ Im
for �-a.a. t. From the properties of the intersection of closed intervals, there exists a real
number λ such that

⋂∞
m= Im = {λ}. Since the �-density of the set on which f (t) /∈ Im is

equal to zero, we can find an increasing sequence (Tm)∞m=in T such that

μ�({t ≤ s : f (t) /∈ Im})
σ (s) – a

<

m
, s > Tm. (.)

Here a =minT. Let us consider the function g : T →R defined as follows:

g(t) =

⎧⎨
⎩λ, Tm < t ≤ Tm+ and f (t) /∈ Im,

f (t), otherwise.

It is clear that g is a measurable function and limt→∞ g(t) = λ. Indeed, for t > Tm, either
g(t) = λ or g(t) = f (t) ∈ Im. In this case, |g(t) – λ| ≤ –m holds.
Finally, we shall show that f (t) = g(t) for �-a.a. t. For this purpose, consider

{
t ≤ s : f (t) = g(t)

} ⊂ {
t ≤ s : f (t) /∈ Im

}
,

Tm < s ≤ Tm+. Thus, from (.), we get

μ�({t ≤ s : f (t) = g(t)})
σ (s) – a

≤ μ�({t ≤ s : f (t) /∈ Im})
σ (s) – a

<

m

which yields δ�({t ∈ T : f (t) = g(t)}) = , that is, f (t) = g(t) for �-a.a. t.
(iii) ⇒ (i): Let f (t) = g(t)for �-a.a. t and limt→∞ g(t) = L. For a given ε > , we have

{
t ∈ T :

∣∣f (t) – L
∣∣ ≥ ε

} ⊂ {
t ∈ T : f (t) = g(t)

} ∪ {
t ∈ T :

∣∣g(t) – L
∣∣ ≥ ε

}
.

Since limt→∞ g(t) = L, the second set that appears on the right-hand side of the above
inclusion relation is bounded, and thus δ�({t ∈ T : |g(t) – L| ≥ ε}) = . In addition, f (t) =
g(t) for �-a.a. t yields δ�({t ∈ T : f (t) = g(t)}) = . In conclusion, δ�({t ∈ T : |f (t) – L| ≥
ε}) = , namely �- limt→∞ f (t) = L. �
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