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Abstract

In this article, Hadamard-type inequalities for product of s-convex in the second
sense on the co-ordinates in a rectangle from the plane are established.

1. Introduction
A function f : I ® ℝ, I ⊆ ℝ is an interval, is said to be a convex function on I if

f (tx + (1 − t)y) ≤ tf (x) + (1 − t)f (y) (1:1)

holds for all x, y Î I and t Î [0, 1]. If the reversed inequality in (1.1) holds, then f is

concave. Let f : I ⊆ ℝ ® ℝ be a convex function and a, b Î I with a < b. Then the fol-

lowing double inequality:

f
(
a + b

2

)
≤ 1

b − a

∫ b

a
f (x)dx ≤ f (a) + f (b)

2
(1:2)

is known as Hermite-Hadamard inequality for convex mappings. For particular

choice of the function f in (1.2) yields some classical inequalities of means. Both

inequalities in (1.2) hold in reversed direction if f is concave.

Some basic definitions can be given as followings:

Definition 1. (See [1], [2, p. 410]) We say that f : I ® ℝ is a Godunova-Levin func-

tion or that f belongs to the class Q(I) if f is non-negative and for all x, y Î I and t Î
(0, 1) we have

f (tx + (1 − t)y) ≤ f (x)
t

+
f (y)
1 − t

.

Definition 2. (See [3]) We say that f : I ⊆ ℝ ® ℝ is a P-function or that f belongs to

the class P (I) if f is non-negative and for all x, y Î I and t Î [0, 1], we have

f (tx + (1 − t)y) ≤ f (x) + f (y).

Definition 3. (See [4]) Let s Î (0, 1]. A function f : [0, ∞) ® [0, ∞) is said to be s-

convex in the second sense if

f (tx + (1 − t)y) ≤ tsf (x) + (1 − t)sf (y)

for all x, y Î (0, b) and t Î [0, 1].
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In [5], Hudzik and Maligranda considered among others the class of functions which

are s-convex in the first sense. This class is defined in the following way:

Definition 4. A function f : ℝ+ ® ℝ, where ℝ+ = [0, ∞), is said to be s-convex in the

first sense if

f (αx + βy) ≤ αsf (x) + β sf (y)

for all x, y Î [0, ∞), a, b ≥ 0 with as + bs = 1 and for some fixed s Î (0, 1]. We

denote by K1
s the class of all s-convex functions.

In 1978, Breckner introduced s-convex functions as a generalization of convex func-

tions in [4]. Also, he proved the important fact that the set valued map is s-convex

only if the associated support function is s-convex function [6]. Of course, s-convexity

means just convexity when s = 1. The definition of s-convexity of real valued functions

are very important for Orlicz spaces and Banach normed spaces (see [7-9]). A number

of properties of s-convex functions are discussed in articles [5,10-13].

In article [14] the following generalization of the previously described functions was

given.

Definition 5. (See [14,15]) Let I, J be intervals ℝ, (0, 1) ⊆ J and let h : J ® ℝ. A func-

tion f : I ® ℝ is called an h-convex function, or that f belongs to the class SX(h, I), if for

all x, y Î I and t Î (0, 1) we have

f (tx + (1 − t)y) ≤ h(t)f (x) + h(1 − t)f (y). (1:3)

If inequality in (1.3) is reversed, then f is said to be h-concave.

Obviously, if h(t) = t, for all t Î [0, 1] ⊆ J, then all convex functions belong to SX (h,

I) and all concave functions are h-concave; if h(t) = 1
t , for all t Î (0, 1), then SX(h, I) =

Q(I); if h(t) = 1, SX(h, I) ⊇ P(I); and if h(t) = ts, where s Î (0, 1), then SX(h, I) ⊇ K2
s .

For some recent results about h-convex functions we refer the reader to articles

[15-18].

In [10], Dragomir and Fitzpatrick proved the following variant of Hermite-Hadamard

inequality which hold for s-convex functions in the second sense:

Theorem 1. Suppose that f : [0, ∞) ® [0, ∞) is an s-convex function in the second

sense, where s Î (0, 1) and let a, b Î [0, ∞), a < b. If f Î L1([a, b]), then the following

inequalities hold:

2s−1f
(
a + b

2

)
≤ 1

b − a

∫ b

a
f (x)dx ≤ f (a) + f (b)

s + 1
(1:4)

The constant k = 1
s+1 is the best possible in the second inequality in (1.4).

