RESEARCH

Open Access

On generalized double statistical convergence in a random 2-normed space

Ekrem Savas*

*Correspondence: ekremsavas@yahoo.com; esavas@iticu.edu.tr Department of Mathematics, Istanbul Commerce University, Uskudar, Istanbul, Turkey

Abstract

Recently, the concept of statistical convergence has been studied in 2-normed and random 2-normed spaces by various authors. In this paper, we shall introduce the concept of λ -double statistical convergence and λ -double statistical Cauchy in a random 2-normed space. We also shall prove some new results. **MSC:** 40A05; 40B50; 46A19; 46A45

Keywords: statistical convergence; λ -double statistical convergence; *t*-norm; 2-norm; random 2-normed space

1 Introduction

The probabilistic metric space was introduced by Menger [1] which is an interesting and an important generalization of the notion of a metric space. The theory of probabilistic normed (or metric) space was initiated and developed in [2–6]; further it was extended to random/probabilistic 2-normed spaces by Golet [7] using the concept of 2-norm which is defined by Gähler (see [8, 9]); and Gürdal and Pehlivan [10] studied statistical convergence in 2-normed spaces. Also statistical convergence in 2-Banach spaces was studied by Gürdal and Pehlivan in [11]. Moreover, recently some new sequence spaces have been studied by Savas [12–14] by using 2-normed spaces.

In order to extend the notion of convergence of sequences, statistical convergence of sequences was introduced by Fast [15] and Schoenberg [16] independently. A lot of developments have been made in this areas after the works of Šalát [17] and Fridy [18]. Over the years and under different names, statistical convergence has been discussed in the theory of Fourier analysis, ergodic theory and number theory. Recently, Mursaleen [19] studied λ -statistical convergence as a generalization of the statistical convergence, and in [20] he considered the concept of statistical convergence of sequences in random 2-normed spaces. Quite recently, Bipan and Savas [21] defined lacunary statistical convergence in a random 2-normed space.

The notion of statistical convergence depends on the density of subsets of **N**, the set of natural numbers. Let *K* be a subset of **N**. Then the asymptotic density of *K* denoted by $\delta(K)$ is defined as

$$\delta(K) = \lim_{n \to \infty} \frac{1}{n} |\{k \le n : k \in K\}|,$$

where the vertical bars denote the cardinality of the enclosed set.

© 2012 Savas; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A single sequence $x = (x_k)$ is said to be *statistically convergent* to ℓ if for every $\varepsilon > 0$, the set $K(\varepsilon) = \{k \le n : |x_k - \ell| \ge \varepsilon\}$ has asymptotic density zero, *i.e.*,

$$\lim_{n\to\infty}\frac{1}{n}\Big|\big\{k\leq n:|x_k-\ell|\geq\varepsilon\big\}\big|=0.$$

In this case we write $S - \lim x = \ell$ or $x_k \to \ell(S)$ (see [15, 18]).

2 Definitions and preliminaries

We begin by recalling some notations and definitions which will be used in this paper.

Definition 1 A function $f : \mathbf{R} \to \mathbf{R}_0^+$ is called a *distribution function* if it is a nondecreasing and left continuous with $\inf_{t \in \mathbf{R}} f(t) = 0$ and $\sup_{t \in \mathbf{R}} f(t) = 1$. By D^+ , we denote the set of all distribution functions such that f(0) = 0. If $a \in \mathbf{R}_0^+$, then $H_a \in D^+$, where

$$H_a(t) = \begin{cases} 1, & \text{if } t > a; \\ 0, & \text{if } t \le a. \end{cases}$$

It is obvious that $H_0 \ge f$ for all $f \in D^+$.

A *t-norm* is a continuous mapping $*: [0,1] \times [0,1] \rightarrow [0,1]$ such that ([0,1],*) is an Abelian monoid with unit one and $c * d \ge a * b$ if $c \ge a$ and $d \ge b$ for all $a, b, c, d \in [0,1]$. A triangle function τ is a binary operation on D^+ , which is commutative, associative and $\tau(f, H_0) = f$ for every $f \in D^+$.

In [8], Gähler introduced the following concept of a 2-normed space.

