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Abstract
In this paper, we establish the Hermite-Hadamard inequality for r-convex functions.
We prove that r-convexity implies s-convexity (0≤ r ≤ s). As a result, we obtain a
refinement of the Hermite-Hadamard inequality for an r-convex function (0≤ r ≤ 1).
We also investigate the Hermite-Hadamard inequality for the product of an r-convex
function f and an s-convex function g.
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1 Introduction
Let f : [a,b] –→ R be a convex function, then the inequality

f
(
a + b


)
≤ 

b – a

∫ b

a
f (x)dx≤ f (a) + f (b)


()

is known as the Hermite-Hadamard inequality (see [] for more information). Since then,
some refinements of the Hermite-Hadamard inequality on convex functions have been
extensively investigated by a number of authors (e.g., [, ] and []). In [], the first author
obtained a new refinement of the Hermite-Hadamard inequality for convex functions.
TheHermite-Hadamard inequality was generalized in [] to an r-convex positive function
which is defined on an interval [a,b]. A positive function f is called r-convex on [a,b], if
for each x, y ∈ [a,b] and t ∈ [, ],

f
(
tx + ( – t)y

) ≤
⎧⎨
⎩
[tf r(x) + ( – t)f r(y)] r , r �= ,

[f (x)]t[f (y)]–t , r = .

It is obvious -convex functions are simply log-convex functions and -convex functions
are ordinary convex functions. One should note that if f is r-convex in [a,b], then f r is a
convex function (r > ).
Some refinements of the Hadamard inequality for r-convex functions could be found in

[] and []. In [], Bessenyei studied Hermite-Hadamard-type inequalities for generalized
-convex functions. In [], the authors showed that if f is r-convex in [a,b] and  < r ≤ ,
then


b – a

∫ b

a
f (x)dx≤ r

r + 
[
f r(a) + f r(b)

] 
r . ()
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In this paper, first we show that if f is r-convex in [a,b] and r ≥ , then


b – a

∫ b

a
f (x)dx≤

[


(
f r(a) + f r(b)

)] 
r
. ()

In Theorem ., we prove the following inequality for r-convex functions:


b – a

∫ b

a
f (x)dx≤ r

r + 
· f

r+(b) – f r+(a)
f r(b) – f r(a)

(r > ). ()

The inequality () is an extension and refinement of () and (). In Theorem ., we show
that r-convexity implies s-convexity ( ≤ r ≤ s). We employ this result in Theorem .
and Corollary . to refine the Hermite-Hadamard inequality by r-convexity ( ≤ r ≤ ).
Finally, we generalize some results in [] without usingMinkowski’s inequality. Indeed, we
obtain refinements for the product of an r-convex function f and an s-convex function g
(r, s≥ ).

2 Main results
Theorem . Let f : [a,b] –→ (,∞) be r-convex and r ≥ . Then the following inequality
holds:


b – a

∫ b

a
f (x)dx≤ 


[(
f r(a) + f r(b)

)] 
r .

Proof Since r ≥ , by Jensen’s inequality, we have

(


b – a

∫ b

a
f (x)dx

)r

≤ 
b – a

∫ b

a
f r(x)dx.

By convexity of f r and the right side of (), we obtain


b – a

∫ b

a
f r(x)dx ≤ 


(
f r(a) + f r(b)

)
.

Thus,


b – a

∫ b

a
f (x)dx≤

[


(
f r(a) + f r(b)

)]r

. �

Corollary . Let f : [a,b] –→ (,∞) be a -convex function. Then


b – a

∫ b

a
f (x)dx≤ 


(
f (b) + f (a)

)
. ()

Theorem . Let f : [a,b] –→ (,∞) be r-convex and r ≥ . Then the following inequali-
ties hold:


b – a

∫ b

a
f (x)dx≤

⎧⎨
⎩

r
r+ (

f r+(b)–f r+(a)
f r (b)–f r (a) ), r �= ,

[f (b) – f (a)] ln f (b)
f (a) , r = .
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Proof First, let r > . Since f is r-convex, for all t ∈ [, ], we have

f
(
ta + ( – t)b

) ≤ [
tf r(a) + ( – t)f r(b)

] 
r .

