
Che Journal of Inequalities and Applications 2012, 2012:214
http://www.journalofinequalitiesandapplications.com/content/2012/1/214

RESEARCH Open Access

A smoothing and regularization
predictor-corrector method for nonlinear
inequalities
Haitao Che*

*Correspondence:
haitaoche@163.com
School of Mathematics and
Information Science, Weifang
University, Weifang, Shandong
261061, China

Abstract
For a system of nonlinear inequalities, we approximate it by a family of parameterized
smooth equations via a new smoothing function. We present a new smoothing and
regularization predictor-corrector algorithm. The global and local superlinear
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1 Introduction
Consider the following system of nonlinear inequalities:

f (x)≤ , (.)

where f (x) = (f(x), f(x), . . . , fn(x))� and fi : Rn → R is a continuously differentiable function
for i = , , . . . ,n. This problem finds applications in data analysis, set separation problems,
computer-aided design problems and image reconstructions [–]. Among various solu-
tion methods for the inequality problems [–], the smoothing-type methods receive
much attention [–] which first transform the problem as a system of nonsmooth equa-
tions and approximate it by a smooth equation and then solve it by the smoothing Newton
methods. Since the derivative of the underlyingmappingmay be seriously ill-conditioned,
which may prevent the smoothing methods from converging to a solution of the prob-
lem, a perturbed regularization technique is introduced to overcome this drawback [, ,
]. In , Huang et al. proposed a predictor-corrector smoothing Newton method for
nonlinear complementarity problemwith a P function based on the perturbedminimum
function []. The method was shown to be locally superlinear convergent under the as-
sumptions that all V ∈ ∂H(z*) are nonsingular and f ′(x) is locally Lipschitz continuous
around x*.
In this paper, motivated by the smoothed penalty function for constrained optimiza-

tion [], we construct a new smoothing function for nonlinear inequalities, and thus we
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can approximate the nonsmooth system of transformed equations by a system of smooth
equations. We develop a regularization smoothing predictor-corrector method for solv-
ing the problem by modifying and extending the method in []. Besides choosing an ar-
bitrarily starting point, the presented algorithm is simpler than the predictor-corrector
noninterior continuation methods developed by Burke and Xu [].
The rest of this paper is organized as follows. In Section , we review some preliminar-

ies to be used in the subsequent analysis and introduce a new smoothing function and its
properties. In Section , we present a smoothing and regularization predictor-corrector
method for solving the nonlinear inequalities and establish the global and local conver-
gence of the proposed algorithm. Preliminary numerical experiments are reported to show
the efficiency of the algorithm in Section .
To end this section, we introduce some notations used in this paper. The set of m × k

matrices with real entries is denoted by Rm×k , Rn
+ (Rn

++) denotes the nonnegative (positive)
orthant in Rn. The superscript � denotes the transpose of a matrix or a vector. Define
N = {, , . . . ,n}, and for any vector a ∈ Rn, we let Da denote the diagonal matrix whose
i-th diagonal element is ai. ‖u‖ denotes the -norm of a vector u ∈ Rn. For a continuously
differentiable function f : Rn → Rm, we denote the Jacobian of f at x ∈ Rn by f ′(x).

2 Smooth reformulation of nonlinear inequalities
In this section, we first review some definitions and basic results, and then introduce a
new smoothing function and show its properties.

Definition . AmatrixM ∈ Rn×n is said to be a P-matrix if every principle minor ofM
is nonnegative.

Definition . A function F : Rn → Rn is said to be a P-function if for all x, y ∈ Rn with
x �= y, there exists an index i ∈N such that

xi �= yi , (xi – yi )
[
Fi (x) – Fi (y)

] ≥ .

For a P-matrix, the following conclusion holds [].

Lemma . If M ∈ Rn×n is a P-matrix, then every matrix of the form

Da +DbM

is nonsingular for all positive definite diagonal matrices Da,Db ∈ Rn×n.

Definition . Suppose that G : Rn → Rm is a locally Lipschitz function. G is said to be
semi-smooth at x if G is directionally differentiable at x and

lim
V∈∂G(x+th′),h′→h,t→+

{
Vh′}

exists for any h ∈ Rn, where ∂G(x) denotes the generalized derivative in [].