Definition 2 Let *X* be a real vector space of dimension d > 1 (*d* may be infinite). A real-valued function $\|\cdot, \cdot\|$ from X^2 into **R** satisfying the following conditions:

- (1) $||x_1, x_2|| = 0$ if and only if x_1, x_2 are linearly dependent,
- (2) $||x_1, x_2||$ is invariant under permutation,
- (3) $\|\alpha x_1, x_2\| = |\alpha| \|x_1, x_2\|$, for any $\alpha \in \mathbf{R}$,
- (4) $||x + \overline{x}, x_2|| \le ||x, x_2|| + ||\overline{x}, x_2||$

is called a 2-norm on *X* and the pair $(X, \|\cdot, \cdot\|)$ is called a 2-normed space.

A trivial example of a 2-normed space is $X = \mathbf{R}^2$, equipped with the Euclidean 2-norm $||x_1, x_2||_E$ = the area of the parallelogram spanned by the vectors x_1, x_2 which may be given explicitly by the formula

 $\|x_1, x_2\|_E = |\det(x_{ij})| = \operatorname{abs}(\det(\langle x_i, x_j \rangle)),$

where $x_i = (x_{i1}, x_{i2}) \in \mathbf{R}^2$ for each i = 1, 2.

Recently, Goleț [7] used the idea of a 2-normed space to define a random 2-normed space.

Definition 3 Let *X* be a linear space of dimension d > 1 (*d* may be infinite), τ a triangle, and $\mathcal{F} : X \times X \to D^+$. Then \mathcal{F} is called a *probabilistic 2-norm* and (X, \mathcal{F}, τ) a *probabilistic 2-normed* space if the following conditions are satisfied:

- $(P2N_1)$ $\mathcal{F}(x, y; t) = H_0(t)$ if x and y are linearly dependent, where $\mathcal{F}(x, y; t)$ denotes the value of $\mathcal{F}(x, y)$ at $t \in \mathbf{R}$,
- (*P*2*N*₂) $\mathcal{F}(x, y; t) \neq H_0(t)$ if *x* and *y* are linearly independent,
- $(P2N_3) \ \mathcal{F}(x,y;t) = \mathcal{F}(y,x;t), \text{ for all } x,y \in X,$
- (*P*2*N*₄) $\mathcal{F}(\alpha x, y; t) = \mathcal{F}(x, y; \frac{t}{|\alpha|})$, for every t > 0, $\alpha \neq 0$ and $x, y \in X$,
- (*P*2*N*₅) $\mathcal{F}(x + y, z; t) \ge \tau(\mathcal{F}(x, z; t), \mathcal{F}(y, z; t))$, whenever $x, y, z \in X$.

If $(P2N_5)$ is replaced by

$$(P2N_6)$$
 $\mathcal{F}(x + y, z; t_1 + t_2) \ge \mathcal{F}(x, z; t_1) * \mathcal{F}(y, z; t_2)$, for all $x, y, z \in X$ and $t_1, t_2 \in \mathbf{R}_0^+$;

then $(X, \mathcal{F}, *)$ is called a *random 2-normed* space (for short, R2NS).

Remark 1 Every 2-normed space $(X, \|\cdot, \cdot\|)$ can be made a random 2-normed space in a natural way by setting $\mathcal{F}(x, y; t) = H_0(t - \|x, y\|)$ for every $x, y \in X, t > 0$ and $a * b = \min\{a, b\}$, $a, b \in [0, 1]$.

Example 1 Let $(X, \|\cdot, \cdot\|)$ be a 2-normed space with $\|x, z\| = \|x_1z_2 - x_2z_1\|$, $x = (x_1, x_2)$, $z = (z_1, z_2)$ and a * b = ab, $a, b \in [0, 1]$. For all $x \in X$, t > 0 and nonzero $z \in X$, consider

$$\mathcal{F}(x,z;t) = \begin{cases} \frac{t}{t+\|x,z\|}, & \text{if } t > 0; \\ 0, & \text{if } t \leq 0. \end{cases}$$

Then (X, F, *) is a random 2-normed space.

