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Abstract
Let G be a simple graph and Gσ be an oriented graph obtained from G by assigning a
direction to each edge of G. The adjacency matrix of G is A(G) and the skew-adjacency
matrix of Gσ is S(Gσ ). The adjacency spectral radius ρ(G) of G and the skew-spectral
radius �(Gσ ) of Gσ are defined as the spectral radius of A(G) and S(Gσ ) respectively.
In this paper, we firstly establish a relation between �(Gσ ) and ρ(G). Also, we give

some results on the skew-spectral radii of Gσ and its oriented subgraphs. As an
application of these results, we obtain a sharp upper bound of the skew-spectral
radius of an oriented unicyclic graph.
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1 Introduction
In this paper, i will always denote an imaginary unit. The identity matrix is denoted by I
and the transpose of the matrix A by AT . Let G be a simple graph with n vertices. The
adjacency matrix A = A(G) is the symmetric matrix [ajk]n×n, where ajk = akj =  if vjvk is
an edge of G, otherwise ajk = akj = . We call det(λI – A) the characteristic polynomial of
G, denoted by P(G;λ). The adjacency spectrum Sp(G) of G is defined as the spectrum of
A(G). Since A is symmetric, its eigenvalues λ(G),λ(G), . . . ,λn(G) are real, and we assume
that λ(G) ≥ λ(G) ≥ · · · ≥ λn(G). We call ρ(G) = λ(G) the adjacency spectral radius ofG.
Let Gσ be a simple graph with an orientation σ , which assigns to each edge of G a

direction so that Gσ becomes a directed graph. The skew-adjacency matrix S = S(Gσ )
is the real skew-symmetric matrix [sjk]n×n, where sjk =  and skj = – if (vj, vk) is an arc
of Gσ , otherwise sjk = skj = . We call det(λI – S) the skew-characteristic polynomial
of Gσ , denoted by φ(Gσ ;λ). The skew spectrum Sp(Gσ ) of Gσ is defined as the spec-
trum of S(Gσ ). Since S is skew-symmetric, its eigenvalues are purely imaginary numbers
λ(Gσ )i,λ(Gσ )i, . . . ,λn(Gσ )i. Also, we assume that λ(Gσ ) ≥ λ(Gσ ) ≥ · · · ≥ λn(Gσ ) and
call �(Gσ ) = λ(Gσ ) the skew-spectral radius of Gσ .
In this paper, wewill denote byD(G) the set of all the oriented graphs obtained fromG by

giving an arbitrary orientation to each edge. Also, we refer to [–] formore terminologies
and notations not defined here.
Unlike the adjacency matrix of a graph, there is little research on the skew-adjacency

matrix S(Gσ ), except that into enumeration of perfect matchings of a graph. As early as in
, Tutte [] derived his famous characterization of the graphs with no perfect match-
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ings. Tutte’s result motivates a lot of work on the matchings polynomial and enumerat-
ing perfect matchings of graphs in terms of its skew-adjacency matrix; see, for example,
[–] and references therein.
Recently, many researchers have paid a great deal of attention to the spectral proper-

ties of skew-symmetric matrices in terms of oriented graphs. IMA-ISU research group
on minimum rank [] studied the minimum rank of skew-symmetric matrices. In ,
Shader and So [] investigated the spectra of the skew-adjacency matrix of an oriented
graph. And in , Adiga et al. [] discussed the properties of the skew energy of an
oriented graph. In the papers [] and [], all the coefficients of the skew-characteristic
polynomial of Gσ in terms of G were interpreted.
The motivation of this paper is to study more carefully the skew spectra of oriented

graphs. In Section , we firstly establish a relation between �(Gσ ) and ρ(G). In Section ,
we give some results on the skew-spectral radii of Gσ and its oriented subgraphs. Finally,
in Section , we give an application of the previous results - to obtain a sharp upper bound
of the skew-spectral radius of an oriented unicyclic graph.