The concept of semi-smoothness was originally introduced byMifflin for functions [].
Qi and Sun extended the definition of a semi-smooth function to vector-valued functions
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[]. Convex functions, smooth functions, piecewise linear functions, convex and concave
functions, and sub-smooth functions are examples of semi-smooth functions. A function
is semi-smooth at x if and only if all its component functions are. The composition of
semi-smooth functions is still a semi-smooth function.

Lemma. [] Suppose that ϕ : Rn → Rm is a locally Lipschitz function semi-smooth at x.
Then
(a) for any V ∈ ∂ϕ(x + th), h→ ,

Vh – ϕ′(x;h) = o
(‖h‖),

(b) for any h→ ,

ϕ(x + h) – ϕ(x) – ϕ′(x;h) = o
(‖h‖).

For problem (.), based on the function

x+ =
(
max{,x}, . . . ,max{,xn}

)�, for x ∈ Rn,

it can be transformed into the following system of equations []:

f (x)+ = . (.)

Since problem (.) is a nonsmooth equation, the classical Newton methods cannot be
used to solve it. Following the ideas in [, , ], we adopt the following smoothing
function to approximate the nonsmooth equation

φ(μ,a) =



(
a +μ

(
ln + ln

(
 + cosh

a
μ

)))
, (.)

where a smoothing parameter μ >  and coshx = ex+e–x
 .

This new smoothing function has the following properties.

Lemma . For any (μ,a) ∈ R++ × Rn, it holds that
() φ(·, ·) is continuously differentiable at any (μ,a) ∈ R++ × Rn.
() Let φ(,a) = limμ→ φ(μ,a), then φ(,a) = a+.
() ∂φ(μ,a)

∂a ≥  at any (μ,a) ∈ R++ × Rn.

Proof () is straightforward, so we only prove () and ().
For (), following the ideas in [], we have

|a|≈ ϕ(μ,a) = μ

(
ln + ln

(
 + cosh

a
μ

))
.

Furthermore, one can obtain the estimate []

∣∣|a| – ϕ(μ,a)
∣∣ ≤ μ


e–

|a|
μ .
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Then φ(,a) = a+.
For (), by a simple calculation, we can show

∂ϕ(μ,a)
∂a

=
sinh a

μ

 + cosh a
μ

∈ (–, ),

then ∂φ(μ,a)
∂a ≥  at any (μ,a) ∈ R++ × Rn. We complete the proof. �

Let z = (μ, ε,x) ∈ R++ × R++ × Rn and

H(z) =H(μ, ε,x) =

⎛
⎜⎝

μ

ε

�(z)

⎞
⎟⎠ , (.)

where

�(z) = �(μ, εx) =

⎛
⎜⎜⎝

φ(μ, f(x))
...

φ(μ, fn(x))

⎞
⎟⎟⎠ + εx. (.)

Define a merit function

ψ(z) =
∥∥H(z)

∥∥ = μ + ε +
∥∥�(z)

∥∥. (.)

Then the inequalities (.) can be reformulated as the following nonlinear equations:

H(z) =H(μ, ε,x) = . (.)

Theorem . Let H(μ, ε,x) be defined as (.). Then
(a) H(μ, ε,x) is continuously differentiable at any z = (μ, ε,x) ∈ R++ × R++ × Rn with its

Jacobian

H ′(z) =

⎛
⎜⎝

  
  

�′
μ(z) x �′

x(z)

⎞
⎟⎠ , (.)

where

�′
μ(z) =

{
φ′

μ

(
μ, f(x)

)
, . . . ,φ′

μ

(
μ, fn(x)

)}�,

�′
x(z) = φ′

x
(
μ, f (x)

)
+ εI =



diag

{(
 +

sinh fi(x)
μ

 + cosh fi(x)
μ

)
: i ∈N

}
f ′(x) + εI.

(b) If f is a P-function, then H ′(z) is nonsingular at any R++ × R++ × Rn.

Proof (a) is straightforward, so we only prove (b). For (b), we only need to show �′
x(z)

is nonsingular. In fact, since f is a P-function, then f ′(x) is a P-matrix for all x ∈ Rn by
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Theorem . in []. We also note that diag{( + sinh
fi(x)
μ

+cosh fi(x)
μ

) : i ∈ N} and εI are positive

diagonal matrices, we know that �′
x(z) is nonsingular by Lemma ., which implies that

H ′(z) is also nonsingular. This completes the proof. �

3 Algorithm and convergence
In this section, we first describe our algorithm and then we reveal the global convergence
analysis of the algorithm. Now, we are at a position to give the description of our smooth-
ing predictor-corrector algorithm.