Definition 4 A sequence $x = (x_{k,l})$ in a random 2-normed space $(X, \mathcal{F}, *)$ is said to be *double convergent* (or \mathcal{F} -convergent) to $\ell \in X$ with respect to \mathcal{F} if for each $\varepsilon > 0$, $\eta \in (0, 1)$, there exists a positive integer n_0 such that $\mathcal{F}(x_{k,l} - \ell, z; \varepsilon) > 1 - \eta$, whenever $k, l \ge n_0$ and for nonzero $z \in X$. In this case we write $\mathcal{F} - \lim_{k,l} x_{k,l} = \ell$, and ℓ is called the \mathcal{F} -limit of $x = (x_{k,l})$.

Definition 5 A sequence $x = (x_{k,l})$ in a random 2-normed space $(X, \mathcal{F}, *)$ is said to be *double Cauchy* with respect to \mathcal{F} if for each $\varepsilon > 0$, $\eta \in (0,1)$ there exist $N = N(\varepsilon)$ and $M = M(\varepsilon)$ such that $\mathcal{F}(x_{k,l} - x_{p,q}, z; \varepsilon) > 1 - \eta$, whenever $k, p \ge N$ and $l, q \ge M$ and for nonzero $z \in X$.

Definition 6 A sequence $x = (x_{k,l})$ in a random 2-normed space $(X, \mathcal{F}, *)$ is said to be *double statistically convergent* or S^{2R2N} -*convergent* to some $\ell \in X$ with respect to \mathcal{F} if for each $\varepsilon > 0$, $\eta \in (0,1)$ and for nonzero $z \in X$ such that

$$\delta(\{(k,l)\in \mathbf{N}\times\mathbf{N}:\mathcal{F}(x_{k,l}-\ell,z;\varepsilon)\leq 1-\eta\})=0.$$

In other words, we can write the sequence $(x_{k,l})$ *double statistically converges* to ℓ in random 2-normed space $(X, \mathcal{F}, *)$ if

$$\lim_{m,n\to\infty}\frac{1}{mn}\big|\big\{k\leq m,l\leq n:\mathcal{F}(x_{k,l}-\ell,z;\varepsilon)\leq 1-\eta\big\}\big|=0$$

or equivalently,

$$\delta(\{k, l \in \mathbf{N} : \mathcal{F}(x_{k,l} - \ell, z; \varepsilon) > 1 - \eta\}) = 1,$$

i.e.,

$$S^2 - \lim_{k,l\to\infty} \mathcal{F}(x_{k,l} - \ell, z; \varepsilon) = 1.$$

In this case we write $S^{2R2N} - \lim x = \ell$, and ℓ is called the S^{2R2N} -limit of x. Let $S^{2R2N}(X)$ denote the set of all double statistically convergent sequences in a random 2-normed space $(X, \mathcal{F}, *)$.

In this article, we study λ -double statistical convergence in a random 2-normed space which is a new and interesting idea. We show that some properties of λ -double statistical convergence of real numbers also hold for sequences in random 2-normed spaces. We establish some relations related to double statistically convergent and λ -double statistically convergent sequences in random 2-normed spaces.

3 λ -double statistical convergence in a random 2-normed space

Recently, the concept of λ -double statistical convergence has been introduced and studied in [23] and [24]. In this section, we define λ -double statistically convergent sequence in a random 2-normed space (*X*, *F*, *). Also we get some basic properties of this notion in a random 2-normed space.

Definition 7 Let $\lambda = (\lambda_n)$ and $\mu = (\mu_n)$ be two non-decreasing sequences of positive real numbers such that each is tending to ∞ and

$$\lambda_{n+1} \leq \lambda_n + 1$$
, $\lambda_1 = 1$

and

$$\mu_{n+1} \leq \mu_n + 1, \qquad \mu_1 = 1.$$

Let $K \subseteq \mathbb{N} \times \mathbb{N}$. The number

$$\delta_{\bar{\lambda}}(K) = \lim_{mn} \frac{1}{\bar{\lambda}_{mn}} \left| \left\{ k \in I_n, l \in J_m : (k, l) \in K \right\} \right|,$$

where $I_n = [n - \lambda_n + 1, n]$, $J_m = [m - \mu_m + 1, m]$ and $\bar{\lambda}_{nm} = \lambda_n \mu_m$, is said to be the λ -double *density* of *K*, provided the limit exists.

