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Abstract
In this paper, in order to make the convergence faster to a function being
approximated, we introduce a kind of complex modified q-Durrmeyer type operators
which can reproduce constant and linear functions. We study the approximation
properties of these operators. We obtain the order of simultaneous approximation
and a Voronovskaja-type result with a quantitative estimate for these complex
modified q-Durrmeyer type operators attached to analytic functions on compact
disks. More important, our results show the overconvergence phenomenon for these
complex operators.
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1 Introduction
Let q > , for each nonnegative integer k, the q-integer [k]q and the q-factorial [k]q! are
defined by

[k]q :=

⎧⎨
⎩( – qk)/( – q), q �= ,

k, q = 

and

[k]q! :=

⎧⎨
⎩[k]q[k – ]q · · · []q, k ≥ ,

, k = ,

respectively.
Then for q >  and integers n, k, n≥ k ≥ , we have

[k + ]q =  + q[k]q and [k]q + qk[n – k]q = [n]q.

For the integers n, k, n≥ k ≥ , the q-binomial coefficient is defined by

[
n
k

]
q

:=
[n]q!

[k]q![n – k]q!
.
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Let q > , q �= , we can define the derivative Dqf of functions f in the q-calculus by

Dqf (x) =

⎧⎨
⎩

f (qx)–f (x)
(q–)x , x �= ,

f ′(), x = .

Let a > , the q-Jackson integral in the interval [,a] is defined as

∫ a


f (t)dqt = ( – q)a

∞∑
j=

f
(
aqj

)
qj,  < q < .

The q-analogue of the Beta function is defined as

Bq(m,n) =
∫ 


tm–( – qt)n–q dqt, m,n > ,

where

(a – b)nq =
n–∏
j=

(
a – qjb

)
.

Also, it is known that

Bq(m,n) =
[m – ]q![n – ]q!
[m + n – ]q!

.

All of the previous concepts can be found in [, ].
In  Philips [] firstly introduced and studied q analogue of Bernstein polynomials.

After this, the applications of q-calculus in the approximation theory became one of the
main areas of research; many authors studied new classes of q-generalized operators (for
instance, see [–]). Very recently Gupta and Wang [] introduced and studied the fol-
lowing q-Durrmeyer operators for  < q < :

Tn,q(f ;x) = [n + ]q
n∑
k=

q–kpn,k(q;x)
∫ 


pn,k–(q;qt)f (t)dqt + f ()pn,(q;x), (.)

where x ∈ [, ], n = , , . . . ,  < q <  and

pn,k(q;x) :=

[
n
k

]
q

xk
n–k–∏
s=

(
 – qsx

)
=

[
n
k

]
q

xk( – x)n–kq .

Agarwal andGupta [] have extended the operators which were given by (.) to a com-
plex space and have studied the approximation properties of these complex operators.
They have obtained the order of approximation and a Voronovskaja-type result with a
quantitative estimate for these complex operators attached to analytic functions on com-
pact disks.
The moments of the operators Tn,q(f ;x) were obtained as follows (see []):
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Remark  Denote ek(x) = xk , k = , , . For  < q < , x ∈ [, ], n ∈N, we have

Tn,q(e;x) = , Tn,q(e;x) =
[n]qx

[n + ]q
,

Tn,q(e;x) = x
( + q)[n]q

[n + ]q[n + ]q
+ x

q[n]q([n]q – )
[n + ]q[n + ]q

.

It can be observed from the above remark that the operators Tn,q(f ;x) reproduce only
a constant function. To make the convergence faster, we modify these operators so that
they reproduce constant as well as linear functions. For this reason, we change the scale
of reference by replacing the term x by [n+]qx

[n]q , in the definition of Tn,q(f ;x) given by (.).
Using the restriction x ∈ [, 

[]q ], we have the following positive linear operators:

Rn,q(f ;x) = [n + ]q
n∑
k=

q–ktn,k(q;x)
∫ 


pn,k–(q;qt)f (t)dqt + f ()tn,(q;x), (.)

where x ∈ [, 
[]q ], n ∈N,  < q < , the term pn,k(q;x) is given in (.) and

tn,k(q;x) :=

[
n
k

]
q

(
[n + ]q
[n]q

x
)k(

 –
[n + ]q
[n]q

x
)n–k

q
.