Algorithm .

Step . Take δ ∈ (, ), σ ∈ (, ). Let e = (μ, ε, ) ∈ R++ × R++ × Rn and x ∈ Rn is
an arbitrary point. Choose z = (μ, ε,x) and parameter γ ∈ (, ) such that
γ ‖H(z)‖ ≤ , γμ + γ ε < . Set k = .

Step . If ‖H(zk)‖ = , then stop. Otherwise, let βk = β(zk) where β(z) is defined by β(z) =
γ ‖H(z)‖.

Step . Predictor step. If ‖H(zk)‖ ≥ , set ẑk := zk and go to Step . Otherwise, compute
�ẑk = (�μ̂k ,�ε̂k ,�x̂k) ∈ R× R× Rn by

H
(
zk

)
+H ′(zk)�zk = βk

∥∥H(
zk

)∥∥e. (.)

If

ψ
(
zk +�ẑk

) ≤ ψ(zk), (.)

then set ẑk = zk +�ẑk . Otherwise, set ẑk = zk .
Step . Corrector step. If ‖H(zk)‖ = , then stop. Otherwise, compute �z̃k = (�μ̃k ,�ε̃k ,

�x̃k) ∈ R× R× Rn by

H
(
ẑk

)
+H ′(ẑk)�zk = β

(
ẑk

)
e. (.)

Let lk be the smallest nonnegative integer l such that

ψ
(
ẑk + δl�z̃k

) ≤ [
 – σ

(
 – γ (μ + ε)

)
δl

]
ψ

(
ẑk

)
. (.)

Set λk = δlk and zk+ := ẑk + λk�z̃k .
Step . Set k := k +  and return to Step .

Remark . If ‖H(zk)‖ ≥ , then Algorithm . solves only one linear system of equa-
tions at each iteration. Otherwise, it solves two linear systems of equations at each
iteration. However, the coefficient matrices of these two systems are identical when
(.) is not satisfied. There are the same points as the algorithm in [], the neighbor-
hood of the path does not appear in the algorithm, thus, it does not need a few addi-
tional computations which keep the iteration sequence staying in the given neighbor-
hood.
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To prove the convergence of Algorithm ., first, define the set

� =
{
z = (μ, ε,x) ∈ R++ × R++ × Rn|μ ≥ β(z)μ, ε ≥ β(z)ε

}
.

The following lemmas show that Algorithm . is well defined and generates an infinite
sequence with some good features.

Lemma . If f is a continuously differentiable P-function, then Algorithm . is well
defined. In addition, μk > , εk >  and zk = (μk , εk ,xk) ∈ � for any k ≥ .

Proof Since f is a continuously differentiable P function, then it follows fromTheorem.
that the matrixH ′(z) is nonsingular for u > , ε > . Since u > , ε >  by the choice of an
initial point, we may assume, without loss of generality, that μk > , εk > , we show that
μ̂k > , ε̂k > . If the predictor step is accepted, then by (.),

μ̂k = βk
∥∥H(

zk
)∥∥μ, (.)

ε̂k = βk
∥∥H(

zk
)∥∥ε, (.)

otherwise, we have zk = ẑk , which means μk = μ̂k , εk = ε̂k . Thus, we obtain μ̂k > , ε̂k > .
Furthermore, H ′(zk) and H ′(ẑk) are nonsingular which means that (.) and (.) are well
defined.
Given k ≥ , for any α ∈ (, ], let

R(α) =H
(
ẑk + α�z̃k

)
–H

(
ẑk

)
– αH ′(ẑk)�z̃k . (.)

Noting H(·) is continuously differentiable, we obtain ‖R(α)‖ = o(α). Then, it follows from
(.) and (.) that

∥∥H(
ẑk + α�z̃k

)∥∥ =
∥∥H(

ẑk
)
+ αH ′(ẑk)�z̃k + R(α)

∥∥
≤ ( – α)

∥∥H(
ẑk

)∥∥ +
∥∥R(α)∥∥ + αγ

∥∥H(
ẑk

)∥∥∥∥e∥∥
≤ ( – α)

∥∥H(
ẑk

)∥∥ + αγ (μ + ε)
∥∥H(

ẑk
)∥∥ + o(α)

≤ [
 –

(
 – γ (μ + ε)

)
α
]∥∥H(

ẑk
)∥∥ + o(α). (.)