Definition 8 A sequence $x = (x_{k,l})$ is said to be λ -double statistically convergent or S_{λ}^2 *convergent* to the number ℓ if for every $\varepsilon > 0$, the set $N(\varepsilon)$ has λ -double density zero, where

$$N(\varepsilon) = \left\{ k \in I_n, l \in J_m : |x_{k,l} - \ell| \ge \varepsilon \right\}.$$

In this case, we write $S_{\overline{\lambda}}^2 - \lim x = L$.

Now we define λ -double statistical convergence in a random 2-normed space (see [25]).

Definition 9 A sequence $x = (x_{k,l})$ in a random 2-normed space $(X, \mathcal{F}, *)$ is said to be λ -*double statistically convergent* or $S^2_{\overline{\lambda}}$ -*convergent* to $\ell \in X$ with respect to \mathcal{F} if for every $\varepsilon > 0, \eta \in (0,1)$ and for nonzero $z \in X$ such that

$$\delta_{\bar{\lambda}}(\{k \in I_n, l \in J_m : \mathcal{F}(x_{k,l} - \ell, z; \varepsilon) \leq 1 - \eta\}) = 0$$

or equivalently,

$$\delta_{\bar{\lambda}}\left(\left\{k\in I_n, l\in J_m: \mathcal{F}(x_{k,l}-\ell,z;\varepsilon)>1-\eta\right\}\right)=1,$$

i.e.,

$$S^2_{\bar{\lambda}} - \lim_{k,l \to \infty} \mathcal{F}(x_{k,l} - \ell, z; \varepsilon) = 1.$$

In this case we write $S_{\overline{\lambda}}^{2R2N} - \lim x = \ell$ or $x_{k,l} \to \ell(S_{\overline{\lambda}}^{2R2N})$ and

$$S_{\bar{\lambda}}^{2R2N}(X) = \left\{ x = (x_{k,l}) : \exists \ell \in \mathbf{R}, S_{\bar{\lambda}}^{2R2N} - \lim x = \ell \right\}.$$

Let $S_{\bar{\lambda}}^{2R2N}(X)$ denote the set of all λ -double statistically convergent sequences in a random 2-normed space $(X, \mathcal{F}, *)$.

If $\bar{\lambda}_{mn} = mn$ for every *n*, *m* then λ -double statistically convergent sequences in a random 2-normed space (*X*, *F*, *) reduce to double statistically convergent sequences in a random 2-normed space (*X*, *F*, *).

Definition 9 immediately implies the following lemma.

Lemma 1 Let $(X, \mathcal{F}, *)$ be a random 2-normed space. If $x = (x_{k,l})$ is a sequence in X, then for every $\varepsilon > 0$, $\eta \in (0, 1)$ and for nonzero $z \in X$, the following statements are equivalent:

- (i) $S_{\overline{\lambda}}^{R2N} \lim_{k,l\to\infty} x_{k,l} = \ell$;
- (ii) $\delta_{\bar{\lambda}}(\{k \in I_n, l \in J_m : \mathcal{F}(x_{k,l} \ell, z; \varepsilon) \le 1 \eta\}) = 0;$
- (iii) $\delta_{\bar{\lambda}}(\{k \in I_n, l \in J_m : \mathcal{F}(x_{k,l} \ell, z; \varepsilon) > 1 \eta\}) = 1;$
- (iv) $S_{\bar{\lambda}} \lim_{k,l\to\infty} \mathcal{F}(x_{k,l} \ell, z; \varepsilon) = 1.$

Theorem 1 Let $(X, \mathcal{F}, *)$ be a random 2-normed space. If $x = (x_{k,l})$ is a sequence in X such that $S_{\overline{\lambda}}^{2R2N} - \lim x_{k,l} = \ell$ exists, then it is unique.

Proof Suppose that $S_{\bar{\lambda}}^{2R2N} - \lim_{k,l\to\infty} x_{k,l} = \ell_1; S_{\bar{\lambda}}^{2R2N} - \lim_{k,l\to\infty} x_{k,l} = \ell_2$, where $(\ell_1 \neq \ell_2)$. Let $\varepsilon > 0$ be given. Choose a > 0 such that $(1 - a) * (1 - a) > 1 - \varepsilon$.