By simple computation, we get the moments of the operators Rn,q(f ;x).

Remark  Denoting ek(x) = xk , k = , , , for  < q < , x ∈ [, 
[]q ], n ∈N, we have

Rn,q(e;x) = , Rn,q(e;x) = x, Rn,q(e;x) = x
 + q

[n + ]q
+ x

q[n – ]q[n + ]q
[n + ]q[n]q

.

The aim of the present article is to obtain approximation results for the complex exten-
sion of the q-Bernstein-Durrmeyer type modified operator (.) defined by

Mn,q(f ; z) = [n + ]q
n∑
k=

q–ktn,k(q; z)
∫ 


pn,k–(q;qt)f (t)dqt + f ()tn,(q; z), (.)

where z ∈ C, n = , , . . . ,  < q <  and tn,k(q; z) :=
[ n
k
]
q(

[n+]q
[n]q z)k( – [n+]q

[n]q z)n–kq , pn,k(q; z) :=[ n
k
]
qz

k( – z)n–kq .

2 Auxiliary results
In the sequel, we shall need the following auxiliary results.

Lemma  Let  < q < , m ∈ N.We have Mn,q(tm; z) is a polynomial of degree ≤ min(m,n)
and

Mn,q
(
tm; z

)
=

[n + ]q!
[n +m + ]q!

m∑
s=

cs(m)[n]sqBn,q
(
ts; z

)
,
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where cs(m) ≥  are constants depending on m and q and

Bn,q(f ; z) =
n∑

k=

tn,k(q; z)f
(
[k]q/[n]q

)
.

Proof By the definition of q-Beta function, we have

Mn,q
(
tm; z

)
= [n + ]q

n∑
k=

q–ktn,k(q; z)
∫ 


pn,k–(q;qt)tm dqt

=
[n + ]q!

[n +m + ]q!

n∑
k=

tn,k(q; z)
[k +m – ]q!
[k – ]q!

.

Considering the definition of theBn,q(f ; z), for anym ∈N, applying the principle ofmath-
ematical induction, we immediately obtain the desired conclusion. �

Lemma  Let  < q < . For all m,n ∈N, we can get the inequality

[n + ]q!
[n +m + ]q!

m∑
s=

cs(m)[n]sq ≤ .

Proof By Lemma , we have

Mn,q

(
tm;

[n]q
[n + ]q

)
=

[n + ]q!
[n +m + ]q!

m∑
s=

cs(m)[n]sqBn,q

(
ts;

[n]q
[n + ]q

)

=
[n + ]q!

[n +m + ]q!

m∑
s=

cs(m)[n]sq.

On the other hand, we have tn,k(q;
[n]q

[n+]q ) = , k = , , , . . . ,n–, also tn,n(q; z) = ( [n+]q[n]q z)n

and tn,n(q;
[n]q

[n+]q ) = . So, by formula (.) and using the above values, we have

Mn,q

(
tm;

[n]q
[n + ]q

)
= [n + ]qtn,n

(
q;

[n]q
[n + ]q

)
q–n

∫ 


pn,n–(q;qt)tm dqt

=
[n]q[n + ]q

[n +m]q[n +m + ]q
≤ ,

which implies that we get the desired conclusion. �

Corollary  Denote em(t) = tm, let r ≥  and  < q < . Then for all m ∈N∪{} and |z| ≤ r,
we have |Mn,q(em; z)| ≤ ([]qr)m.

Lemma  Let  < q < , em(t) = tm,m ∈N∪ {} and z ∈C, we have

Mn,q(em+; z) =
qmz([n]q – [n + ]qz)
[n]q[m + n + ]q

DqMn,q(em; z)

+
[m]q + qm[n + ]qz

[m + n + ]q
Mn,q(em; z). (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/212
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Proof By Lemma , we have Mn,q(e; z) =  and Mn,q(e; z) = z, therefore, this result is es-
tablished form = . Now, letm ∈N, in view ofDq(f (x)g(x)) = g(x)Dqf (x) + f (qx)Dqg(x) and
Dq(a + bx)nq = [n]qb(a + bqx)n–q , by simple calculation, we obtain

z
(
 –

[n + ]q
[n]q

z
)
Dq

(
tn,k(q; z)

)
=

(
[k]q – [n + ]qz

)
tn,k(q; z),

z( – z)Dq
(
pn,k(q; z)

)
=

(
[k]q – [n]qz

)
pn,k(q; z).