2 A relation between ρ(G) and �(Gσ )
It is interesting to discuss the relations between ρ(G) and �(Gσ ). Let G be a simple graph.
We denoted byN(v) the neighborhood of the vertex v inG, byG– e the subgraph obtained
from G by deleting the edge e and by G – v the subgraph obtained from G by removing
the vertex v together with all edges incident to it. A walk W of length k from u to v in G
is a sequence of k +  vertices starting at u and ending at v such that consecutive vertices
are adjacent. If all vertices in a walk are distinct, then such a walk is called a path of G,
denoted by P. Let P = vv · · · vk be a path with k ≥ . Then P together with the edge vkv
is called a cycle of G, denoted by C.
Let Gσ ∈ D(G) and S(Gσ ) be its skew-adjacency matrix. Let W = uu · · ·ukuk+ be a

walk of G (we often call it a (k + )-walk). The sign of W in Gσ , denoted by sgn(W σ ), is
defined by

ss · · · sk–,ksk,k+.

Let W̄ = uk+uk · · ·uu be thewalk by inverting the order of the vertices along thewalkW .
Then one can find that

sgn
(
W̄ σ

)
=

⎧⎨
⎩– sgn(W σ ), if k is odd;

sgn(W σ ), if k is even.

Obviously, for an even closed walk (that is to say, uk+ = u), we can simply refer to it as
a positive (or negative) even closed walk according to its sign, regardless of the order of
its vertices. Similarly, we can define a positive (or negative) even cycle. Moreover, an even
cycleCk with k vertices is said to be oriented uniformly if its sign inGσ is sgn(Cσ

k) = (–)k .
Note that in terms of defining walks, paths, cycles etc., we focus only on the underlying

undirected graph. And their signs are based on the oriented graph.
ForGσ ∈D(G), one reverses the orientations of all the arcs incident to a particular vertex

ofGσ . We call such an operation a reversal ofGσ . LetGτ be the digraph obtained fromGσ

http://www.journalofinequalitiesandapplications.com/content/2012/1/211
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by doing some reversals. Then Gσ and Gτ are said to be quasi-isomorphic and denoted by
Gσ �Gτ . For example, if T is a tree and Tσ ,Tτ ∈D(T), then we always have Tσ � Tτ .
On quasi-isomorphic oriented graphs, Adiga et al. [] obtained the following result.

Lemma . ([]) Let Gσ ∈ D(G) and Gτ � Gσ . Then the skew-adjacency matrices S(Gσ )
and S(Gτ ) are orthogonally similar. And therefore,

Sp
(
Gσ

)
= Sp

(
Gτ

)
.

For oriented bipartite graphs, we have

Lemma . Let G = (U ,V ;E) be a bipartite graph and |U| = m, |V | = n. The adjacency
matrix of G is

A(G) =

(
 X
XT 

)
.

Let Gσ ∈ D(G) and each even cycle of G be oriented uniformly. Then Gσ � D, where D ∈
D(G) and its skew-adjacency matrix is

S(D) =

(
 X

–XT 

)
.

Proof Firstly, we will prove that each even closed walk of G is oriented uniformly in
Gσ too. That is to say, for an arbitrary closed k-walk of G, its sign in Gσ is (–)k . Let
W = uu · · ·uku be a closed k-walk ofG. We may assume the closed k-walk is exactly
constituted by the cycles (or closed -walks) Cj with kj vertices (j = , , . . . , r). Hence,

sgn(W ) = (–)k+k+···+kr = (–)k .

Now, to prove the lemma, we can consider the following two cases.
Case . G ∼= Kmn;
Let u ∈U , v ∈ V . Obviously, we can take some reversals to obtain a new oriented graph

Gτ such that all the arcs (u, vj), (ul, v) ∈ Gτ (j = , , . . . ,n, l = , , . . . ,m). Now, if Gτ � D,
then there exists an arc (vp,uq) ∈ Gτ , where uq ∈ U and vp ∈ V . Thus, for the cycle C =
uvuqvpu, we have sgn(Cσ

 ) = sgn(Cτ
) = – �= (–). Contradicting the condition of this

lemma that each even cycle of G is oriented uniformly in Gσ , Gτ ∼= D, and then Gσ �D.
Case . G� Kmn;
Without loss of generality, we may assume G is connected. Then there must exist two

vertices u ∈U , v ∈ V not adjacent inG. LetW = uu · · ·ukv be a walk ofG. Now, we join
the vertices u and v and suppose the resulting graph isG. Obviously, we can give the edge
uv a direction (for instance, from u to v) such that the closed (k + )-walk W =W + uv
satisfies sgn(W ς ) = (–)k+ in Gς

 =Gσ + (u, v). Of course, it means that

sgn
(
W σ


)
= sgn

(
W ς


)
= (–)k .
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If there exists another walkW = vv · · · vku in G, then

W = uu · · ·ukvv · · · vku

is a closed (k + k + )-walk of G. Thus,

sgn
(
W σ


)
=
(–)k+k+

(–)k
= (–)k+.