Then, for any t > 0 and for nonzero $z \in X$, we define

$$K_1(a,t) = \left\{ k \in I_n, l \in J_m : \mathcal{F}\left(x_{k,l} - \ell_1, z; \frac{t}{2}\right) \le 1 - a \right\};$$

$$K_2(a,t) = \left\{ k \in I_n, l \in J_m : \mathcal{F}\left(x_{k,l} - \ell_2, z; \frac{t}{2}\right) \le 1 - a \right\}.$$

Since $S_{\bar{\lambda}}^{2R2N} - \lim_{k,l\to\infty} x_{k,l} = \ell_1$ and $S_{\bar{\lambda}}^{2R2N} - \lim_{k,l\to\infty} x_{k,l} = \ell_2$, we have Lemma 1 $\delta_{\bar{\lambda}}(K_1(a,t)) = 0$ and $\delta_{\bar{\lambda}}(K_2(a,t)) = 0$ for all t > 0.

Now, let $K(a, t) = K_1(a, t) \cup K_2(a, t)$, then it is easy to observe that $\delta_{\overline{2}}(K(a, t)) = 0$. But we have $\delta_{\bar{\lambda}}(K^c(r, t)) = 1$.

Now, if $(k, l) \in K^c(a, t)$, then we have

$$\mathcal{F}(\ell_1 - \ell_2, z; t) \ge \mathcal{F}\left(x_{k,l} - \ell_1, z; \frac{t}{2}\right) * \mathcal{F}\left(x_{k,l} - \ell_2, z; \frac{t}{2}\right) > (1 - a) * (1 - a).$$

It follows that

$$\mathcal{F}(\ell_1 - \ell_2, z; t) > (1 - \varepsilon).$$

Since $\varepsilon > 0$ was arbitrary, we get $\mathcal{F}(\ell_1 - \ell_2, z; t) = 0$ for all t > 0 and nonzero $z \in X$. Hence $\ell_1 = \ell_2$.

This completes the proof.

Next theorem gives the algebraic characterization of λ -statistical convergence on random 2-normed spaces. We give it without proof.

Theorem 2 Let $(X, \mathcal{F}, *)$ be a random 2-normed space, and $x = (x_{k,l})$ and $y = (y_{k,l})$ be two sequences in X.

- (a) If $S_{\bar{\lambda}}^{2R2N} \lim x_{k,l} = \ell$ and $c(\neq 0) \in \mathbf{R}$, then $S_{\bar{\lambda}}^{2R2N} \lim cx_{k,l} = c\ell$. (b) If $S_{\bar{\lambda}}^{2R2N} \lim x_{k,l} = \ell_1$ and $S_{\bar{\lambda}}^{R2N} \lim y_{k,l} = \ell_2$, then $S_{\bar{\lambda}}^{2R2N} \lim (x_{k,l} + y_{k,l}) = \ell_1 + \ell_2$.

Theorem 3 Let $(X, \mathcal{F}, *)$ be a random 2-normed space. If $x = (x_{k,l})$ is a sequence in X such that $\mathcal{F} - \lim x_{k,l} = \ell$, then $S_{\overline{i}}^{2R2N} - \lim x_{k,l} = \ell$.

Proof Let $\mathcal{F} - \lim x_{k,l} = \ell$. Then for every $\varepsilon > 0$, t > 0 and nonzero $z \in X$, there is a positive integer n_0 and m_0 such that

$$\mathcal{F}(x_k - \ell, z; t) > 1 - \varepsilon$$

for all $k \ge n_0$. Since the set

$$K(\varepsilon, t) = \left\{ k \in I_n, l \in J_m : \mathcal{F}(x_{k,l} - \ell, z; t) \le 1 - \varepsilon \right\}$$

has at most finitely many terms. Since every finite subset of $N\times N$ has $\delta_{\bar\lambda}\text{-density zero,}$ finally we have $\delta_{\bar{\lambda}}(K(\varepsilon, t)) = 0$. This shows that $S_{\bar{\lambda}}^{2R2N} - \lim x_{k,l} = \ell$.

Remark 2 The converse of the above theorem is not true in general. It follows from the following example.

