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Abstract
In this paper, some inequalities for a linearly negative quadrant dependent (LNQD)
sequence are obtained. As their application, the asymptotic normality of the weight
function estimate for a regression function is established, which extends the results of
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1 Introduction
We first recall the definitions of some dependent sequences.

Definition . (Lehmann []) Two randomvariablesX andY are said to be negative quad-
rant dependent (NQD) if

P(X ≤ x,Y ≤ y) ≤ P(X ≤ x)P(Y ≤ y) for any x, y ∈ R.

A sequence of random variables {Xn,n ≥ } is said to be pairwise negatively quadrant de-
pendent (PNQD) if every pair of random variables in the sequence is NQD.

Definition . (Newman []) A sequence {Xn,n ≥ } of random variables is said to be
linearly negative quadrant dependent (LNQD) if for any disjoint subsets A,B ⊂ Z+ and
positive rj ’s,

∑
k∈A rkXk and

∑
j∈B rjXj are NQD.

Definition . (Joag-Dev and Proschan []) Random variables X,X, . . . ,Xn are said to
be negatively associated (NA) if for every pair of disjoint subsets A and A of {, , . . . ,n},

Cov
(
f(Xi; i ∈ A), f(Xj; j ∈ A)

) ≤ ,

where f and f are increasing for every variable (or decreasing for every variable) so that
this covariance exists. An infinite sequence of random variables {Xn;n ≥ } is said to be
NA if every finite subfamily is NA.
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Remark . (i) If {Xn,n≥ } is a sequence of LNQD random variables, then {aXn + b,n≥
} is still a sequence of LNQD random variables, where a and b are real numbers. (ii) NA
implies LNQD from the definitions, but LNQD does not imply NA.

Because of wide applications of LNQD random variables, the concept of LNQD ran-
dom variables has received more and more attention recently. For example, Newman []
established the central limit theorem for a strictly stationary LNQD process; Wang and
Zhang [] provided uniform rates of convergence in the central limit theorem for LNQD
sequence; Ko et al. [] obtained the Hoeffding-type inequality for LNQD sequence; Ko
et al. [] studied the strong convergence for weighted sums of LNQD arrays; Wang et al.
[] obtained some exponential inequalities for a linearly negative quadrant dependent se-
quence; Wu and Guan [] obtained the mean convergence theorems for weighted sums
of dependent random variables. In addition, from Remark ., it is shown that LNQD is
much weaker than NA and independent random variables. So, it is interesting to study
some inequalities and their applications to a regression function for LNQD sequence.
The main results of this paper depend on the following lemmas.

Lemma . (Lehmann []) Let random variables X and Y be NQD, then
(i) EXY ≤ EXEY ;
(ii) If f and g are both nondecreasing (or both nonincreasing) functions, then f (X) and

g(Y ) are NQD.

Lemma . (Zhang []) Suppose that {Xn;n ≥ } is a sequence of LNQD random variables
with EXn = . Then for any p > , there exists a positive constant D such that

E

∣∣∣∣∣
n∑
i=

Xi

∣∣∣∣∣
p

≤ DE

( n∑
i=

X
i

)p/

.

2 Main results
Now, we state our main results with their proofs.

Theorem . Let X and Y be NQD random variables with finite secondmoments. If f and
g are complex-valued functions defined on R with bounded derivatives f ′ and g ′, then

∣∣Cov(f (X), g(Y ))∣∣ ≤ ∥∥f ′∥∥∞
∥∥g ′∥∥∞

∣∣Cov(X,Y )∣∣.
Proof The proof follows easily from the brief outline of the main points of the proof of
Theorem . in Roussas [, p.]. �

By Theorem ., we establish an inequality for characteristic function (c.f.) as follows:

Theorem . If X, . . . ,Xm are LNQD random variables with finite second moments, let
ϕj(tj) and ϕ(t, . . . , tm) be c.f.’s of Xj and (X, . . . ,Xm), respectively, then for all nonnegative
(or nonpositive) real numbers t, . . . , tm,