Therefore, from (.), it shows that there exists a positive number ᾱ ∈ (, ] such that
for all α ∈ (, ᾱ] and σ ∈ (, ),

∥∥H(
ẑk + α�z̃k

)∥∥ ≤ [
 – σ

(
 – γ (μ + ε)

)
α
]∥∥H(

ẑk
)∥∥ (.)

holds, which implies

ψ
(
ẑk + α�z̃k

) ≤ [
 – σ

(
 – γ (μ + ε)

)
α
]
ψ

(
ẑk

)
.

That is, the nonnegative lk satisfying (.) can be found, which demonstrates that (.) is
well defined.
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For k = , since β(z) = γ ‖H(z)‖ ≤ , we know z ∈ �. Assuming now that zi ∈ � is
true for i = , , . . . ,k, we show that it continues to hold for k + . If the predictor step is
accepted, then it follows from (.), (.) and (.) that

μ̂k = βk
∥∥H(

zk
)∥∥μ

= γψ
(
zk

)
μ

≥ γ
(
ψ

(
zk +�ẑk

))/
μ

= γ
∥∥H(

zk +�ẑk
)∥∥μ

= β
(
ẑk

)
μ (.)

and

ε̂k = βk
∥∥H(

zk
)∥∥ε

= γψ
(
zk

)
ε

≥ γ
(
ψ

(
zk +�ẑk

))/
ε

= γ
∥∥H(

zk +�ẑk
)∥∥ε

= β
(
ẑk

)
ε, (.)

which implies

ẑk ∈ �. (.)

Otherwise, from zk = ẑk and the inductive assumption, we obtain that (.) also holds.
Noting (.), we have

μk+ = μ̂k + λk�μ̃k = ( – λk)μ̂k + λkβ(ẑk)μ, (.)

εk+ = ε̂k + λk�ε̃k = ( – λk)ε̂k + λkβ
(
ẑk

)
ε. (.)

In addition, from (.) we know that there exists λk ∈ (, ) such that

∥∥H(
ẑk + λk�z̃k

)∥∥ ≤ [
 – σ

(
 – γ (μ + ε)

)
λk

]∥∥H(
ẑk

)∥∥ ≤ ∥∥H(
ẑk

)∥∥. (.)

Therefore, it follows from (.), (.) and (.) that

μk+ – βk+μ = ( – λk)μ̂k + λkβ
(
ẑk

)
μ – γ

∥∥H(
zk+

)∥∥μ

≥ ( – λk)β
(
ẑk

)
μ + λkβ

(
ẑk

)
μ – γ

∥∥H(
zk+

)∥∥μ

= β
(
ẑk

)
μ – γ

∥∥H(
zk+

)∥∥μ

= γ
∥∥H(

ẑk
)∥∥μ – γ

∥∥H(
zk+

)∥∥μ ≥ . (.)

Similarly, we can obtain εk+ – βk+ε ≥ . Thus, zk+ ∈ �.
Since u > , ε > , we may assume that μk > , εk >  for any given k ≥ . From μ̂k > ,

ε̂k > , it follows from (.) that μk+ > , εk+ > . Hence, μk > , εk >  for any k ≥ . �

http://www.journalofinequalitiesandapplications.com/content/2012/1/214
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Lemma . Suppose that the infinite sequence {zk = (μk , εk ,xk)} is generated by Algo-
rithm ., then  < μk+ ≤ μk ,  < εk+ ≤ εk and the sequence {‖H(zk)‖} is monotonically
decreasing.

Proof For any k ≥ , it follows from (.), (.) and (.) that

μk+ = ( – λk)μ̂k + λkβ
(
ẑk

)
μ

≤ ( – λk)μ̂k + λkμ̂k

= μ̂k , (.)

εk+ = ( – λk)ε̂k + λkβ
(
ẑk

)
ε

≤ ( – λk)ε̂k + λk ε̂k

= ε̂k . (.)