For u = u(t) = αt (α is a constant), since Dqf (u(t)) =Dqf (u) ·Dqu(t), therefore, we have

t( – qt)Dq
(
pn,k(q;qt)

)
= pn,k(q;qt)

(
[k]q – [n]qqt

)
,

t( – qt)Dq
(
pn,k–(q;qt)

)
= pn,k–(q;qt)

(
[k – ]q – [n]qqt

)
.

It follows that

z
(
 –

[n + ]q
[n]q

z
)
Dq

(
Mn,q(em; z)

)

= [n + ]q
n∑
k=

q–k
(
[k]q – [n + ]qz

)
tn,k(q; z)

∫ 


pn,k–(q;qt)tm dqt

= [n + ]q
n∑
k=

q–ktn,k(q; z)
∫ 



(
 + q[k – ]q – [n]qqt + [n]qqt

)
pn,k–(q;qt)tm dqt

– z[n + ]q[n + ]q
n∑
k=

q–ktn,k(q; z)
∫ 


pn,k–(q;qt)tm dqt

= q[n + ]q
n∑
k=

q–ktn,k(q; z)
∫ 


Dq

(
pn,k–(q;qt)

)
t( – qt)tm dqt

+Mn,q(em; z) + q[n]qMn,q(em+; z) – z[n + ]qMn,q(em; z).

Letting δ(t) = t
q ( – t)( tq )

m, using q-integrate by parts, we have

∫ 


Dq

(
f (t)

)
δ(qt)dqt = δ(t)f (t)| –

∫ 


f (t)Dqδ(t)dqt.

So, the q-integral in the above formula becomes

∫ 


Dq

(
pn,k–(q;qt)

)
t( – qt)tm dqt

= δ(t)pn,k–(q;qt)| –
∫ 


pn,k–(q;qt)Dqδ(t)dqt

= –q–m–
∫ 


pn,k–(q;qt)Dq

(
tm+ – tm+)dqt

= –q–m–[m + ]q
∫ 


pn,k–(q;qt)tm dqt + q–m–[m + ]q

∫ 


pn,k–(q;qt)tm+ dqt.

http://www.journalofinequalitiesandapplications.com/content/2012/1/212
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Thus, we obtain

z
(
 –

[n + ]q
[n]q

z
)
Dq

(
Mn,q(em; z)

)
= –q–m[m + ]qMn,q(em; z)

+ q–m[m + ]qMn,q(em+; z) +Mn,q(em; z)

+ q[n]qMn,q(em+; z) – z[n + ]qMn,q(em; z).

In viewof [m+]q+qm+[n]q = [m+n+]q and [m+]q = [m]q+qm, by simple calculation,
we can get the recurrence in the statement. �

Lemma  Denote Sn,m(q; z) =Mn,q(em; z) – zm. Let  < q < , em(t) = tm, for all m ∈N∪ {}
and z ∈C, we have

Sn,m(q; z) =
qm–z([n]q – [n + ]qz)

[n]q[m + n + ]q
DqMn,q(em–; z)

+
[m – ]q + zqm–[n + ]q

[m + n + ]q
Sn,m–(q; z) +

[m – ]q( – z)zm–

[m + n + ]q
. (.)

Proof Using formula (.), by simple calculation, we can easily get the recurrence (.),
the proof is omitted here. �

Lemma  If Pm(z) is a polynomial of degree m, for all |z| ≤ r, we have

∣∣DqPm(z)
∣∣ ≤ ∥∥P′

m
∥∥
r ≤ m

r
‖Pm‖r , (.)

where ‖Pm‖r =max{|Pm(z)|; |z| ≤ r}.

Proof The proof is easy by using the Bernstein inequality and the complex mean value
theorem, the proof is omitted here. �

Let em(t) = tm,m ∈ N. By Lemma , for all |z| ≤ r, we have

∣∣DqMn,q(em–; z)
∣∣ ≤ m – 

r
∥∥Mn,q(em–; ·)

∥∥
r .