Again in [10], Dragomir and Fitzpatrick also proved the following Hadamard-type

inequality for s-convex functions in the first sense:

Theorem 2. Suppose that f : [0, ∞) ® [0, ∞) is an s-convex function in the first sense,

where s Î (0, 1) and let a, b Î [0, ∞). If f Î L1([a, b]) then the following inequalities

hold:

f
(
a + b

2

)
≤ 1

b − a

∫ b

a
f (x)dx ≤ f (a) + sf (b)

s + 1
(1:5)

The above inequalities are sharp.
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A modification for convex functions which is also known as co-ordinated convex

functions was introduced as following by Dragomir [19]:

Let us consider a bidimensional interval Δ =: [a, b] × [c, d] in ℝ2 with a < b and c <

d. A mapping f : Δ ® ℝ is said to be convex on Δ if the following inequality:

f (αx + (1 − α)z,αy + (1 − α)w) ≤ αf (x, y) + (1 − α)f (z,w)

holds, for all (x, y), (z, w) Î Δ and a Î [0, 1].

A function f : Δ ® ℝ is said to be convex on the co-ordinates on Δ if the partial

mappings fy : [a, b] ® ℝ, fy(u) = f(u, y) and fx : [c, d] ® ℝ, fx(v) = f(x, v) are convex

where defined for all x Î [a, b], y Î [c, d].

In the same article, Dragomir established the following Hadamard-type inequalities

for convex functions on the co-ordinates in a rectangle from the plane ℝ2:

Theorem 3. Suppose f : Δ = [a, b] × [c, d] ⊆ [0, ∞) ® ℝ is convex function on the co-

ordinates on Δ. Then one has the inequalities:

f
(
a + b

2
,
c + d

2

)
≤ 1

(b − a)(d − c)

∫ b

a

∫ d

c
f (x, y)dydx

≤ f (a, c) + f (b, c) + f (a, d) + f (b, d)
4

(1:6)

The concept of s-convex functions on the co-ordinates in both sense was introduced

by Alomari and Darus [20,21]:

Definition 6. Consider the bidimensional interval Δ =: [a, b] × [c, d] in [0, ∞)2 with

a < b and c < d. The mapping f : Δ ® ℝ is s-convex in the first sense (in the second

sense) on Δ if

f (αx + βz, αy + βw) ≤ αsf (x, y) + β sf (z, w)

holds for all (x, y), (z, w) Î Δ, a, b ≥ 0 with as + bs = 1 (a + b = 1) and for some

fixed s Î (0, 1]. We write f ∈ Ki
s(i = 1, 2)which means that f is s-convex in the first

sense when i = 1, (in the second sense when i = 2).

A function f : Δ =: [a, b] × [c, d] ⊆ [0, ∞)2 ® ℝ is called s-convex in first sense (in

the second sense) on the co-ordinates on Δ if the partial mappings fy : [a, b] ® ℝ, fy
(u) = f(u, y) and fx : [c, d] ® ℝ, fx(v) = f (x, v), are s-convex in the first sense (in the

second sense) for all y Î [c, d], x Î [a, b], and s Î (0, 1], i.e, the partial mappings fy
and fx are s-convex in the first sense (second sense) with some fixed s Î (0, 1].

In [20], Alomari and Darus proved the following inequalities for s-convex functions

(in the second sense) on the co-ordinates in a rectangle from the plane ℝ2:

Theorem 4. Suppose f : Δ = [a, b] × [c, d] ⊆ [0, ∞) ® ℝ is s-convex function (in the

second sense) on the co-ordinates on Δ. Then one has the inequalities:

4s−1f
(
a + b

2
,
c + d

2

)
≤ 1

(b − a)(d − c)

∫ b

a

∫ d

c
f (x, y)dydx

≤ f (a, c) + f (b, c) + f (a, d) + f (b, d)

(s + 1)2

(1:7)

Also in [21] (see also [22]), Alomari and Darus established the following inequalities

for s-convex functions (in the first sense) on the co-ordinates in a rectangle from the

plane ℝ2:
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Theorem 5. Suppose f : Δ = [a, b] × [c, d] ⊆ [0, ∞) ® ℝ is s-convex function (in the

first sense) on the co-ordinates on Δ. Then one has the inequalities:

f
(
a + b

2
,
c + d

2

)
≤ 1

(b − a)(d − c)

∫ b

a

∫ d

c
f (x, y)dydx

≤ f (a, c) + sf (b, c) + sf (a, d) + s2f (b, d)

(s + 1)2

(1:8)

The above inequalities are sharp.