If the predictor step (Step ) is not accepted at the k-th iterate, then (.) and (.) show
the desired result. Otherwise, from (.), (.), ‖H(zk)‖ <  and zk ∈ �, one has

μ̂k = βk
∥∥H(

zk
)∥∥μ ≤ βkμ ≤ μk , (.)

ε̂k = βk
∥∥H(

zk
)∥∥ε ≤ βkε ≤ εk . (.)

Thus, we obtain that μk+ ≤ μk , εk+ ≤ εk hold for any k ≥ .
If the predictor step (Step ) is not accepted at the k-th iterate, then (.) implies that

∥∥H(
zk+

)∥∥ ≤ ∥∥H(
ẑk

)∥∥ =
∥∥H(

zk
)∥∥,

and the desired result has been obtained. Otherwise, it follows from (.) and ‖H(zk)‖ < 
that

∥∥H(
ẑk

)∥∥ ≤ ∥∥H(
zk

)∥∥ ≤ ∥∥H(
zk

)∥∥.

Hence, for any k ≥ , we obtain

∥∥H(
zk+

)∥∥ ≤ ∥∥H(
zk

)∥∥,

which means the sequence {‖H(zk)‖} is monotonically decreasing. �

Lemma . Assume that f is a P-function and μ, μ, ε, ε are given positive numbers
satisfying μ < μ, ε < ε. Then, H defined by (.) has the property

lim
k→+∞

∥∥H(
zk

)∥∥ = +∞

for any sequence {(μk , εk ,xk)} such that μ ≤ μk ≤ μ, ε ≤ εk ≤ ε for any k and ‖xk‖ →
+∞ as k → +∞.

http://www.journalofinequalitiesandapplications.com/content/2012/1/214
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Proof We outline the proof by contradiction. Suppose that the lemma is not true. Then
there exists a sequence {zk = (μk , εk ,xk)} such that μ ≤ μk ≤ μ, ε ≤ εk ≤ ε, ψ(zk) ≤
ψ(z) but ‖xk‖ → ∞. Since the sequence {xk} is unbounded, the index set I = {i ∈ N :
{xki } is unbounded} is nonempty. Without loss of generality, we can assume that {|xki |} →
+∞ for all i ∈ I . Then the following sequence {x̄k} is bounded which is defined by

x̄k =

⎧⎨
⎩
, i ∈ I,

xki , i /∈ I.

Since f is a P-function, by Definition ., we have

 ≤ max
i∈N

[(
xki – x̄ki

)
(fi

(
xk

)
– fi

(
x̄k

)]

= max
{
,max

i∈I
[
xki

(
fi
(
xk

)
– fi

(
x̄k

))]}

= xki
[
fi

(
xk

)
– fi

(
x̄k

)]
, (.)

where i is one of the indices for which the max is attained, and i is assumed, without
loss of generality, to be independent of k. Since i ∈ I , one has {|xki |} → +∞ as k → ∞.
We now break up the proof into two cases.
Case . If xki → +∞ as k → ∞. In this case, since fi (x̄k) is bounded, we deduce from

(.) that fi (xk) > fi (x̄k).
If fi (x̄k) < fi (xk) < +∞, for  < μ ≤ μk ≤ μ, ε ≤ εk ≤ ε, letting k → ∞ yields




(
fi

(
xk

)
+μk

(
ln + ln

(
 + cosh

fi (xk)
μk

)))

is bounded and




(
fi

(
xk

)
+μk

(
ln + ln

(
 + cosh

fi (xk)
μk

)))
+ εkxki → +∞.

Thus, ‖�(zk)‖ → +∞ as k → ∞.
If fi (xk) → +∞, for  < μ ≤ μk ≤ μ, ε ≤ εk ≤ ε, we have




(
fi

(
xk

)
+μk

(
ln + ln

(
 + cosh

fi (xk)
μk

)))
→ +∞

and




(
fi

(
xk

)
+μk

(
ln + ln

(
 + cosh

fi (xk)
μk

)))
+ εkxki → +∞.