3 Main results
The first main result is expressed by the following upper estimates.

Theorem  Let  < q < , R > , DR = {z ∈ C : |z| < R}. Suppose that f :DR → C is analytic
in DR, i.e., f (z) =

∑∞
m= cmzm for all z ∈ DR. Take  ≤ r ≤ R

 .
(i) For all |z| ≤ r and n ∈N, we have

∣∣Mn,q(f ; z) – f (z)
∣∣ ≤ Kr(f )

|n|q ,

where Kr(f ) = ( + r)
∑∞

m= |cm|m(m – )([]qr)m– <∞.

http://www.journalofinequalitiesandapplications.com/content/2012/1/212
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(ii) (Simultaneous approximation) If  ≤ r < r < R
 are arbitrary fixed, then for all |z| ≤ r

and n,p ∈N, we have

∣∣M(p)
n,q(f ; z) – f (p)(z)

∣∣ ≤ Kr (f )p!r
[n]q(r – r)p+

,

where Kr (f ) is defined as in (i) above.

Proof Taking em(z) = zm, by the hypothesis that f (z) is analytic inDR, i.e., f (z) =
∑∞

m= cmzm

for all z ∈DR, it is easy for us to obtainMn,q(f ; z) =
∑∞

m= cmMn,q(em; z), therefore, we get

∣∣Mn,q(f ; z) – f (z)
∣∣ ≤

∞∑
m=

|cm| · ∣∣Mn,q(em; z) – em(z)
∣∣

=
∞∑
m=

|cm| · ∣∣Mn,q(em; z) – em(z)
∣∣,

asMn,q(e; z) = ,Mn,q(e; z) = z.
(i) By Lemma , Lemma  and Corollary , for allm ∈N, we get

∣∣Mn,q(em; z) – em(z)
∣∣ = ∣∣Sn,m(q; z)∣∣ ≤ r( + r)

[n]q
· m – 

r
∥∥Mn,q(em–;·)

∥∥
r

+ r
∣∣Sn,m–(q; z)

∣∣ + m – 
[n]q

( + r)rm–

≤ (m – )
[n]q

( + r)
(
[]qr

)m– + r
∣∣Sn,m–(q; z)

∣∣.
By writing the last inequality, form = , , . . . , we easily obtain

∣∣Mn,q(em; z) – em(z)
∣∣ ≤  + r

[n]q
m(m – )

(
[]qr

)m–.

In conclusion, it follows that

∣∣Mn,q(f ; z) – f (z)
∣∣ ≤  + r

[n]q

∞∑
m=

|cm|m(m – )
(
[]qr

)m–.

By the hypothesis on f , we have f ()(z) =
∑∞

m= cmm(m – )zm–, and the series is ab-
solutely convergent in |z| ≤ []qr, so we get

∑∞
m= |cm|m(m – )([]qr)m– < ∞, that is

Kr(f ) = ( + r)
∑∞

m= |cm|m(m – )([]qr)m– <∞.
(ii) Denoting by � the circle of radius r > r and center , since for any |z| ≤ r and v ∈ �

we have |v– z| ≥ r – r, by the Cauchy’s formulas it follows that for all |z| ≤ r and n,p ∈N,
we have

∣∣M(p)
n,q(f ; z) – f p(z)

∣∣ = p!
π

∣∣∣∣
∫

�

Mn,q(f ; v) – f (v)
(v – z)p+

dv
∣∣∣∣

≤ Kr (f )
[n]q

p!
π

πr
(r – r)p+

=
Kr (f )
[n]q

· p!r
(r – r)p+

,

which proves the theorem. �

http://www.journalofinequalitiesandapplications.com/content/2012/1/212
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Remark  Let  < q <  be fixed. Since we have 
[n]q →  – q as n → ∞, by passing to

limit with n → ∞ in the estimates in Theorem , we do not obtain the convergence of
M(p)

n,q(f ; z) to f (p)(z), p = , , . . . . But this situation can be improved by choosing  < qn < 
with qn →  as n→ ∞. Indeed, since in this case 

[n]qn
→  as n→ ∞ (see Videnskii [],

formula (.)), from Theorem  we get that M(p)
n,q(f ; z) → f (p)(z), for p = , , . . . , uniformly

for |z| ≤ r, for any  ≤ r < r < R
 .