It is easy to observe that


b – a

∫ b

a
f (x)dx =

∫ 


f
(
ta + ( – t)b

)
dt

≤
∫ 



[
tf r(a) + ( – t)f r(b)

] 
r dt

=
∫ 



[
t
(
f r(a) – f r(b)

)
+ f r(b)

] 
r dt.

By substitution t(f r(a) – f r(b)) + f r(b) = z, we obtain


b – a

∫ b

a
f (x)dx ≤ 

f r(b) – f r(a)

∫ f r(b)

f r (a)
z

r dz

=


f r(b) – f r(a)
· 
 + 

r

[
z+


r
]f r (b)
f r (a)

=
r

r + 

(
f r+(b) – f r+(a)
f r(b) – f r(a)

)
.

For r = , we have

f
(
tx + ( – t)y

) ≤ [
f (x)

]t[f (y)]–t .
So,


b – a

∫ b

a
f (x)dx =

∫ 


f
(
ta + ( – t)b

)
dt

≤
∫ 



[
f (a)

]t[f (b)]–t dt

= f (b)
∫ 



[
f (a)
f (b)

]t

dt

= f (b)
[
f (a)
f (b)

]t

ln
f (a)
f (b)

∣∣∣∣




=
[
f (b) – f (a)

]
ln

f (b)
f (a)

.

The proof is completed. �

With the hypotheses of Theorem ., if f (a) = f (b), its proving process shows that


b–a
∫ b
a f (x)dx can be dominated by f (a) where r ≥ .

Note that if we put r =  in Theorem ., we can obtain again the inequality ().

Theorem . Let f : [a,b] –→ (,∞) be r-convex on [a,b] and  ≤ r ≤ s. Then f is
s-convex. In particular, if f is r-convex and  ≤ r ≤ , then f is convex.
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In order to prove the above theorem, we need the following lemma.

Lemma . If  ≤ α ≤  and  ≤ r ≤ s, then the following inequalities hold for every pair
of non-negative real numbers x and y:

xαy–α ≤ (
αxr + ( – α)yr

) 
r ≤ (

αxs + ( – α)ys
) 
s . ()

Proof The left side of the inequality is clear by Young’s inequality. The right side is obvious
if either x or y equals zero. So, let x >  and y > . Consider f : [,∞) –→ R defined by

f (t) =
(
αtr +  – α

)s – (
αts +  – α

)r .
Then f ′(t) = rsα[tr–(αtr +  – α)s– – ts–(αts +  – α)r–]. So, t =  is a critical point of f .
By an easy calculation, we see that f ′′() = rsα( – α)(r – s) ≤ . It follows that f attains its
maximum at t = . Thus, f (t)≤ f () = . This shows that

(
αtr +  – α

)s ≤ (
αts +  – α

)r .
Now, if we put t = x

y in the above inequality, we get

(
αxr + ( – α)yr

)s ≤ (
αxs + ( – α)ys

)r .
Therefore, we can deduce the right side of () by taking rsth root. �

Proof of Theorem . Since f is r-convex, by Lemma . for all x, y ∈ [a,b] and t ∈ [, ],
we have

f
(
tx + ( – t)y

) ≤
⎧⎨
⎩
t[f r(x) + ( – t)f r(y)] r ≤ [tf s(x) + ( – t)f s(y)] s ,  < r ≤ s,

[f (x)]t[f (y)]–t ≤ [tf s(x) + ( – t)f s(y)] s ,  = r ≤ s.

Hence, f is s-convex. �

Theorem . Let f : [a,b] –→ (,∞) be r-convex on [a,b] and  ≤ r ≤ s. Then the follow-
ing inequalities hold:


b – a

∫ b

a
f (x)dx≤

⎧⎨
⎩

r
r+

f r+(b)–f r+(a)
f r (b)–f r (a) ≤ s

s+ (
f s+(b)–f s+(a)
f s(b)–f s(a) ),  < r ≤ s,

[f (b) – f (a)] ln f (b)
f (a) ≤ s

s+ (
f s+(b)–f s+(a)
f s(b)–f s(a) ),  = r < s.