Thus, ‖�(zk)‖ → +∞ as k → ∞.
Case . xki → –∞ as k → ∞. In this case, since fi (x̄k) is bounded, we deduce from (.)

that fi (xk) < fi (x̄k).
If –∞ < fi (xk) < fi (x̄k), for  < μ ≤ μk ≤ μ, ε ≤ εk ≤ ε, we have




(
fi

(
xk

)
+μk

(
ln + ln

(
 + cosh

fi (xk)
μk

)))

http://www.journalofinequalitiesandapplications.com/content/2012/1/214
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is bounded and




(
fi

(
xk

)
+μk

(
ln + ln

(
 + cosh

fi (xk)
μk

)))
+ εkxki → –∞.

Thus, ‖�(zk)‖ → +∞ as k → ∞.
If fi (xk) → –∞, for  < μ ≤ μk ≤ μ, ε ≤ εk ≤ ε, we have




(
fi

(
xk

)
+μk

(
ln + ln

(
 + cosh

fi (xk)
μk

)))

=


(
fi

(
xk

)
+μk

(
ln

(
e–

fi (x
k )

μk
(
e

fi (x
k )

μk +  + e
fi (x

k )
μk

))))

=


μk

(
ln

(
e

fi (x
k )

μk +  + e
fi (x

k )
μk

))

is bounded and




(
fi

(
xk

)
+μk

(
ln + ln

(
 + cosh

fi (xk)
μk

)))
+ εkxki → –∞.

Thus, ‖�(zk)‖ → +∞ as k → ∞.
In summary, we obtain ψ(zk) → +∞ as k → ∞, which contradicts ψ(zk) ≤ ψ(z), and

the proof is completed. �

Under the assumption of f being a P-function, Lemma . and Lemma . indicate that
the level set Lμ(z) defined by

Lμ

(
z

)
=

{
z ∈ R++ × R++ × Rn|ψ(z) ≤ ψ

(
z

)}
(.)

is bounded.
To obtain the global convergence of Algorithm ., we need the following assumption.

Assumption . The solution S := {x ∈ Rn, f (x)≤ } of (.) is nonempty and bounded.

Note that Assumption . seems to be the weakest condition used in the previous liter-
ature to ensure the bound of iteration sequences (see []).

Theorem . Assume that the infinite sequence {zk} is generated by Algorithm .. Then
(a) The sequences {‖H(zk)‖}, {μk} and {εk} converge to zero as k → +∞, and hence any

accumulation point of {xk} is a solution of (.).
(b) If Assumption . is satisfied, then the sequence {zk} is bounded, hence there exists at

least one accumulation point z* = (μ*, ε*,x*) with H(z*) =  and x* ∈ S.

Proof By Lemma ., we know that {‖H(zk)‖} converges to h* as k → ∞. Suppose that
{‖H(zk)‖} does not converge to zero. Then, h* >  and {zk} is bounded by Lemma . and
Lemma .. Assume that z* = (μ*, ε*,x*) is an accumulation point of {zk}. Without loss
of generality, we assume that {zk} converges to z*. Then, by the continuity of H and the
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definition of β(·), we know that {μk}, {εk} and {βk} converge to μ*, ε*, β* respectively and
that h* = ‖H(z*)‖ > . Therefore, by (.), we have

lim
k→∞

λk = .

On the one hand, from Step  in Algorithm ., we get

ψ
(
ẑk + δlk–�z̃k

) ≥ [
 – σ

(
 – γ (μ + ε)

)
δlk–

]
ψ

(
ẑk

)
,

which implies that

ψ(ẑk + δlk–�z̃k) –ψ(ẑk)
δlk–

≥ –σ
(
 – γ (μ + ε)

)
ψ

(
ẑk

)
. (.)

Letting k → +∞, we have

H
(
z*

)TH(
z*

)
�z* ≥ –σ

(
 – γ (μ + ε)

)
ψ

(
ẑ*

)
. (.)

On the other hand, by (.), we have

H
(
z*

)
+H ′(z*)�z = β

(
z*

)
e,

i.e.,

H
(
z*

)TH(
z*

)
�z* = –ψ

(
ẑ*

)
+ β

(
z*

)
H

(
z*

)Te. (.)

Combining (.) and (.), we deduce that

[
 – σ

(
 – γ (μ + ε)

)]
ψ

(
z*

) ≤ β
(
z*

)
H

(
z*

)Te ≤ β
(
z*

)√
μ
 + ε

∥∥H(
z*

)∥∥,
which means

[
 – σ

(
 – γ (μ + ε)

)]
ψ

(
z*

) ≤ β
(
z*

)√
μ
 + ε

∥∥H(
z*

)∥∥
≤ γ (μ + ε)ψ

(
z*

)
. (.)