The following Voronovskaja-type result with a quantitative estimate holds.

Theorem  Let  < q < , R >  and suppose that f : DR → C is analytic in DR = {z ∈ C :
|z| < R}, i.e., f (z) = ∑∞

k= ckzk for all z ∈ DR. For any fixed r ∈ [, R ] and for all n ∈N, |z| ≤ r,
we have

∣∣∣∣Mn,q(f ; z) – f (z) –
z( – z)f ′′(z)

[n]q

∣∣∣∣ ≤ Mr(f )
[n]q

,

where Mr(f ) =
∑∞

k= |ck|(k –)Fk,r([]qr)k < ∞ and Fk,r = (k –)(k –)(k –)+k(k –) +
(k – )k + (k – )(k – )( + r).

Proof Denoting ek(z) = zk , k = , , , . . . , by the hypothesis that f (z) is analytic in DR, i.e.,
f (z) =

∑∞
k= ckzk for all z ∈ DR, we can write Mn,q(f ; z) =

∑∞
k= ckMn,q(ek ; z), thus, for all

z ∈DR, n ∈N, we have

∣∣∣∣Mn,q(f ; z) – f (z) –
z( – z)f ′′(z)

[n]q

∣∣∣∣
≤

∞∑
k=

|ck|
∣∣∣∣Mn,q(ek ; z) – ek(z) –

k(k – )( – z)zk–

[n]q

∣∣∣∣.
Denoting

Ek,n(q; z) =Mn,q(ek ; z) – ek(z) –
k(k – )( – z)zk–

[n]q
,

it is obvious that Ek,n(q; z) is a polynomial of degree less than or equal to k. By simple
computation and the use of Lemma , for all k ≥ , we can get

Ek,n(q; z) =
qk–z([n]q – [n + ]qz)

[n]q[n + k + ]q
DqEk–,n(q; z)

+
qk–[n + ]qz + [k – ]q

[n + k + ]q
Ek–,n(q; z) +Gk,n(q; z),

where

Gk,n(q; z) =
zk–

[n]q[n + k + ]q
{
z

[
–qk–[k – ]q[n]q[n + ]q

+ qk–(k – )(k – )[n + ]q

+ qk(k – )(k – )[k – ]q[n + ]q + qk–[n + ]q[n]q

http://www.journalofinequalitiesandapplications.com/content/2012/1/212
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– qk–(k – )(k – )[n]q[n + ]q – [n + k + ]q[n]q

+ k(k – )[n + k + ]q[n]q
]

+ z
[
qk–[k – ]q[n]q – qk–(k – )(k – )[n]q – qk(k – )(k – )[k – ]q[n]q

– qk–(k – )(k – )[k – ]q[n + ]q

+ [k – ]q[n]q – (k – )(k – )[k – ]q[n]q

+ qk–(k – )(k – )[n]q[n + ]q – k(k – )[n + k + ]q[n]q
]

+
[
qk–(k – )(k – )[k – ]q[n]q + (k – )(k – )[k – ]q[n]q

]}
:=

zk–

[n]q[n + k + ]q
(
zAk,n(q) + zBk,n(q) +Ck,n(q)

)
.

For all k ≥ , we easily obtain |Ck,n(q)| ≤ [n]q(k – )(k – )(k – ), it follows that

∣∣∣∣ zk–Ck,n(q)
[n]q[n + k + ]q

∣∣∣∣ ≤ (k – )(k – )(k – )rk

[n]q
.

In view of [n + k + ]q = [k – ]q + qk–[n]q + qn+k– + qn+k and [n + ]q = [n]q + qn + qn+,
for all k ≥ , we can get

Bk,n(q) = [n]q
[
qk–

(
[k – ]q – (k – )

)
+

(
[k – ]q – qk–(k – )

)]
+ [n]q

[
–qk–(k – )(k – )

(
 + q[k – ]q + [k – ]q

)
– (k – )[k – ]q

– qn+k–( + q)(k – )
]
– qn+k–( + q)(k – )(k – )[k – ]q.