Proof The left side of the inequalities is clear by Theorem .. For the right side, by the
inequality in (), we have

[
tf r(x) + ( – t)f r(b)

] 
r ≤ [

tf s(a) + ( – t)f s(b)
] 
s .

By integrating it on [, ], we obtain

∫ 



[
tf r(a) + ( – t)f r(b)

]
dt ≤

∫ 



[
tf s(a) + ( – t)f s(b)

] 
t dt.
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Thus,

r
r + 

(
f r+(b) – f r+(a)

f (b) – f (a)

)
≤ s

s + 

(
f s+(b) – f s+(a)
f s(b) – f s(a)

)
.

Also, another inequality can be deduced by integrating the inequalities in () if we replace
x and y by f (x) and f (y), respectively. �

Corollary . Let f : [a,b] –→ (,∞) be r-convex and ≤ r ≤ . Then

f
(
a + b


)
≤ 

b – a

∫ b

a
f (x)dx ≤ [

f (b) – f (a)
]
ln

f (b)
f (a)

≤ r
r + 

(
f r+(b) – f r+(a)
f r(b) – f r(a)

)
≤ f (a) + f (b)


.

In other words, when f is r-convex and  ≤ r ≤ , we can refine the Hermite-Hadamard
inequalities through Theorem ..

Theorem . Let f , g : [a,b] –→ (,∞) be r-convex and s-convex functions respectively on
[a,b] and r, s > . Then the following inequality holds:


b – a

∫ b

a
f (x)g(x)dx ≤ 



(
r

r + 

)(
f r+(b) – f r+(a)
f r(b) – f r(a)

)

+



(
s

s + 

)(
gs+(b) – gs+(a)
gs(b) – gs(a)

)

(
f (a) �= f (b), g(a) �= g(b)

)
.

Proof Since f is r-convex and g is s-convex, for all t ∈ [, ], we have

f
(
ta + ( – t)b

) ≤ [
tf r(a) + ( – t)f r(b)

] 
r ,

g
(
ta + ( – t)b

) ≤ [
tgs(a) + ( – t)gs(b)

] 
s .

Thus,


b – a

∫ b

a
f (x)g(x)dx =

∫ 


f
(
ta + ( – t)b

)
g
(
ta + ( – t)b

)
dt

≤
∫ 



[
tf r(a) + ( – t)f r(b)

] 
r
[
tgs(a) + ( – t)gs(b)

] 
s dt

=
∫ 



[
t
(
f r(a) – f r(b)

)
+ f r(b)

] 
r
[
t
(
gs(a) – gs(b)

)
+ gs(b)

] 
s dt.

Applying Cauchy’s inequality, we get

∫ 



[
t
(
f r(a) – f r(b)

)
+ f r(b)

] 
r
[
t
(
gs(a) – gs(b)

)
+ gs(b)

] 
s dt

≤ 


∫ 



[
t
(
f r(a) – f r(b)

)
+ f r(b)

] 
r dt +




∫ 



[
t
(
gs(a) – gs(b)

)
+ gs(b)

] 
s dt. ()
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Similar to the proof of Theorem . and by substitution t(f r(a) – f r(b)) + f r(b) = z, we
obtain

∫ 



[
t
(
f r(a) – f r(b)

)
+ f r(b)

] 
r dt =

r
r + 

(
f r+(b) – f r+(a)
f r(b) – f r(a)

)
. ()

Similarly,

∫ 



[
t
(
gs(a) – gs(b)

)
+ gs(b)

] 
s dt =

s
s + 

(
gs+(b) – gs+(a)
gs(b) – gs(a)

)
. ()

Using (), () and (), we can obtain the desired result. �

Remark . If the conditions of Theorem . hold, and r ≤ s, by Theorem ., f is
s-convex. Thus, the result of Theorem . could be as follows:


b – a

∫ b

a
f (x)g(x)dx≤ 



(
s

s + 

)[
f s+(b) – f s+(a)
f s(b) – f s(a)

+
gs+(b) – gs+(a)
gs(b) – gs(a)

]
.