∣∣∣∣∣ϕ(t, . . . , tm) –
m∏
j=

ϕj(tj)

∣∣∣∣∣ ≤ 
∑

≤k<l≤m

|tktl|
∣∣Cov(Xk ,Xl)

∣∣.
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Proof Write

∣∣∣∣∣ϕ(t, . . . , tm) –
m∏
j=

ϕj(tj)

∣∣∣∣∣ ≤ ∣∣ϕ(t, . . . , tm) – ϕ(t, . . . , tm–)ϕm(tm)
∣∣

+

∣∣∣∣∣ϕ(t, . . . , tm–) –
m–∏
j=

ϕj(tj)

∣∣∣∣∣ =: I + I. (.)

Further notice that eix = cos(x) + i sin(x). Thus,

I =

∣∣∣∣∣E exp
(
i

m∑
j=

tjXj

)
– E exp

(
i
m–∑
j=

tjXj

)
E exp(itmXm)

∣∣∣∣∣
≤

∣∣∣∣∣Cov
(
cos

(m–∑
j=

tjXj

)
, cos(tmXm)

)∣∣∣∣∣ +
∣∣∣∣∣Cov

(
sin

(m–∑
j=

tjXj

)
, sin(tmXm)

)∣∣∣∣∣
+

∣∣∣∣∣Cov
(
sin

(m–∑
j=

tjXj

)
, cos(tmXm)

)∣∣∣∣∣ +
∣∣∣∣∣Cov

(
cos

(m–∑
j=

tjXj

)
, sin(tmXm)

)∣∣∣∣∣
=: I + I + I + I. (.)

By the definition of LNQD, it is easy to see that tmXm and
∑m–

j= tjXj are NQD for
t, . . . , tm > . Then by Theorem ., we can obtain that

I ≤
∣∣∣∣∣Cov

(m–∑
j=

tjXj, tmXm

)∣∣∣∣∣ ≤
m–∑
j=

tjtm
∣∣Cov(Xj,Xm)

∣∣. (.)

Similarly as above, we have

Ii ≤
m–∑
j=

tjtm
∣∣Cov(Xj,Xm)

∣∣, i = , , . (.)

From (.) to (.), we obtain

I ≤ 
m–∑
j=

tjtm
∣∣Cov(Xj,Xm)

∣∣. (.)

Therefore, in view of (.) and (.), we obtain that

∣∣∣∣∣ϕ(t, . . . , tm) –
m∏
j=

ϕj(tj)

∣∣∣∣∣ ≤ 
m–∑
j=

tjtm
∣∣Cov(Xj,Xm)

∣∣ + I. (.)

For I, using the same decomposition as in (.) above, we obtain

I ≤ ∣∣ϕ(t, . . . , tm–) – ϕ(t, . . . , tm–)ϕm–(tm–)
∣∣ +

∣∣∣∣∣ϕ(t, . . . , tm–) –
m–∏
j=

ϕj(tj)

∣∣∣∣∣
=: I + I.
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Similarly to the calculation of I, we get

I ≤ 
m–∑
j=

tjtm–
∣∣Cov(Xj,Xm–)

∣∣ + I. (.)

Thus, from (.) and (.), constantly repeating the above procedure, we get

∣∣∣∣∣ϕ(t, . . . , tm) –
m∏
j=

ϕj(tj)

∣∣∣∣∣
≤ 

m–∑
j=

tjtm
∣∣Cov(Xj,Xm)

∣∣ + 
m–∑
j=

tjtm–
∣∣Cov(Xj,Xm–)

∣∣

+ 
m–∑
j=

tjtm–
∣∣Cov(Xj,Xm–)

∣∣ + · · · + 
∣∣Cov(X,X)

∣∣

= 
m∑
l=

l–∑
k=

tktl
∣∣Cov(Xk ,Xl)

∣∣ = 
∑

≤k<l≤m

tktl
∣∣Cov(Xk ,Xl)

∣∣. (.)