Also, according to [k – ]q – (k – ) = (q – )
∑k–

j= [j]q and [k – ]q – qk–(k – ) = ( –
q)

∑k–
j= [j]qqk––j, we have

∣∣[n]q[qk–([k – ]q – (k – )
)
+

(
[k – ]q – qk–(k – )

)]∣∣
=

∣∣∣∣∣[n]qqk–(qn – 
) k–∑

j=

[j]q + [n]q
(
 – qn

) k–∑
j=

[j]qqk––j
∣∣∣∣∣

≤ [n]q
[
(k – )[k – ]q + (k – )[k – ]q

]
.

Thus, through simple calculation, we can get

∣∣∣∣ zk–Bk,n(q)
[n]q[n + k + ]q

∣∣∣∣ ≤ k(k – )rk

[n]q
.

Now, we estimate Ak,n(q). Similar to the calculation of Bk,n(q), for all k ≥ , we have

Ak,n(q) = –[n]q

[
qk–

(
qn – 

) k–∑
j=

[j]q +
(
 – qn

) k–∑
j=

[j]qqk––j
]
+ [n]q

[
k(k – )[k – ]q

+ qk–(k – )(k – )
(
 + q[k – ]q

)
– qn+k–( + q)

(
[k – ]q – k + 

)]
+ qn+k–( + q)(k – )(k – )

(
 + q[k – ]q

)
.
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By simple calculation, it follows that

∣∣∣∣ zkAk,n(q)
[n]q[n + k + ]q

∣∣∣∣ ≤ (k – )krk

[n]q
.

Thus, for all k ≥ , n ∈N and |z| ≤ r, we can obtain

∣∣Gk,n(q; z)
∣∣ ≤ rk

[n]q

[
(k – )(k – )(k – ) + k(k – ) + (k – )k

]
:=

rk

[n]q
Dk ,

where Dk = (k – )(k – )(k – ) + k(k – ) + (k – )k.
For all k ≥ , n ∈N and |z| ≤ r,  ≤ r, it follows

∣∣Ek,n(q; z)
∣∣ ≤ r( + r)

[n]q

∣∣DqEk–,n(q; z)
∣∣

+
qk–[n + ]qr + [k – ]q

[n + k + ]q

∣∣Ek–,n(q; z)
∣∣ + ∣∣Gk,n(q; z)

∣∣.
Since qk–[n + ]qr + [k – ]q ≤ [n + k + ]qr, it follows

∣∣Ek,n(q; z)
∣∣ ≤ r( + r)

[n]q

∣∣DqEk–,n(q; z)
∣∣ + r

∣∣Ek–,n(q; z)
∣∣ + ∣∣Gk,n(q; z)

∣∣.
Using the estimate in the proof of Theorem (i), we get

∣∣Mn,q(ek ; z) – ek(z)
∣∣ ≤  + r

[n]q
k(k – )

(
[]qr

)k–

for all k,n ∈N, |z| ≤ r,  ≤ r.
Denote ‖f ‖r =max{|f (z)|; |z| ≤ r}, by Lemma , we have

∣∣DqEk–,n(q; z)
∣∣

≤ k – 
r

‖Ek–,n‖r

≤ k – 
r

[∥∥Mn,q(ek–; ·) – ek–
∥∥
r +

∥∥∥∥ (k – )(k – )( – e)ek–
[n]q

∥∥∥∥
r

]

≤ k – 
r

[
(k – )(k – )( + r)([]qr)k–

[n]q
+
(k – )(k – )( + r)([]qr)k–

[n]q

]

≤ (k – )(k – )([]qr)k–

[n]q
.

It follows

∣∣Ek,n(q; z)
∣∣ ≤ (k – )(k – )( + r)([]qr)k

[n]q
+ r

∣∣Ek–,n(q; z)
∣∣ + ([]qr)k

[n]q
Dk

:=
([]qr)k

[n]q
Fk,r + r

∣∣Ek–,n(q; z)
∣∣,
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where Fk,r is a polynomial of degree  in k defined as Fk,r =Dk + (k – )(k – )( + r), Dk

is expressed in the above.
Since E,n(q; z) = E,n(q; z) =  for any z ∈ C, therefore, by writing the last inequality for

k = , , . . . , we easily, step by step, obtain the following:

∣∣Ek,n(q; z)
∣∣ ≤ ([]qr)k

[n]q

k∑
j=

Fj,r ≤ (k – )Fk,r([]qr)k

[n]q
.