Since ‖H(z*)‖ > , then

 – σ
(
 – γ (μ + ε)

) ≤ γ (μ + ε),

i.e.,

( – σ )
(
 – γ (μ + ε)

) ≤ .

This contradicts the fact that σ ∈ (, ) and γ (μ + ε) < . Hence, we have h* = , μ* =
, ε* = . Thus, H(z*) = , that is, x*is a solution of (.).

http://www.journalofinequalitiesandapplications.com/content/2012/1/214
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Next we prove (b). It follows from (a) that H(zk) →  as k → ∞. By (.), one has

lim
k→∞

εk = , lim
k→∞

μk = , lim
k→∞

∥∥�
(
zk

)∥∥ = .

Therefore, by the famous mountain pass theorem (Theorem . in []) and along the
lines of the proof of Theorem . in [], we obtain that {xk} is bounded and hence {zk}
is. Thus, {zk} has at least one accumulation point z* = (μ*, ε*,x*). By (a), we have H(z*) = 
and μ* = , ε* = , x* ∈ S. �

Next, we show the local superlinear convergence of Algorithm ..

Theorem . Suppose that f is a continuously differentiable P-function, Assumption .
is satisfied and z* is an accumulation point of the iteration sequence {zk} generated by Algo-
rithm .. If all V ∈ ∂H(z*) are nonsingular and f ′(x) is locally Lipschitz continuous around
x*, then the whole sequence {zk} superlinearly converges to z*, i.e.,

∥∥zk+ – z*
∥∥ = o

(∥∥zk – z*
∥∥)

and

μk+ = o(μk), εk+ = o(εk).

Proof First, from Theorem ., we know that z* is a solution of H(z) = . Then since all
V ∈ ∂H(z*) are nonsingular, it follows from [, , ] that for all zk sufficiently close to
z*, we have

∥∥H ′(zk)–∥∥ ≤ C,

where C >  is a constant.
Then, since H(z) is semi-smooth at z*, H(z) is locally Lipschitz continuous near z*, for

all zk sufficiently close to z*,

ψ
(
zk

)
=

∥∥H(
zk

)∥∥ =
∥∥H(

zk
)
–H

(
z*

)∥∥ =O
(∥∥zk – z*

∥∥). (.)

For all zk sufficiently close to z*, we have

∥∥zk +�zk – z*
∥∥

=
∥∥zk +H ′(zk)–[–H(

zk
)
+ βk

∥∥H(
zk

)∥∥e] – z*
∥∥

=
∥∥H ′(zk)–∥∥∥∥H ′(zk)(zk – z*

)
–H

(
zk

)
+ βk

∥∥H(
zk

)∥∥e∥∥
≤ C

[∥∥H ′(zk)(zk – z*
)
–H

(
zk

)∥∥ + βk
∥∥H(

zk
)∥∥∥∥e∥∥]

= C
[∥∥H(

zk
)
–H

(
z*

)
–H ′(zk)(zk – z*

)∥∥ + βk
∥∥H(

zk
)∥∥∥∥e∥∥]

= o
(∥∥zk – z*

∥∥)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/214
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Thus, for zk sufficiently close to z*, we obtain

ψ
(
zk +�zk

)
=

∥∥H(
zk +�zk

)∥∥

= O
(∥∥zk –�zk – z*

∥∥)
= o

(∥∥zk – z*
∥∥)

= o
(∥∥H(

zk
)
–H

(
z*

)∥∥)
= o

(
ψ

(
zk

))
. (.)

Hence, for zk sufficiently close to z*, we have zk+ = zk +�zk . By (.), we prove that

∥∥zk+ – z*
∥∥ = o

(∥∥zk – z*
∥∥)

holds.
Next, when k is sufficiently large, then zk+ = zk +�zk , so

μk+ = μk +�μk = βk
∥∥H(

zk
)∥∥μ,

and

εk+ = εk +�εk = βk
∥∥H(

zk
)∥∥ε.