Hence, the closed (k + )-walk W = uv +W of G satisfies sgn(W
ς ) = (–)k+ in Gς

 .
Thus, each even cycle of G is oriented uniformly in Gς

 . It tells us that the graph G sat-
isfies the conditions of this lemma too. Furthermore, if the result holds for G, we can get
immediately the same result for the graph G. By taking some similar operations, we can
obtain the graph Kmn. And then, by the Case  and the above discussion, we know the
result holds. �

Moreover, the following result tells us that Sp(D) = iSp(G) for a bipartite graph G and its
oriented graph D defined as in Lemma ..

Lemma . ([]) Let

A =

(
 X
XT 

)

and

B =

(
 X

–XT 

)

be two real matrices. Sp(A) and Sp(B) are denoted by the spectrum of A and B respectively.
Then Sp(B) = iSp(A).

To obtain the main result of this section, we also need the following result.

Lemma . ([]) Let A be an irreducible nonnegative n × n matrix and B be a complex
n × n matrix such that |B| ≤ A (entry-wise). Then |λ(B)| ≤ ρ(A) for each eigenvalue λ(B)
of B; and λ(B) = ρ(A)eiθ iff B = eiθLAL–, where eiθ = cos θ + i sin θ and |L| = In, the identity
matrix.

Now, by the above lemmas, we can give the relation between ρ(G) and �(Gσ ) as follows.

Theorem . Let G be a connected graph, Gσ ∈ D(G). Then �(Gσ ) ≤ ρ(G) with equality
if and only if G is a bipartite graph and each even cycle of G is oriented uniformly in Gσ .

Proof By Lemma ., we know that �(Gσ ) ≤ ρ(G).
Now suppose that �(Gσ ) = ρ(G). By Lemma ., we have S(Gσ ) = ±iLA(G)L–, where

|L| = In, the identity matrix. Let S(Gσ ) = [sjl], A(G) = [ajl] and L = diag(dj). Then it is not

http://www.journalofinequalitiesandapplications.com/content/2012/1/211
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difficult to know that

sjl = ±iajl
dj
dl
.

Let C = uu · · ·uru be a r-cycle of G. Then sgn(Cσ ) = ss · · · sr–,rsr. Thus,

sgn
(
Cσ

)
=
d
d

d
d

· · · dr–
dr

dr
d

(±i)r = (±i)r .

Since sgn(Cσ ) =  or –, rmust be an even number. Hence,G is a bipartite graph, and each
even cycle of G is oriented uniformly in Gσ .
Conversely, let G be a bipartite graph and each even cycle of G be oriented uniformly

in Gσ . Assume the adjacency matrix of G is

A(G) =

(
 X
XT 

)
.

Then by Lemma ., Gσ �D and the skew-adjacency matrix of D is

S(D) =

(
 X

–XT 

)
.

Thus, by Lemma . and Lemma ., we have �(Gσ ) = �(D) = ρ(G). �

Remark . By this theorem and those known results on the adjacency spectral radii of
bipartite graphs, we can obtain similar results on the skew-spectral radii of oriented bi-
partite graphs.

For example, we can give the following sharp upper bound on the skew-spectral radii of
oriented bipartite graphs.

Theorem . Let G = (U ,V ;E) be a bipartite graph with |U| = n and |V | = n. Let Gσ ∈
D(G). Then

�
(
Gσ

) ≤ √
nn

with equality if and only if Gσ �D, where D ∈D(Knn ), and its skew-adjacency matrix is

S(D) =

(
 Jnn

–JTnn 

)
,

where Jnn is the n × n matrix with all entries equal to .

Proof It is well known that ρ(G) ≤ √nn with equality if and only if G ∼= Knn . Thus, by
Lemma . and Theorem ., we know the result holds. �

http://www.journalofinequalitiesandapplications.com/content/2012/1/211
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3 Some relations on the skew-spectral radii of an oriented graph and its
subgraphs

In this section, we will discuss the relations on the skew-spectral radii of an oriented graph
and its subgraphs due to vertex (or edge) deletion. Certainly, in this paper, each subgraph
of an oriented graph is also referred to as an oriented graph and preserves the direction of
each arc, even if we do not indicate specially.
Let G be a simple graph and Gσ ∈ D(G). A subgraph H of G is called a basic subgraph if

each component of H is an edge or an even cycle. Of course, |V (H)| is an even number.
In the papers [] and [], the following result was obtained.