As a conclusion, we have

∣∣∣∣Mn,q(f ; z) – f (z) –
z( – z)f ′′(z)

[n]q

∣∣∣∣ ≤
∞∑
k=

|ck|
∣∣Ek,n(q; z)

∣∣

≤ 
[n]q

∞∑
k=

|ck|(k – )Fk,r
(
[]qr

)k .
As f ()(z) =

∑∞
k= ckk(k – )(k – )(k – )zk– and the series is absolutely convergent in

|z| ≤ []qr, it easily follows that
∑∞

k= |ck|k(k –)(k –)(k –)([]qr)k– <∞, which implies
that

∑∞
k= |ck|(k – )Fk,r([]qr)k < ∞. This completes the proof of the theorem. �

In the following theorem, we will obtain the exact order in approximation.

Theorem  Let  < qn <  satisfy limn→∞ qn = , R > , DR = {z ∈ C; |z| < R}. Suppose that
f : DR → C is analytic in DR. If f is not a polynomial of degree ≤ , then for any r ∈ [, R ),
we have

∥∥Mn,qn (f ; ·) – f
∥∥
r ≥ Cr(f )

[n]qn
, n ∈N,

where ‖f ‖r = max{|f (z)|; |z| ≤ r} and the constant Cr(f ) >  depends on f , r and on the
sequence {qn}n∈N but is independent of n.

Proof Denote e(z) = z and

Hn,qn (f ; z) =Mn,qn (f ; z) – f (z) –
z( – z)f ′′(z)

[n]qn
.

For all z ∈DR and n ∈ N, we have

Mn,qn (f ; z) – f (z) =


[n]qn

{
z( – z)f ′′(z) +


[n]qn

[
[n]qnHn,qn (f ; z)

]}
.

Using the property ‖F +G‖r ≥ |‖F‖r – ‖G‖r| ≥ ‖F‖r – ‖G‖r , it follows

∥∥Mn,qn (f ; ·) – f
∥∥
r ≥ 

[n]qn

{∥∥e( – e)f ′′∥∥
r –


[n]qn

[
[n]qn

∥∥Hn,qn (f ; ·)
∥∥
r

]}
.

Considering the hypothesis that f is not a polynomial of degree ≤  in DR, we get

∥∥e( – e)f ′′∥∥
r > .
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Indeed, supposing the contrary, it follows that z( – z)f ′′(z) =  for all z ∈ Dr , that is
f ′′(z) =  for all z ∈ Dr . Thus, f is a polynomial of degree ≤ , a contradiction to the hy-
pothesis.
By Theorem , we get [n]qn‖Hn,qn (f ; ·)‖r ≤ Mr(f ). Taking into account 

[n]qn
→  as n →

∞, therefore, there exists an index n depending only on f , r and on sequence {qn}n∈N
such that for all n≥ n, we have

∥∥e( – e)f ′′∥∥
r –


[n]qn

[
[n]qn

∥∥Hn,qn (f ; ·)
∥∥
r

] ≥ 

∥∥e( – e)f ′′∥∥

r ,

which implies

∥∥Mn,qn (f ; ·) – f
∥∥
r ≥ 

[n]qn

∥∥e( – e)f ′′∥∥
r , ∀n≥ n.

On the other hand, for n ∈ {, , . . . ,n – }, we have

∥∥Mn,qn (f ; ·) – f
∥∥
r ≥ Wr,n(f )

[n]qn
,

whereWr,n(f ) = [n]qn · ‖Mn,qn (f ; ·) – f ‖r > .
As a conclusion, we have

∥∥Mn,qn (f ; ·) – f
∥∥
r ≥ Cr(f )

[n]qn
, ∀n ∈N,

where Cr(f ) = min{Wr,(f ),Wr,(f ), . . . ,Wr,n–(f ),

‖e( – e)f ′′‖r}, this completes the

proof. �

Combining Theorem  with Theorem , we get the following result.