Hence, for all k sufficiently large,

μk+ = γμ
∥∥H(

zk
)∥∥, εk+ = γ ε

∥∥H(
zk

)∥∥,

which, together with (.), yields

lim
k→+∞

μk+

μk
= lim

k→+∞
‖H(zk)‖

‖H(zk–)‖ = ,

and

lim
k→+∞

εk+

εk
= lim

k→+∞
‖H(zk)‖

‖H(zk–)‖ = .

This means that μk+ = o(μk), εk+ = o(εk) and the desired result follows. �

4 Numerical experiments
In this section, we test our algorithm for solving the systems of inequalities. In our imple-
mentation, we adopt the strategy in [], the function H defined by (.) is replaced by

H(z) =H(μ, ε,x) =

⎛
⎜⎝

μ

ε

φ(μ, f (x)) + cεx

⎞
⎟⎠ , (.)

where c is a constant. It is easy to see that such a change does not destroy any theoretical
results obtained in Section .
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Table 1 Numerical results of Example 4.1

Our proposed algorithm Smoothing algorithm [8]

st c ε0 ic ip sol cpu iter sol cpu

(0, 0)� 10 0.5 1 2 (0.0424, –1.0101)� 0.14 23 (0.0592, –0.9961)� 1.1
(1, –1)� 10 0.4 1 2 (0.5090, –0.8655)� 0.18 26 (0.3440, –0.9392)� 1.3
(1, –1)� 10 0.8 1 2 (0.6132, –0.7744)� 0.18 28 (0.2568, –0.9667)� 1.4

Table 2 Numerical results of Example 4.2

Our proposed algorithm Smoothing algorithm [8]

st c ε0 ic ip sol cpu iter sol cpu

(0, 0)� 0.5 1 2 1 (0.0442, 0.3356)� 0.12 fail fail fail
(0, 0)� 0.5 0.5 2 1 (–0.0105, 0.9541)� 0.15 21 (–0.0000, 1.2045)� 0.87
(1, 1)� 0.5 0.1 2 1 (–0.0019, 1.5663)� 0.16 21 (0.0004, 1.5704)� 0.87
(1, 1)� 0.5 1 2 1 (–0.0206, 0.8605)� 0.17 22 (0.0006, 1.5698)� 0.90

Table 3 Numerical results of Example 4.3

Our proposed algorithm Smoothing algorithm [8]

st c ε0 ic ip sol cpu iter sol cpu

(0, 1)� 10 0.5 1 2 (0.1237, 0.5902)� 0.17 fail fail fail
(1, 1)� 10 1 1 2 (0.0590, 0.5236)� 0.16 23 (0.5023, 0.5153)� 1.26
(1, 1)� 1 1 1 2 (0.4533, 0.4973)� 0.20 23 (0.5274, 0.5080)� 1.22

In our numerical experiments, the parameters used in the algorithm are chosen as fol-
lows: σ = ., δ = ., μ = , γ = .min{, /‖H(z)‖}. The algorithm terminates when
‖ψ(zk)‖ ≤ –. In the tables of test results, st denotes the starting point of x, ic denotes
the corrector iteration numbers in Step  followed directly from Step , ip denotes the
predictor iteration numbers, iter denotes the iteration numbers of smoothing method (in
[]), cpu denotes the CPU time for solving the underlying problems in seconds, and sol
denotes a solution of the test problem. In the following, we reveal a detailed description
of the tested problems.
In the following, we reveal a detailed description of the tested problems. For Exam-

ple ., . and ., we compare the results obtained by our method with which obtained
by smoothing method []. The results are summarized in Table , Table  and Table .

Example . [, ] Consider (.), where f = (f, f)� with x ∈ R and

f(x) = x + x – , f(x) = –x – x + (.).

Example . [, ] Consider (.), where f = (f, f)� with x ∈ R and

f(x) = sin(x), f(x) = – cos(x).

Example . [] Consider (.), where f = (f, f)� with x ∈ R and

f(x) = x – . sin(x) – . cos(x), f(x) = x – . cos(x) + . sin(x).
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5 Conclusion
In this paper, we present a new smoothing and regularization predictor-corrector algo-
rithm to solve the nonlinear inequalities, the global and local convergence are obtained.
Furthermore, the smoothing parameter μ and the regularization parameter ε in our algo-
rithm are viewed as independent variables. Preliminary numerical results show the effi-
ciency of the algorithm.
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