If f = g , we have


b – a

∫ b

a
f (x)dx≤ s

s + 

(
f s+(b) – f s+(a)
f s(b) – f s(a)

)
.

Now, if f = g and r = s =  in Theorem ., we have


b – a

∫ b

a
f (x)dx≤ 


(
f (b) + f (a)

)
,

which is the same result as in [, Corollary .]. This shows that Theorem . is a gener-
alization of [, Theorem .]. In fact, the condition r, s≤  is redundant.

Theorem. Let f , g : [a,b] –→ (,∞) be -convex on [a,b].Then the following inequal-
ity holds:


b – a

∫ b

a
f (x)g(x)dx≤ [

f (b)g(b) – f (a)g(a)
]
ln

f (b)g(b)
f (a)g(a)

.

Proof Since f and g are -convex, for all t ∈ [, ], we have

f
(
tx + ( – t)y

) ≤ [
f (x)

]t[f (y)]–t ,
g
(
tx + ( – t)y

) ≤ [
g(x)

]t[g(y)]–t .
For all x, y ∈ [, ], and thus


b – a

∫ b

a
f (x)g(x)dx =

∫ 



[
f
(
ta + ( – t)b

)][
g
(
tx + ( – t)y

)]
dt

≤
∫ 



[
f (a)

]t[f (b)]–t[g(a)]t[g(b)]–t dt

http://www.journalofinequalitiesandapplications.com/content/2012/1/215
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= f (b)g(b)
∫ 



[
f (a)g(a)
f (b)g(b)

]t

dt

=
[
f (b)g(b) – f (a)g(a)

]
ln

f (b)g(b)
f (a)g(a)

. �

Corollary . With the hypotheses of the above theorem and f = g , we have


b – a

∫ b

a
f (x)dx≤ [

f (b) – f (a)
]
ln

f (b)
f (a)

.

Theorem . Let f , g : [a,b] –→ (,∞) be r-convex and -convex functions respectively
on [a,b] and r > . Then the following inequality holds:


b – a

∫ b

a
f (x)g(x)dx≤ 



(
r

r + 

)(
f r+(b) – f r+(a)
f r(b) – f r(a)

)
+



[
g(b) – g(a)

]
ln

g(b)
g(a)(

f (a) �= f (b)
)
.

Proof Since f is r-convex and g is -convex, for all t ∈ [, ], we have

f
(
ta + ( – t)b

) ≤ [
tf r(a) + ( – t)f r(b)

] 
r ,

g
(
tx + ( – t)y

) ≤ [
g(x)

]t[g(y)]–t .
Thus,


b – a

∫ b

a
f (x)g(x)dx =

∫ 


f
(
ta + ( – t)b

)
g
(
ta + ( – t)b

)
dt

≤
∫ 



[
tf r(a) + ( – t)f r(b)

] 
r
[
g(a)

]t[g(b)]–t dt

=
∫ 



[
t
(
f r(a) – f r(b)

)
+ f r(b)

] 
r
[
g(a)

]t[g(b)]–t dt.

Again, Cauchy’s inequality shows that

∫ 



[
t
(
f r(a) – f r(b)

)
+ f r(b)

] 
r
[
g(a)

]t[g(b)]–t dt

≤ 


∫ 



[
t
(
f r(a) – f r(b)

)
+ f r(b)

] 
r dt +




∫ 



[
g(a)

]t[g(b)]–t dt. ()

We have

∫ 



[
t
(
f r(a) – f r(b)

)
+ f r(b)

] 
r dt =

r
r + 

(
f r+(b) – f r+(a)
f r(b) – f r(a)

)
. ()

Similar to the proof of Theorem ., we can show that

∫ 



[
g(a)

]t[g(b)]–t dt = 

[
g(b) – g(a)

]
ln

g(b)
g(a)

. ()

Using (), () and (), we can obtain the desired result. �
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