Lemma . ([, ]) Let Gσ ∈D(G) and the skew-characteristic polynomial is

φ
(
Gσ ,λ

)
=

n∑
j=

ajλn–j = λn + aλn– + aλn– + · · · + an–λ + an.

Then the coefficient of λn–j satisfies

aj =

⎧⎨
⎩, if j = r + ;∑

H (–)c
+c, if j = r,

where the summation is over all the basic subgraphs of G having r vertices ( ≤ r ≤ 	 n
 
),

c+ and c are respectively the number of positive even cycles and the number of even cycles
contained in Hσ .

As an application of this lemma, we can obtain the following results (the result (b) of
the following theorem was also obtained by Hou and Lei []) which can be used to find
recursions for the skew-characteristic polynomial of some oriented graphs.

Theorem . Let G = (V ,E) be a simple graph, u ∈ V (G), e ∈ E(G). Then the skew-
characteristic polynomial of an oriented graph Gσ satisfies the following identities:

(a) φ
(
Gσ ,λ

)
= λφ

(
Gσ – u,λ

)
+

∑
v

φ
(
Gσ – u – v,λ

)
+ 

∑
Z

(–)δ(Z)φ
(
Gσ –V (Z),λ

)
,

where the first summation is over all the vertices in N(u) and the second summation is over
all the even cycles of G containing the vertex u.Moreover,

δ(Z) =

⎧⎨
⎩, if Z is a positive even cycle in Gσ ;

, if Z is a negative even cycle in Gσ .

(b) φ
(
Gσ ,λ

)
= φ

(
Gσ – e,λ

)
+ φ

(
Gσ – u – v,λ

)
+ 

∑
Z

(–)δ(Z)φ
(
Gσ –V (Z),λ

)
,

where e = uv and the summation is over all the even cycles of G containing the edge e.

Proof (a) Obviously, all basic subgraphs of G having j = r vertices can be divided into
three parts: those that do not contain the vertex u, those that contain u together with a

http://www.journalofinequalitiesandapplications.com/content/2012/1/211


Xu Journal of Inequalities and Applications 2012, 2012:211 Page 7 of 13
http://www.journalofinequalitiesandapplications.com/content/2012/1/211

neighbor v as an edge of it, and those that contain u together with the vertices of an even
cycle containing u as the component of it. Then aj = a()j + a()j + a()j , where

a()j =
∑
H

(–)c
+
c,

the summation is over all the basic subgraphs of G – u having j = r vertices;

a()j =
∑
v

aj–(v),

the summation is over all the vertices inN(u). And aj–(v) =
∑

H
(–)c+c, where the sum-

mation is over all the basic subgraphs of G – u – v having j –  vertices;

a()j = 
∑
Z

(–)δ(Z)aj–|V (Z)|,

the summation is over all the even cycles of G containing the vertex u. And aj–|V (Z)| =∑
H
(–)c+c, where the summation is over all the basic subgraphs of G – V (Z) having

j – |V (Z)| vertices.
When j is an odd number, we write a(t)j = aj =  (t = , , ).
Thus,

n∑
j=

a()j λn–j = λ

n–∑
j=

a()j λn––j = λφ
(
Gσ – u,λ

)
,

n∑
j=

aj–(v)λn–j =
n∑
j=

aj–(v)λn–j = φ
(
Gσ – u – v,λ

)
,

n∑
j=

aj–|V (Z)|λn–j =
n∑

j=|V (Z)|
aj–|V (Z)|λn–j = φ

(
Gσ –V (Z),λ

)
.

Thus, the result holds.
(b) The proof is similar to that of (a). �

Now, we consider the relations on the skew-spectral radii of an oriented graph and its
subgraphs due to vertex (or edge) deletion. Firstly, according to a classical result in the
matrix theory, we have

Lemma . (Interlacing of eigenvalues) Let G be a simple graph on n vertices, v ∈ V (G),
Gσ ∈D(G). Suppose

Sp
(
Gσ

)
= {λi,λi, . . . ,λni},

Sp
(
Gσ – v

)
= {μi,μi, . . . ,μn–i}.