Note that for t, . . . , tm < , –tmXm and
∑m–

j= –tjXj are NQD by the definition of LNQD.
Similarly as above, we obtain that

∣∣∣∣∣ϕ(t, . . . , tm) –
m∏
j=

ϕj(tj)

∣∣∣∣∣ ≤ 
∑

≤k<l≤m

|tktl|
∣∣Cov(Xk ,Xl)

∣∣.

This result, along with (.), completes the proof of the theorem. �

Theorem . Let X, . . . ,Xn be a sequence of LNQD random variables, and let t, . . . , tn be
all nonnegative (or nonpositive) real numbers. Then

E

[
exp

( n∑
j=

tjXj

)]
≤

n∏
j=

E
[
exp(tjXj)

]
.

Remark . Let tj = , ∀j ≥  in Theorem ., we can get Lemma . of Ko et al. []; let
tj = t > , ∀j ≥ , we also get Lemma . ofWang et al. []. Thus, our Theorem . improves
and extends Lemma . in Ko et al. [] and Lemma . in Wang et al. [].

Proof For t, . . . , tn > , it is easy to see that
∑i–

j= tjXj and tiXi are NQD by the definition of
LNQD, which implies that exp(

∑i–
j= tjXj) and exp(tiXi) are also NQD for i = , , . . . ,n by

Lemma .(ii). Then by Lemma .(i) and induction,

E

[
exp

( n∑
j=

tjXj

)]
≤ E

[
exp

( n–∑
j=

tjXj

)]
E
[
exp(tnXn)

]

= E

[
exp

( n–∑
j=

tjXj

)
exp(tn–Xn–)

]
E
[
exp(tnXn)

]
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≤ E

[
exp

( n–∑
j=

tjXj

)]
E
[
exp(tn–Xn–)

]
E
[
exp(tnXn)

]

≤ · · · ≤
n∏
j=

E
[
exp(tjXj)

]
. (.)

For t, . . . , tn < , it is easy to see that –t, . . . , –tn >  and
∑i–

j= –tjXj and –tiXi are NQD
by the definition of LNQD, which implies that exp(–

∑i–
j= –tjXj) and exp(–(–tiXi)) are also

NQD for i = , , . . . ,n by Lemma .(ii). Similar to the proof of (.), we obtain

E

[
exp

( n∑
j=

tjXj

)]
= E

[
exp

(
–

n∑
j=

–tjXj

)]
≤

n∏
j=

E
{
exp

[
–(–tjXj)

]}
=

n∏
j=

E
[
exp(tjXj)

]
.

(.)

Therefore, the proof is complete by (.) and (.). �

Theorem . Suppose that {Xj : j ≥ } is a LNQD random variable sequence with zero
mean and |Xj| ≤ dj a.s. (j = , , . . .). Let t >  and t ·max≤j≤n dj ≤ . Then for any ε > ,

P

(∣∣∣∣∣
n∑
j=

Xj

∣∣∣∣∣ ≥ ε

)
≤  exp

{
–tε + t

n∑
i=

EX
j

}
.

Proof We obtain the result from the proving process of Theorem . inWang et al. [].�

Theorem . Let {Xj : j ≥ } be a LNQD random variable sequence with zero mean and
finite second moment, supj≥ E(X

j ) < ∞. Assume that {aj, j ≥ } is a real constant sequence
satisfying a := supj≥ |aj| < ∞. Then for any r > , E|∑n

j= ajXj|r ≤ Darnr/.

Proof Let a+i :=max{ai, }, a–i :=max{–ai, }. Notice that

E

∣∣∣∣∣
n∑
j=

ajXj

∣∣∣∣∣
r

≤ C

{
E

∣∣∣∣∣
n∑
j=

a+j Xj

∣∣∣∣∣
r

+ E

∣∣∣∣∣
n∑
j=

a–j Xj

∣∣∣∣∣
r}

,

E

∣∣∣∣∣
n∑
j=

a+j Xj

∣∣∣∣∣
r

= arE

∣∣∣∣∣
n∑
j=

a+j a
–Xj

∣∣∣∣∣
r

.

(.)