In [23], Sarikaya et al. proved some Hadamard-type inequalities for co-ordinated

convex functions as followings:

Theorem 6. Let f : Δ ⊂ ℝ2 ® ℝ be a partial differentiable mapping on Δ := [a, b] ×

[c, d] in ℝ2 with a < b and c < d. If

∣∣∣∣ ∂2f
∂t∂s

∣∣∣∣is a convex function on the co-ordinates on

Δ, then one has the inequalities:∣∣∣∣ f (a, c) + f (a, d) + f (b, c) + f (b, d)
4

1
(b − a)(d − c)

∫ b

a

∫ d

c
f (x, y)dxdy − A

∣∣∣∣∣

≤ (b − a)(d − c)
16

⎛
⎜⎜⎝

∣∣∣∣ ∂2f

∂t∂s

∣∣∣∣ (a, c) +
∣∣∣∣ ∂2f

∂t∂s

∣∣∣∣ (a, d) +
∣∣∣∣ ∂2f

∂t∂s

∣∣∣∣ (b, c) +
∣∣∣∣ ∂2f

∂t∂s

∣∣∣∣ (b, d)
4

⎞
⎟⎟⎠

where

A =
1
2

[
1

(b − a)

∫ b

a
[f (x, c) + f (x, d)]dx +

1
(d − c)

∫ d

c
[f (a, y)dy + f (b, y)]dy

]
.

Theorem 7. Let f : Δ ⊂ ℝ2 ® ℝ be a partial differentiable mapping on Δ := [a, b] ×

[c, d] in ℝ2 with a < b and c < d. If
∣∣∣∣ ∂2f
∂t∂s

∣∣∣∣
q

, q >1, is a convex function on the co-ordi-

nates on Δ, then one has the inequalities:∣∣∣∣ f (a, c) + f (a, d) + f (b, c) + f (b, d)
4

1
(b − a)(d − c)

∫ b

a

∫ d

c
(x, y)dxdy − A

∣∣∣∣∣

≤ (b − a)(d − c)

4(p + 1)

2
p

⎛
⎜⎜⎜⎝

∣∣∣∣ ∂2f
∂t∂s

∣∣∣∣
q

(a, c) +

∣∣∣∣ ∂2f
∂t∂s

∣∣∣∣
q

(a, d) +

∣∣∣∣ ∂2f
∂t∂s

∣∣∣∣
q

(b, c) +

∣∣∣∣ ∂2f
∂t∂s

∣∣∣∣
q

(b, d)

4

⎞
⎟⎟⎟⎠

1
q

where

A =
1
2

[
1

(b − a)

∫ b

a
[f (x, c) + f (x, d)]dx +

1
(d − c)

∫ d

c
[f (a, y)dy + f (b, y)]dy

]
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and 1
p +

1
q = 1.

Theorem 8. Let f : Δ ⊂ ℝ2 ® ℝ be a partial differentiable mapping on Δ := [a, b] ×

[c, d] in ℝ2 with a < b and c < d. If
∣∣∣∣ ∂2f
∂t∂s

∣∣∣∣
q

, q ≥ 1, is a convex function on the co-ordi-

nates on Δ, then one has the inequalities:∣∣∣∣ f (a, c) + f (a, d) + f (b, c) + f (b, d)
4

1
(b − a)(d − c)

∫ b

a

∫ d

c
f (x, y)dxdy − A

∣∣∣∣∣

≤ (b − a)(d − c)
16

⎛
⎜⎜⎜⎝

∣∣∣∣ ∂2f
∂t∂s

∣∣∣∣
q

(a, c) +

∣∣∣∣ ∂2f
∂t∂s

∣∣∣∣
q

(a, d) +

∣∣∣∣ ∂2f
∂t∂s

∣∣∣∣
q

(b, c) +

∣∣∣∣ ∂2f
∂t∂s

∣∣∣∣
q

(b, d)

4

⎞
⎟⎟⎟⎠

1
q

where

A =
1
2

[
1

(b − a)

∫ b

a
[f (x, c) + f (x, d)]dx +

1
(d − c)

∫ d

c
[f (a, y)dy + f (b, y)]dy

]
.

For refinements, counterparts, generalizations and new Hadamard-type inequalities

see the articles [3,5,10-13,19-28]. In [25] (see also [22]), Alomari and Darus introduced

new classes of s-convex functions on the co-ordinates as following:

Definition 7. Consider the bidimensional interval Δ =: [a, b] × [c, d] in [0, ∞)2 with

a < b and c < d. The mapping f : Δ ® ℝ is s-convex in the first sense on Δ if there

exist s1, s2 Î (0, 1] such that s = s1+s2
2 ,

f (αx + βz,αy + βw) ≤ αs1 f (x, y) + β s2 f (z,w)

holds for all (x, y), (z, w) Î Δ with a, b ≥ 0 with αs1 + β s2 = 1and for some fixed s1, s2
Î (0, 1]. We denote this class of functions by MWO1

s1,s2.