Then we have

λ ≥ μ ≥ λ ≥ μ ≥ · · · ≥ λn– ≥ μn– ≥ λn.

http://www.journalofinequalitiesandapplications.com/content/2012/1/211
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Proof Let S(Gσ ) be the skew-adjacency matrix of Gσ . Since iS(Gσ ) is a Hermitian matrix,
by the well-known Cauchy-Poincare theorem, we know the result holds. �

Now,we can get the following strict inequalities on the skew-spectral radii of an oriented
graph and its subgraphs.

Theorem . Let G be a connected simple graph on n vertices, Gσ ∈ D(G). If each even
cycle of G is oriented uniformly in Gσ , then
(a) �(Gσ ) > �(Gσ – u), where u is an arbitrary vertex of G.
(b) �(Gσ ) > �(Gσ – e), where e is an arbitrary edge of G.Moreover, for � ≥ �(Gσ – e), we

have i–nφ(Gσ – e,�i) > i–nφ(Gσ ,�i).

Proof (a) We prove the statement by induction on n. Obviously, the result holds for n =
, .
Now, suppose the result holds when the number of vertices is smaller than n. We con-

sider the case that the number of vertices equals n. Firstly, we have

φ
(
Gσ ,λ

)
= λφ

(
Gσ – u,λ

)
+

∑
v

φ
(
Gσ – u – v,λ

)
+ 

∑
Z

(–)δ(Z)φ
(
Gσ –V (Z),λ

)
.

Let G – u =
⋃r

l=Gl and �(Gσ – u) = �(Gσ
 ) = λ.

Case . |V (G)| ≤ n – ;
Then, by Lemma ., �(Gσ ) ≥ �((G ◦ u)σ ), where G ◦ u is the subgraph of G induced

by the vertex set V (G)∪ u. By induction assumption, we have

�
(
(G ◦ u)σ )

> �
(
Gσ


)
= �

(
Gσ – u

)
.

And then

�
(
Gσ

)
> �

(
Gσ – u

)
.

Case . |V (G)| = n – ;
ThenG ∼= G–u and is connected. By induction assumption, we know �(Gσ –u–v) < λ

for each vertex v in N(u). Thus,

φ
(
Gσ ,λi

)
=

∑
v

φ
(
Gσ – u – v,λi

)
+ 

∑
Z

(–)δ(Z)φ
(
Gσ –V (Z),λi

)
.

Obviously, for each vertex v ∈N(u), we have

φ
(
Gσ – u – v,λi

)
= in–qv, qv > .

On the other hand, for an arbitrary k-cycle Z (if there exists) containing u, we have

(–)δ(Z) =

⎧⎨
⎩–, if k is even;

, if k is odd.

http://www.journalofinequalitiesandapplications.com/content/2012/1/211
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It means that

(–)δ(Z) = (–)k– = ik–.

And thus,

(–)δ(Z)φ
(
Gσ –V (Z),λi

)
= in–qZ , qZ > .

Hence,

φ
(
Gσ ,λi

)
= in–q,

where q > . Thus the result holds.
(b) Since

φ
(
Gσ ,λ

)
= φ

(
Gσ – e,λ

)
+ φ

(
Gσ – u – v,λ

)
+ 

∑
Z

(–)δ(Z)φ
(
Gσ –V (Z),λ

)
.

By the result (a), we have

�
(
Gσ – u – v

)
= �

((
Gσ – e

)
– u – v

)
< �

(
Gσ – e

)
.

And, for an arbitrary even cycle Z (if it exists) containing e, we have

�
(
Gσ –V (Z)

)
< �

(
Gσ – e

)
.

Then, for � ≥ �(Gσ – e), we have

φ
(
Gσ – e,�i

)
– φ

(
Gσ ,�i

)
= inq,

where q > . Thus,

i–nφ
(
Gσ – e,�i

)
> i–nφ

(
Gσ ,�i

)
.

Furthermore, we know �(Gσ ) > �(Gσ – e). �

Moreover, by this theorem, we have the following

Corollary . Let G be a connected simple graph of order n, Gσ ∈ D(G), V ′ ⊂ V (G), E′ ⊂
E(G). If each even cycle of G is oriented uniformly in Gσ , then
(a) �(Gσ ) > �(Gσ –V ′).
(b) i–nφ(Gσ – E′,�i) > i–nφ(Gσ ,�i) for � ≥ �(Gσ – E′). In particular, we have

�(Gσ ) > �(Gσ – E′).