Let Yj = a+j a–Xj. Then {Yn,n≥ } is still a sequence of LNQD random variables with EYn =
 by Remark .. Note that  < a+j a– ≤ . By Lemma ., we obtain

E

∣∣∣∣∣
n∑
j=

Yj

∣∣∣∣∣
r

≤ Darnr/, this implies that E

∣∣∣∣∣
n∑
j=

a+j Xj

∣∣∣∣∣
r

≤ Darnr/. (.)

Similarly as above, we have

E

∣∣∣∣∣
n∑
j=

a–j Xj

∣∣∣∣∣
r

≤ Darnr/. (.)

Combining (.)-(.), we get the result of the theorem. �

http://www.journalofinequalitiesandapplications.com/content/2012/1/216


Li et al. Journal of Inequalities and Applications 2012, 2012:216 Page 6 of 9
http://www.journalofinequalitiesandapplications.com/content/2012/1/216

3 Application
To show the application of the inequalities in Section , in this section we discuss the
asymptotic normality of the general linear estimator for the following regression model:

Yni = g(xni) + εni,  ≤ i ≤ n, (.)

where the design points xni, . . . ,xnn ∈ A, which is a compact set of Rd , g is a bounded real
valued function onA, and the {εni} are regression errorswith zeromean and finite variance
σ . As an estimate of g(·), we consider the following general linear smoother:

gn(x) =
n∑
i=

wni(x)Yni, (.)

where a weight function wni(x), i = , . . . ,n, depends on the fixed design points xn, . . . ,xnn
and on the number of observations n.
Here, our purpose is to use the inequalities in Section  to establish asymptotic normality

for the estimate (.) under LNQD condition. The results obtained generalize the results
of Roussas et al. [] and Yang [] based on strong mixing sequence to LNQD sequence.
Adopting the basic assumptions of Yang [], we assume the following:

Assumption (A) (i) g : A → R is a bounded function defined on the compact subset A
of Rd ; (ii) {ξt : t = ,±, . . .} is a strictly stationary and LNQD time series with Eξ = ,
Var(ξ) = σ  ∈ (,∞); (iii) For each n, the joint distribution of {εni :  ≤ i ≤ n} is the same
as that of {ξ, . . . , ξn}.

Denote

wn(x) :=max
{∣∣wni(x)

∣∣ :  ≤ i≤ n
}
, σ 

n (x) :=Var
(
gn(x)

)
. (.)

Assumption (A) (i)
∑n

i= |wni(x)| ≤ C for all n ≥ ; (ii) wn(x) = O(
∑n

i=w
ni(x)); (iii)∑n

i=w
ni(x) =O(σ 

n (x)).

Assumption (A) E|ξ|r < ∞ for r >  and u() = supj≥
∑

|i–j|≥ |Cov(ξi, ξj)| < ∞.

Assumption (A) There exist positive integers p := p(n) and q := q(n) such that p+ q ≤ n
for sufficiently large n and as n → ∞,

(i) qp– → ; (ii) nqp–wn → ; (iii) pwn → ; (iv) np
r
 –w

r

n → .

Here, we will prove the following result.

Theorem . Let Assumptions (A)∼(A) be satisfied. Then

σ –
n (x)

{
gn(x) – Egn(x)

} d→N(, ).

Proof We first give some denotations. For convenience of writing, omit everywhere the
argument x and set Sn = σ –

n (gn –Egn), Zni = σ –
n wniεni for i = , . . . ,n, so that Sn =

∑n
i= Zni.

http://www.journalofinequalitiesandapplications.com/content/2012/1/216
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Let k = [n/(p + q)]. Then Sn may be split as Sn = S′
n + S′′

n + S′′′
n , where

S′
n =

k∑
m=

ynm, S′′
n =

k∑
m=

y′
nm, S′′′

n = y′
nk+,

ynm =
km+p–∑
i=km

Zni, y′
nm =

lm+q–∑
i=lm

Zni, y′
nk+ =

n∑
i=k(p+q)+

Zni,

km = (m – )(p + q) + , lm = (m – )(p + q) + p + , m = , . . . ,k.