Definition 8. Consider the bidimensional interval Δ =: [a, b] × [c, d] in [0, ∞)2 with

a < b and c < d. The mapping f : Δ ® ℝ is s-convex in the second sense on Δ if there

exist s1, s2 Î (0, 1] such that s = s1+s2
2 ,

f (αx + βz,αy + βw) ≤ αs1 f (x, y) + β s2 f (z,w)

holds for all (x, y), (z, w) Î Δ with a, b ≥ 0 with a + b = 1 and for all fixed s1, s2 Î

(0, 1]. We denote this class of functions by MWO2
s1,s2.

In [26], Pachpatte established some inequalities for product of convex functions as

follows:

Theorem 9. Let f, g : [a, b] ⊆ ℝ ® [0, ∞) be convex functions on [a, b], a < b.

Then

1
b − a

∫ b

a
f (x)g(x)dx ≤ 1

3
M(a, b) +

1
6
N(a, b) (1:9)
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and

2f
(
a + b

2

)
g
(
a + b

2

)
≤ 1

b − a

∫ b

a
f (x)g(x)dx +

1
6
M(a, b) +

1
3
N(a, b) (1:10)

where M(a, b) = f(a)g(a) + f(b)g(b) and N(a, b) = f(a)g(b) + f(b)g(a).

Similar results for s-convex functions is due to Kirmaci et al. [13] as follows:

Theorem 10. Let f, g : [a, b] ⊆ ℝ ® ℝ a, b Î [0, ∞), a < b, be functions such that g

and fg are in L1([a, b]). If f is convex and non-negative on [a, b] and if g is s-convex on

[a, b], for some s Î (0, 1), then

2sf
(
a + b

2

)
g
(
a + b

2

)
− 1

b − a

∫ b

a
f (x)g(x)dx

≤ 1
(s + 1)(s + 2)

M(a, b) +
1

s + 2
N(a, b)

(1:11)

where M(a, b) = f(a)g(a) + f(b)g(b) and N(a, b) = f(a)g(b) + f(b)g(a).

Theorem 11. Let f, g : [a, b] ⊆ ℝ ® ℝ a, b Î [0, ∞), a < b, be functions such that g

and fg are in L1([a, b]). If f is convex and non-negative on [a, b] and if g is s-convex on

[a, b] for some s Î (0, 1), then

1
b − a

∫ b

a
f (x)g(x)dx ≤ 1

s + 2
M(a, b) +

1
(s + 1)(s + 2)

N(a, b) (1:12)

where M(a, b) = f(a)g(a) + f(b)g(b) and N(a, b) = f(a)g(b) + f(b)g(a).

Theorem 12. Let f, g : [a, b] ⊆ ℝ ® ℝ a, b Î [0, ∞), a < b, be functions such that f, g

and fg are in L1([a, b]). If f is s1-convex and g is s2-convex on [a, b] for some fixed s1, s2
Î (0, 1), then

1
b − a

∫ b

a
f (x)g(x)dx ≤ 1

s1 + s2 + 1
M(a, b) + B(s1 + 1, s2 + 1)N(a, b)

=
1

s1 + s2 + 1

[
M(a, b) + s1s2

�(s1)�(s2)
�(s1 + s2 + 1)

N(a, b)
] (1:13)

where M(a, b) = f(a)g(a) + f(b)g(b) and N(a, b) = f(a)g(b) + f(b)g(a).

In the last theorem Beta function of Euler type, defined by

B(x, y) =
∫ t
0 t

x−1(1 − t)y−1dt =
�(x)�(y)
�(x + y)

has been used.

The main purpose of the present article is to establish new Hadamard-type inequal-

ities similar to the above inequalities, but now for product of s-convex functions (in

the second sense) on the co-ordinates in a rectangle from the plane ℝ2.

2. Main results
We will start with the following theorem.

Theorem 13. Let f, g : Δ = [a, b] × [c, d] ⊆ [0, ∞)2 ® ℝ, a < b, c < d, be functions

such that f, g and fg are in L2(Δ). If f is non-negative and convex on the coordinates on

Δ and if g is s-convex in the second sense on the co-ordinates on Δ, for all s1, s2 Î (0,

1), such that s = s1+s2
2 , then one has the inequality;
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1
(b − a)(d − c)

∫ b

a

∫ d

c
f (x, y)g(x, y)dydx

≤ 1
2
(p2 + r2)L(a, b, c, d) +

1
2
(pq + rt)M(a, b, c, d) +

1
2
(q2 + t2)N(a, b, c, d)

(2:1)

where

L(a, b, c, d) = f (a, c)g(a, c) + f (b, c)g(b, c) + f (a, d)g(a, d) + f (b, d)g(b, d),

M(a, b, c, d) = f (a, c)g(a, d) + f (a, d)g(a, c) + f (b, c)g(b, d) + f (b, d)g(b, c)

+ f (b, c)g(a, c) + f (b, d)g(a, d) + f (a, c)g(b, c) + f (a, d)g(b, d),

N(a, b, c, d) = f (b, c)g(a, d) + f (b, d)g(a, c) + f (a, c)g(b, d) + f (a, d)g(b, c)

and

p =
1

s2 + 2
, q =

1
(s2 + 1)(s2 + 2)

, r =
1

s1 + 2
, t =

1
(s1 + 1)(s1 + 2)

.