Remark . Note that the above results will help us to compare the skew-spectral radii
of two oriented graphs and then to clarify the skew-spectral properties of some oriented
graphic classes. In the next section, we will just give such an example.

http://www.journalofinequalitiesandapplications.com/content/2012/1/211
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4 An application of the previous results
A so-called unicyclic graph is a connected simple graph in which the number of edges
equals the number of vertices. In this section, we will give an application of the previous
results - to obtain a sharp upper bound of the skew-spectral radius of an oriented unicyclic
graph.
For convenience, we write

Un = {G|G is a unicyclic graph with n vertices},
Un(k) = {G|G is a unicyclic graph in Un containing the cycle Ck}.

Also, we denoted by Cn–k
k the unicyclic graph obtained from Ck by joining a vertex of Ck

with (n – k)K.
Regarding the adjacency spectral radii of unicyclic graphs, Hong [] obtained the fol-

lowing results.

Lemma . ([]) Let G ∈ Un(k). Then

ρ(G)≤ ρ
(
Cn–k
k

)
with equality if and only if G ∼= Cn–k

k .

Lemma . ([]) ρ(Cn–k
k ) > ρ(Cn–k–

k+ ), ≤ k ≤ n – .

Now, we begin to discuss the skew-spectral radii of unicyclic graphs. Firstly, we consider
the bipartite unicyclic graphs. For this case, we have

Lemma . Let G ∈ Un(k) and Gσ ∈D(G). Then

�
(
Gσ

) ≤ ρ
(
Cn–


)
=

√
n +

√
n – n + 


.

The equality holds if and only if G ∼= Cn–
 and the sign of the cycle in Gσ is positive.

Proof By Lemma ., we know �(Gσ ) ≤ ρ(G) and the equality holds if and only if the sign
of the k-cycle in Gσ is (–)k . Moreover, by Lemmas . and ., ρ(G) ≤ ρ(Cn–

 ) and the
equality holds if and only if G ∼= Cn–

 .
Thus, �(Gσ )≤ ρ(Cn–

 ) with equality if and only if G ∼= Cn–
 and the sign of the cycle in

Gσ is (–) = . That is to say the sign of the cycle in Gσ is positive.
For the graph Cn–

 , it is not difficult to know that its characteristic polynomial is

P
(
Cn–
 ,λ

)
= λn–[λ – nλ + (n – )

]
.

And then

ρ
(
Cn–


)
=

√
n +

√
n – n + 


.

This completes the proof. �

http://www.journalofinequalitiesandapplications.com/content/2012/1/211
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Now, we begin to consider the non-bipartite unicyclic graphs. Let G ∈ Un(k + ) and
Gσ ,Gτ ∈ D(G). We can easily know that Gσ � Gτ and Sp(Gσ ) = Sp(Gτ ). Moreover, we
have

Lemma . Let G ∈ Un(k + ) and Gσ ∈ D(G). Then i–nφ(Gσ ,�i) ≥ i–nφ(Dn–k–
k+ ,�i) for

� ≥ �(Gσ ). And thus

�
(
Gσ

) ≤ �
(
Dn–k–

k+
)
,

where Dn–k–
k+ ∈D(Cn–k–

k+ ). The above two equalities hold if and only if G ∼= Cn–k–
k+ .

Proof We prove the statement by induction on n – k – . Obviously, the result holds for
n – k –  = , .
Now, suppose the result holds for n– k –  < t. We consider the case that n– k –  = t.

Assume G ∈ Un(k + ) and G� Cn–k–
k+ . Let u ∈ V (G) and d(u) = , uv ∈ E(G), then

φ
(
Gσ ,λ

)
= λφ

(
Gσ – u,λ

)
+ φ

(
Gσ – u – v,λ

)
,

φ
(
Dn–k–

k+ ,λ
)
= λφ

(
Dn–k–

k+ ,λ
)
+ φ(D,λ),

where D ∈ D(Pk ∪ (n – k – )K). By induction hypothesis, for � ≥ �(Gσ ) > �(Gσ – u),
we have

i–(n–)φ
(
Gσ – u,�i

)
> i–(n–)φ

(
Dn–k–

k+ ,�i
)
,

�
(
Gσ – u

)
< �

(
Dn–k–

k+
)
.