Thus, to prove the theorem, it suffices to show that

E
(
S′′
n
) → , E

(
S′′′
n
) → , (.)

S′
n

d→N(, ). (.)

By Theorem ., Assumptions (A)(ii)∼(iii) and (A)(i)∼(iii), we have

E
(
S′′
n
) = E

( k∑
m=

lm+q–∑
i=lm

σ –wniξi

)

≤ Dkqσ –w
n ≤ C

(
 + qp–

)–nqp–wn → ,

E
(
S′′′
n
) = E

( n∑
i=k(p+q)+

σ –wniξi

)

≤ D
(
n – k(p + q)

)
σ –w

n ≤ C
(
 + qp–

)
pwn → .

Thus (.) holds.
We now proceed with the proof of (.). Let �n =

∑
≤i<j≤k Cov(yni, ynj) and sn =∑k

m=Var(ynm), then sn = E(S′
n) – �n. Apply relation (.) to obtain E(S′

n) → . This
would also imply that sn → , provided we show that �n → .
Indeed, by Assumption (A) and u() < ∞, we obtain u(q) → . Then by stationarity

and Assumption (A), it can be shown that

|�n| ≤
∑

≤i<j≤k

ki+p–∑
μ=ki

kj+p–∑
ν=kj

∣∣Cov(Znμ,Znν)
∣∣

≤
∑

≤i<j≤k

ki+p–∑
μ=ki

kj+p–∑
ν=kj

σ –
n |wnμwnν | ·

∣∣Cov(ξμ, ξν)
∣∣

≤ Cσ –
n wn

k–∑
i=

ki+p–∑
μ=ki

|wnν | · sup
j≥

∑
t:|t–j|≥q

∣∣Cov(ξj, ξt)∣∣ ≤ Cu(q) → . (.)

Next, in order to establish asymptotic normality, we assume that {ηnm :m = , . . . ,k} are
independent random variables, and the distribution of ηnm is the same as that ynm for
m = , . . . ,k. Then Eηnm =  and Var(ηnm) = Var(ynm). Let Tnm = ηnm/sn, m = , . . . ,k, then
{Tnm,m = , . . . ,k} are independent random variables with ETnm =  and Var(Tnm) = . Let

http://www.journalofinequalitiesandapplications.com/content/2012/1/216
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ϕX(t) be the characteristic function of X, then

∣∣φ∑k
m= ynm

(t) – e–
t

∣∣

≤
∣∣∣∣∣E exp

(
it

k∑
m=

ynm

)
–

k∏
m=

E exp(itynm)

∣∣∣∣∣ +
∣∣∣∣∣

k∏
m=

E exp(itynm) – e–
t


∣∣∣∣∣
≤

∣∣∣∣∣E exp
(
it

k∑
m=

ynm

)
–

k∏
m=

E exp(itynm)

∣∣∣∣∣ +
∣∣∣∣∣

k∏
m=

E exp(itηnm) – e–
t


∣∣∣∣∣ =: I + I. (.)

By Theorem ., relation (.) and Assumption (A), we obtain that

I ≤ t
∑

≤i<j≤k

ki+p–∑
μ=ki

kj+p–∑
ν=kj

∣∣Cov(Znμ,Znν)
∣∣ ≤ Cu(q)→ . (.)

Thus, it suffices to show that ηnm
d→ N(, ) which, on account of sn → , will follow from

the convergence
∑k

m=Tnm
d→N(, ). By the Lyapunov condition, it suffices to show that

for some r > ,


srn

k∑
m=

E|ηnm|r → . (.)

Using Theorem . and Assumptions (A) and (A)(iv), we have

k∑
m=

E|ηnm|r =
k∑

m=

E|ynm|r =
k∑

m=

E

∣∣∣∣∣
km+p–∑
i=km

σ –
n wniξi

∣∣∣∣∣
r

≤ Dkσ r
nw

r
np

r
 ≤ Cnp

r
 –w

r

n → .

So, (.) holds. Thus, the proof is complete. �
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