Proof. Since f is convex and g is s-convex in the second sense on the co-ordinates on

Δ. Therefore the partial mappings

fy : [a, b] → [0,∞), fy(x) = f (x, y)

and

fx : [c, d] → [0,∞), fx(y) = f (x, y)

are convex and non-negative on [a, b] and [c, d], respectively. The partial mappings

gy : [a, b] → [0,∞), gy(x) = g(x, y)

and

gx : [c, d] → [0,∞), gx(y) = g(x, y)

are s1-, s2-convex on [a, b] and [c, d], respectively, for all x Î [a, b], y Î [c, d], for all

s1, s2 Î (0, 1], such that s = s1+s2
2 . Now by applying fx(y)gx(y) to (1.12) on [c, d], we get

1
d − c

∫ d

c
fx(y)gx(y)dy ≤ p[fx(c)gx(c) + fx(d)gx(d)]

+ q[fx(c)gx(d) + fx(d)gx(c)].

That is

1
d − c

∫ d

c
f (x, y)g(x, y)dy ≤ p[f (x, c)g(x, c) + f (x, d)g(x, d)]

+ q[f (x, c)g(x, d) + f (x, d)g(x, c)].

Integrating over [a, b] with respect to x and dividing both sides by b - a, we have

1
(b − a)(d − c)

∫ b

a

∫ d

c
f (x, y)g(x, y)dydx

≤ p

[
1

b − a

∫ b

a
f (x, c)g(x, c)dx +

1
b − a

∫ b

a
f (x, d)g(x, d)dx

]

+ q

[
1

b − a

∫ b

a
f (x, c)g(x, d)dx +

1
b − a

∫ b

a
f (x, d)g(x, c)dx

]
.

(2:2)
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Now by applying (1.12) to each integral on right-hand side of (2.2) again, we get

1
b − a

∫ b

a
f (x, c)g(x, c)dx ≤ p[f (a, c)g(a, c) + f (b, c)g(b, c)]

+ q[f (a, c)g(b, c) + f (b, c)g(a, c)].

1
b − a

∫ b

a
f (x, d)g(x, d)dx ≤ p[f (a, d)g(a, d) + f (b, d)g(b, d)]

+ q[f (a, d)g(b, d) + f (b, d)g(a, d)].

1
b − a

∫ b

a
f (x, c)g(x, d)dx ≤ p[f (a, c)g(a, d) + f (b, c)g(b, d)]

+ q[f (a, c)g(b, d) + f (b, c)g(a, d)].

1
b − a

∫ b

a
f (x, d)g(x, c)dx ≤ p[f (a, d)g(a, c) + f (b, d)g(b, c)]

+ q[f (a, d)g(b, c) + f (b, d)g(a, c)].

On substitution of these inequalities in (2.2), we obtain

1
(b − a)(d − c)

∫ b

a

∫ d

c
f (x, y)g(x, y)dydx

≤ p2L(a, b, c, d) + pqM(a, b, c, d) + q2N(a, b, c, d).

(2:3)

Similarly, if we apply fy(x)gy(x) to (1.12) on [a, b], we get the following result:

1
(b − a)(d − c)

∫ b

a

∫ d

c
f (x, y)g(x, y)dydx

≤ r2L(a, b, c, d) + rtM(a, b, c, d) + t2N(a, b, c, d)

(2:4)

Adding the inequalities (2.3), (2.4) and dividing by 2, we get (2.1). □
Theorem 14. Let f, g : Δ = [a, b] × [c, d] ⊆ ℝ2 ® ℝ, a < b, c < d, be functions such

that f, g, and fg are in L2(Δ). If f is non-negative and convex on the co-ordinates on Δ

and if g is s-convex on the co-ordinates on Δ, for all s1, s2 Î (0, 1), such that s = s1+s2
2 ,

then one has the inequality;

2s1+s2 f
(
a + b

2
,
c + d

2

)
g
(
a + b

2
,
c + d

2

)
≤ 1

(b − a)(d − c)

∫ b

a

∫ d

c
f (x, y)g(x, y)dydx

+
1
2
(q2 + t2 + 2pt + 2qr)L(a, b, c, d)

+
1
2
(pq + rt + 2qt + 2rp)M(a, b, c, d)

+
1
2
(p2 + r2 + 2pt + 2rq)N(a, b, c, d)

(2:5)

where L(a, b, c, d), M(a, b, c, d), N(a, b, c, d), p, q, r and t as in Theorem 13.