Corollary  Let  < qn <  satisfy limn→∞ qn = , R > , DR = {z ∈C : |z| < R}. Suppose that
f :DR → C is analytic in DR. If f is not a polynomial of degree , then for any r ∈ [, R ), we
have

∥∥Mn,qn (f ; ·) – f
∥∥
r � 

[n]qn
, n ∈N,

where ‖f ‖r = max{|f (z)|; |z| ≤ r} and the constants in the equivalence depend on f , r and
on the sequence {qn}n∈N but are independent of n.

Considering the derivatives of complex modified q-Durrmeyer type operators, we can
prove the following result.

Theorem  Let  < qn <  satisfy limn→∞ qn = , R > , DR = {z ∈ C : |z| < R}. Suppose
that f : DR → C is analytic in DR. Also, let  ≤ r < r < R

 and p ∈ N be fixed. If f is not a
polynomial of degree ≤ max(,p – ), then we have

∥∥M(p)
n,qn (f ; ·) – f (p)

∥∥
r � 

[n]qn
, n ∈N,

http://www.journalofinequalitiesandapplications.com/content/2012/1/212


Ren and Zeng Journal of Inequalities and Applications 2012, 2012:212 Page 13 of 14
http://www.journalofinequalitiesandapplications.com/content/2012/1/212

where ‖f ‖r =max{|f (z)|; |z| ≤ r} and the constants in the equivalence depend on f , r, r, p
and on the sequence {qn}n∈N but are independent of n.

Proof Taking into account the upper estimate in Theorem , it remains to prove the lower
estimate only.
Denoting by � the circle of radius r > r and center , by the Cauchy’s formula, it follows

that for all |z| ≤ r and n ∈N, we have

M(p)
n,qn (f ; z) – f (p)(z) =

p!
π i

∫
�

Mn,qn (f ; v) – f (v)
(v – z)p+

dv.

Keeping the notation there for Hn,qn (f ; z), for all n ∈ N, we have

Mn,qn (f ; z) – f (z) =


[n]qn

{
z( – z)f ′′(z) +


[n]qn

[
[n]qnHn,qn (f ; z)

]}
.

By using Cauchy’s formula, for all v ∈ �, we get

M(p)
n,qn (f ; z) – f (p)(z) =


[n]qn

{[
z( – z)f ′′(z)

]p + 
[n]qn

p!
π i

∫
�

[n]qnHn,qn (f ; v)
(v – z)p+

dv
}
.

Passing now to ‖ · ‖r and denoting e(z) = z, we get the following:

∥∥M(p)
n,qn (f ; ·) – f (p)

∥∥
r ≥ 

[n]qn

[∥∥[
e( – e)f ′′](p)∥∥

r

–


[n]qn

∥∥∥∥ p!
π i

∫
�

[n]qnHn,qn (f ; v)
(v – ·)p+ dv

∥∥∥∥
r

]
.

Since for any |z| ≤ r and υ ∈ � we have |υ – z| ≥ r – r, so, by using Theorem , we get

∥∥∥∥ p!
π i

∫
�

[n]qnHn,qn (f ; v)
(v – ·)p+ dv

∥∥∥∥
r
≤ p!

π
πr[n]qn‖Hn,qn (f ; ·)‖r

(r – r)p+
≤ Mr (f )p!r

(r – r)p+
.

By the hypothesis on f , we have

∥∥[
e( – e)f ′′](p)∥∥

r > .

Indeed, supposing the contrary, it follows that ‖[e(– e)f ′′](p)‖r = , that is, z(– z)f ′′(z)
is a polynomial of degree ≤ p – . Let p =  and p = , then the analyticity of f obviously
implies that f is a polynomial of degree ≤  =max(,p – ), a contradiction.
Now let p≥ , then the analyticity of f obviously implies that f is a polynomial of degree

≤ p –  =max(,p – ), a contradiction to the hypothesis.
In conclusion, ‖[e( – e)f ′′](p)‖r > , and in continuation reasoning exactly as in the

proof of Theorem , we can get the desired conclusion. �

Remark  If we use King’s approach to consider a King-type modification of the complex
extension of the operators which was given by (.), we will obtain better approximation
(cf. [–]).
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