Since Pk ∪ (n– k – )K is a proper spanning subgraph of G– u– v, by Corollary ., for
� > �(Gσ – u) > �(Gσ – u – v), we have

i–(n–)φ
(
Gσ – u – v,�i

)
< i–(n–)φ(D,�i).

So, for � ≥ �(Gσ ), we have

i–nφ
(
Gσ ,�i

)
– i–nφ

(
Dn–k–

k+ ,�i
)

= �i–(n–)
[
φ
(
Gσ – u,�i

)
– φ

(
Dn–k–

k+ ,�i
)]

+ i–(n–)
[
φ(D,�i) – φ

(
Gσ – u – v,�i

)]
> .

Hence, the result follows. �

Furthermore, we have

Lemma . Let Dn–k–
k+ ∈ D(Cn–k–

k+ ) and Dn–k+
k– ∈ D(Cn–k+

k– ) (n > ,k ≥ ). Then for
� ≥ �(Dn–k–

k+ ), we have

i–nφ
(
Dn–k–

k+ ,�i
)
> i–nφ

(
Dn–k+

k– ,�i
)
.

In particular, �(Dn–k–
k+ ) < �(Dn–k+

k– ).
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Proof We prove the result by induction on n. Obviously, the result holds for n = .
Now, suppose the result holds for the number of vertices less than n. We consider the

case that the number of vertices is n. By Theorem ., we know

φ
(
Dn–k–

k+ ,λ
)
= λφ

(
Dn–k–

k+ ,λ
)
+ φ(D,λ),

φ
(
Dn–k+

k– ,λ
)
= λφ

(
Dn–k

k– ,λ
)
+ φ(D,λ),

where D ∈ D(Pk ∪ (n – k – )K), D ∈ D(Pk– ∪ (n – k)K). By induction hypothesis
and Corollary ., for � ≥ �(Dn–k–

k+ ), we have

i–(n–)φ
(
Dn–k–

k+ ,�i
)
> i–(n–)φ

(
Dn–k

k– ,�i
)
,

i–(n–)φ(D,�i) > i–(n–)φ(D,�i).

Thus, similar to the proof of Lemma ., we know the result holds. �

Hence, for the non-bipartite unicyclic graphs, we can give

Lemma . Let G ∈ Un(k + ) and Gσ ∈ D(G), Dn–
 ∈D(Cn–

 ). Then

�
(
Gσ

) ≤ �
(
Dn–


)
=

√
n +

√
n – n + 


.

The equality holds if and only if G ∼= Cn–
 .

Proof By Lemmas . and ., we know �(Gσ ) ≤ �(Dn–
 ), and the equality holds if and

only if G ∼= Cn–
 .

Also, by Theorem ., we have

φ
(
Dn–

 ,λ
)
= λn–(λ + nλ + n – 

)
;

and then

�(Dn–


)
=
n +

√
n – n + 


.

Thus the result holds. �

Now, it is sufficient to compare the skew-spectral radius ofDn–
 and the adjacency spec-

tral radius of Cn–
 .

Lemma . If n > , then ρ(Cn–
 ) < �(Dn–

 ).

Proof By Lemmas . and ., we have

�(Dn–


)
=
n +

√
n – n + 


.
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And

ρ(Cn–


)
=
n +

√
n – n + 


.

It is easy to know that ρ(Cn–
 ) < �(Dn–

 ) when n > . �

Finally, by the above results, we can get the main result of this section.

Theorem . Let G be a unicyclic graph of order n, Gσ ∈ D(G). If n > , then

�
(
Gσ

) ≤ �
(
Dn–


)
=

√
n +

√
n – n + 


.

The equality holds if and only if G ∼= Cn–
 .

Proof By Lemmas ., . and ., we know the result holds. �

Remark . For the adjacency spectral radius of a unicyclic graph, it is well known that
ρ(G) < ρ(Cn–

 ) for G � Cn–
 . It is interesting that for the skew-spectral radius of an ori-

ented unicyclic graph, we also have �(Gσ ) < �(Dn–
 ) (n > ) for G� Cn–

 . But for n = , ,
the inequality does not hold. In fact, by making a simple comparison, we know that
�(D

) < ρ(C) and �(D
) = ρ(C

).
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