Proof. Applying 2s1 f
(
a+b
2 , c+d2

)
g
(
a+b
2 , c+d2

)
to (1.11) and multiplying both sides by 2s2,

we get
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2s1+s2 f
(
a + b
2

,
c + d
2

)
g
(
a + b
2

,
c + d
2

)

≤ 2s2

b − a

∫ b

a
f
(
x,

c + d
2

)
g
(
x,

c + d
2

)
dx

+ t
[
2s2 f

(
a,

c + d

2

)
g
(
a,

c + d

2

)
+ 2s2 f

(
b,

c + d

2

)
g
(
b,

c + d

2

)]

+ r
[
2s2 f

(
a,

c + d
2

)
g
(
b,

c + d
2

)
+ 2s2 f

(
b,

c + d
2

)
g
(
a,

c + d
2

)]
.

(2:6)

Similarly, by applying 2s2 f
(
a+b
2 , c+d2

)
g
(
a+b
2 , c+d2

)
to (1.11) and multiplying both sides

by 2s1, we get

2s1+s2 f
(
a + b
2

,
c + d
2

)
g
(
a + b
2

,
c + d
2

)

≤ 2s1

d − c

∫ d

c
f
(
a + b
2

, y
)
g
(
a + b
2

, y
)
dy

+ q
[
2s1 f

(
a + b

2
, c

)
g
(
a + b
2

, c
)
+ 2s1 f

(
a + b

2
, d

)
g
(
a + b
2

, d
)]

+p
[
2s1 f

(
a + b
2

, c
)
g
(
a + b
2

, d
)
+ 2s1 f

(
a + b
2

, d
)
g
(
a + b
2

, c
)]

.

(2:7)

Adding (2.6) and (2.7), we have

2s1+s2+1f
(
a + b
2

,
c + d
2

)
g
(
a + b
2

,
c + d
2

)

≤ 2s2

b − a

∫ b

a
f
(
x,

c + d
2

)
g
(
x,
c + d
2

)
dx +

2s1

d − c

∫ d

c
f
(
a + b
2

, y
)
g
(
a + b
2

, y
)
dy

+ t
[
2s2 f

(
a,

c + d

2

)
g
(
a,

c + d
2

)
+ 2s2 f

(
b,

c + d

2

)
g
(
b,

c + d
2

)]

+ r
[
2s2 f

(
a,

c + d
2

)
g
(
b,

c + d
2

)
+ 2s2 f

(
b,

c + d
2

)
g
(
a,

c + d
2

)]

+ q
[
2s1 f

(
a + b

2
, c

)
g
(
a + b
2

, c
)
+ 2s1 f

(
a + b

2
, d

)
g
(
a + b
2

, d
)]

+p
[
2s1 f

(
a + b
2

, c
)
g
(
a + b
2

, d
)
+ 2s1 f

(
a + b
2

, d
)
g
(
a + b
2

, c
)]

.

(2:8)

Applying (1.11) to each term within the brackets, we get

2s2 f
(
a,

c + d

2

)
g
(
a,

c + d
2

)
≤ 1

d − c

∫ d

c
f (a, y)g(a, y)dy

+ t [f (a, c)g(a, c) + f (a, d)g(a, d)]

+ r [f (a, c)g(a, d) + f (a, d)g(a, c)].

2s2 f
(
b,

c + d

2

)
g
(
b,

c + d
2

)
≤ 1

d − c

∫ d

c
f (b, y)g(b, y)dy

+ t [f (b, c)g(b, c) + f (b, d)g(b, d)]

+ r [f (b, c)g(b, d) + f (b, d)g(b, c)].

2s2 f
(
a,

c + d

2

)
g
(
b,

c + d
2

)
≤ 1

d − c

∫ d

c
f (a, y)g(b, y)dy

+ t [f (a, c)g(b, c) + f (a, d)g(b, d)]

+ r [f (a, c)g(b, d) + f (a, d)g(b, c)].

2s2 f
(
b,

c + d

2

)
g
(
a,

c + d
2

)
≤ 1

d − c

∫ d

c
f (b, y)g(a, y)dy

+ t [f (b, c)g(a, c) + f (b, d)g(a, d)]

+ r [f (b, c)g(a, d) + f (b, d)g(a, c)].
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2s1 f
(
a + b

2
, c

)
g
(
a + b

2
, c

)
≤ 1

b − a

∫ b

a
f (x, c)g(x, c)dx

+ q[f (a, c)g(a, c) + f (b, c)g(b, c)]

+ p[f (a, c)g(b, c) + f (b, c)g(a, c)].

2s1 f
(
a + b

2
, d

)
g
(
a + b

2
, d

)
≤ 1

b − a

∫ b

a
f (x, d)g(x, d)dx

+ q[f (a, d)g(a, d) + f (b, d)g(b, d)]

+ p[f (a, d)g(b, d) + f (b, d)g(a, d)].

2s1 f
(
a + b

2
, c

)
g
(
a + b

2
, d

)
≤ 1

b − a

∫ b

a
f (x, c)g(x, d)dx

+ q[f (a, c)g(a, d) + f (b, c)g(b, d)]

+ p[f (a, c)g(b, d) + f (b, c)g(a, d)].

2s1 f
(
a + b

2
, d

)
g
(
a + b

2
, c

)
≤ 1

b − a

∫ b

a
f (x, d)g(x, c)dx

+ q[f (a, d)g(a, c) + f (b, d)g(b, c)]

+ p[f (a, d)g(b, c) + f (b, d)g(a, c)].

Substituting these inequalities in (2.8) and simplifying, we obtain

2s1+s2+1f
(
a + b
2

,
c + d
2

)
g
(
a + b
2

,
c + d
2

)

≤ 2s2

b − a

∫ b

a
f
(
x,

c + d
2

)
g
(
x,

c + d
2

)
dx

+
2s1

d − c

∫ d

c
f
(
a + b
2

, y
)
g
(
a + b
2

, y
)
dy

+t
1

d − c

∫ d

c
f (a, y)g(a, y)dy + t

1
d − c

∫ d

c
f (b, y)g(b, y)dy

+r
1

d − c

∫ d

c
f (a, y)g(b, y)dy + r

1
d − c

∫ d

c
f (b, y)g(a, y)dy

+q
1

b − a

∫ b

a
f (x, c)g(x, c)dx + q

1
b − a

∫ b

a
f (x, d)g(x, d)dx

+p
1

b − a

∫ b

a
f (x, c)g(x, d)dx + p

1
b − a

∫ b

a
f (x, d)g(x, c)dx

+(q2 + t2)L(a, b, c, d) + (pq + rt)M(a, b, c, d) + (p2 + r2)N(a, b, c, d).

(2:9)

Now by applying 2s1 f
(
a+b
2 , y

)
g
(
a+b
2 , y

)
to (1.11), integrating over [c, d] and dividing

both sides by d - c, we get

2s1

d − c

∫ d

c
f
(
a + b

2
, y

)
g
(
a + b

2
, y

)
dy

≤ 1
(b − a)(d − c)

∫ b

a

∫ d

c
f (x, y)g(x, y)dxdy

+t
1

d − c

∫ d

c
f (a, y)g(a, y)dy + t

1
d − c

∫ d

c
f (b, y)g(b, y)dy

+r
1

d − c

∫ d

c
f (a, y)g(b, y)dy + r

1
d − c

∫ d

c
f (b, y)g(a, y)dy.

(2:10)
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Again by applying 2s2 f
(
x, c+d2

)
g
(
x, c+d2

)
to (1.11), integrating over [a, b] and dividing

both sides by b - a, we get

2s2

b − a

∫ b

a
f
(
x,
c + d

2

)
g
(
x,
c + d

2

)
dx

≤ 1
(b − a)(d − c)

∫ b

a

∫ d

c
f (x, y)g(x, y)dydx

+q
1

b − a

∫ b

a
f (x, c)g(x, c)dx + q

1
b − a

∫ b

a
f (x, d)g(x, d)dx

+p
1

b − a

∫ b

a
f (x, c)g(x, d)dx + p

1
b − a

∫ b

a
f (x, d)g(x, c)dx.

(2:11)

Adding (2.10) and (2.11), we have

2s2

b − a

∫ d

c
f
(
x,
c + d

2

)
g
(
x,

c + d

2

)
dx +

2s1

d − c

∫ d

c
f
(
a + b

2
, y

)
g
(
a + b

2
, y

)
dy

≤ 2
(b − a)(d − c)

∫ b

a

∫ d

c
f (x, y)g(x, y)dydx

+t
1

d − c

∫ d

c
f (a, y)g(a, y)dy + t

1
d − c

∫ d

c
f (b, y)g(b, y)dy

+r
1

d − c

∫ d

c
f (a, y)g(b, y)dy + r

1
d − c

∫ d

c
f (b, y)g(a, y)dy

+q
1

b − a

∫ b

a
f (x, c)g(x, c)dx + q

1
b − a

∫ b

a
f (x, d)g(x, d)dx

+p
1

b − a

∫ b

a
f (x, c)g(x, d)dx + p

1
b − a

∫ b

a
f (x, d)g(x, c)dx.

(2:12)

Therefore from (2.9) and (2.12), we obtain

2s1+s2+1f
(
a + b
2

,
c + d
2

)
g
(
a + b
2

,
c + d
2

)

≤ 2
(b − a)(d − c)

∫ b

a
f (x, y)g(x, y)dxdy

+2t
1

d − c

∫ d

c
f (a, y)g(a, y)dy + 2t

1
d − c

∫ d

c
f (b, y)g(b, y)dy

+2r
1

d − c

∫ d

c
f (a, y)g(b, y)dy + 2r

1
d − c

∫ d

c
f (b, y)g(a, y)dy

+2q
1

b − a

∫ b

a
f (x, c)g(x, c)dx + 2q

1
b − a

∫ b

a
f (x, d)g(x, d)dx

+2p
1

b − a

∫ b

a
f (x, c)g(x, d)dx + 2p

1
b − a

∫ b

a
f (x, d)g(x, c)dx

+(q2 + t2)L(a, b, c, d) + (pq + rt)M(a, b, c, d) + (p2 + r2)N(a, b, c, d).

(2:13)
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By applying (1.12) to each of the integral in (2.13) and simplifying, we get

2s1+s2+1f
(
a + b
2

,
c + d
2

)
g
(
a + b
2

,
c + d
2

)

≤ 2
(b − a)(d − c)

∫ b

a

∫ d

c
f (x, y)g(x, y)dydx

+(q2 + t2 + 2pt + 2qr)L(a, b, c, d) + (pq + rt + 2qt + 2rp)M(a, b, c, d)

+(p2 + r2 + 2pt + 2rq)N(a, b, c, d)

Dividing both sides by 2, we get required result. □
Theorem 15. Let f, g : Δ = [a, b] × [c, d] ⊆ ℝ2 ® ℝ, a < b, c < d, be functions such

that f, g, and fg are in L2(Δ). If f is s1-convex on the co-ordinates on Δ and g is s2-con-

vex on the co-ordinates on Δ, for some fixed s11, s12, s21, s22 Î (0, 1), such that

s1 = s11+s12
2 , s2 = s21+s22

2 , then one has the following inequality;

1
(b − a)(d − c)

∫ b

a

∫ d

c
f (x, y)g(x, y)dydx

≤ 1
2
(p21 + r21)L(a, b, c, d) +

1
2
(p1q1 + r1t1)M(a, b, c, d) +

1
2
(q21 + t21)N(a, b, c, d)

(2:14)

where L(a, b, c, d), M(a, b, c, d), and N(a, b, c, d) as defined in Theorem 13 and

p1 = 1
s12+s22+1

, q1 = B(s12 + 1, s22 + 1),r1 = 1
s11+s21+1

, t1 = B(s11 + 1, s21 + 1).

Proof. By a similar way to Theorem 13 with p1 = 1
s12+s22+1

, q1 = B(s12+1, s22+1),

r1 = 1
s11+s21+1

, t1 = B(s11 + 1, s21 + 1) and thus (2.14) is established. □
Theorem 16. Let f, g : Δ = [a, b] × [c, d] ⊆ ℝ2 ® ℝ, a < b, c < d, be functions such

that f, g, and fg are in L2(Δ). If f is s1-convex on the co-ordinates on Δ and g is s2-con-

vex on the co-ordinates on Δ, for some fixed s11, s12, s21, s22 Î (0, 1), such that

s1 = s11+s12
2 , s2 = s21+s22

2 , then one has the following inequality;

2s11+s21+s12+s22−2f
(
a + b
2

,
c + d
2

)
g
(
a + b
2

,
c + d
2

)

≤ 1
(b − a)(d − c)

∫ b

a

∫ d

c
f (x, y)g(x, y)dydx

+
1
2
(q21 + t21 + 2p1t1 + 2q1r1)L(a, b, c, d)

+
1
2
(p1q1 + r1t1 + 2q1t1 + 2r1p1)M(a, b, c, d)

+
1
2
(p21 + r21 + 2p1t1 + 2r1q1)N(a, b, c, d)

(2:15)

where L(a, b, c, d), M(a, b, c, d), and N(a, b, c, d) as defined in Theorem 13 and

p1 = 1
s12+s22+1

, q1 = B(s12 + 1, s22 + 1),r1 = 1
s11+s21+1

, t1 = B(s11 + 1, s21 + 1).

Proof. By a similar way to Theorem 13 with p1 = 1
s12+s22+1

, q1 = B(s12+1, s22+1),

r1 = 1
s11+s21+1

, t1 = B(s11 + 1, s21 + 1) the proof is completed □
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