Example 2 Let $X = \mathbf{R}^2$, with the 2-norm $||x, z|| = |x_1 z_2 - x_2 z_1|$, $x = (x_1, x_2)$, $z = (z_1, z_2)$ and a * b = ab for all $a, b \in [0,1]$. Let $\mathcal{F}(x,y;t) = \frac{t}{t+||x,y||}$, for all $x, z \in X, z_2 \neq 0$, and t > 0. We define a sequence $x = (x_k)$ by

$$x_{k,l} = \begin{cases} (kl,0), & \text{if } n - [\sqrt{\lambda_n}] + 1 \le k \le n \text{ and } m - [\sqrt{\mu_m}] + 1 \le k \le m; \\ (0,0), & \text{otherwise.} \end{cases}$$

Now for every $0 < \varepsilon < 1$ and t > 0, we write

$$K_n(\varepsilon, t) = \{k \in I_n, l \in J_m : \mathcal{F}(x_{k,l} - \ell, z; t) \le 1 - \varepsilon\}.$$

Therefore, we get

$$\delta_{\bar{\lambda}}(K(\varepsilon,t)) = \lim_{nm\to\infty} \frac{[\sqrt{\bar{\lambda}_{nm}}]}{\bar{\lambda}_{nm}} = 0.$$

This shows that $S_{\bar{\lambda}}^{2R2N} - \lim x_{k,l} = 0$, while it is obvious that $\mathcal{F} - \lim x_{k,l} \neq 0$.

Theorem 4 Let $(X, \mathcal{F}, *)$ be a random 2-normed space. If $x = (x_{k,l})$ is a sequence in X, then $S_{\bar{\lambda}}^{2R2N} - \lim x_{k,l} = \ell$ if and only if there exists a subset $K = \{(k_n, l_n) : k_1 < k_2, \ldots; l_1 < l_2, \ldots\} \subseteq \mathbf{N} \times \mathbf{N}$ such that $\delta_{\bar{\lambda}}(K) = 1$ and $\mathcal{F} - \lim_{n \to \infty} x_{k_n, l_n} = \ell$.

Proof Suppose first that $S_{\lambda}^{2R2N} - \lim x_{k,l} = \ell$. Then for any t > 0, a = 1, 2, 3, ... and nonzero $z \in X$, let

$$A(a,t) = \left\{ k \in I_n; l \in J_m : \mathcal{F}(x_{k,l} - \ell, z; t) > 1 - \frac{1}{a} \right\}$$

and

$$K(a,t) = \left\{ k \in I_n; l \in J_m : \mathcal{F}(x_{k,l}-\ell,z;t) \leq 1-\frac{1}{a} \right\}.$$

Since $S_{\bar{\lambda}}^{2R2N} - \lim x_{k,l} = \ell$, it follows that

$$\delta_{\bar{\lambda}}(K(a,t))=0.$$

Now, for t > 0 and $a = 1, 2, 3, \ldots$, we observe that

$$A(a,t) \supset A(a+1,t)$$

and

$$\delta_{\bar{\lambda}}(A(a,t)) = 1. \tag{3.1}$$

Now we have to show that for $(k, l) \in A(a, t)$, $\mathcal{F} - \lim x_{k,l} = \ell$. Suppose that for some $(k, l) \in A(a, t)$, $(x_{k,l})$ is not convergent to ℓ with respect to \mathcal{F} . Then there exist some s > 0 and a positive integer k_0 , l_0 such that

$$\left\{k \in I_n; l \in J_m : \mathcal{F}(x_{k,l} - \ell, z; t) \le 1 - s\right\}$$

for all $k \ge k_0$ and $l \ge l_0$. Let

$$A(s,t) = \left\{k \in I_n; l \in J_m : \mathcal{F}(x_{k,l}-\ell,z;t) > 1-s\right\}$$

for $k < k_0$ and $l < l_0$ and

$$s > \frac{1}{a}, \quad a = 1, 2, 3, \dots$$

Then we have

$$\delta_{\bar{\lambda}}(A(s,t))=0.$$

Furthermore, $A(a,t) \subset A(s,t)$ implies that $\delta_{\bar{\lambda}}(A(a,t)) = 0$, which contradicts (3.1) as $\delta_{\bar{\lambda}}(A(a,t)) = 1$. Hence $\mathcal{F} - \lim x_{k,l} = \ell$.

Conversely, suppose that there exists a subset $K = \{(k_n, l_n) : k_1 < k_2, ...; l_1 < l_2, ...\} \subseteq \mathbf{N} \times \mathbf{N}$ such that $\delta_{\overline{\lambda}}(K) = 1$ and $\mathcal{F} - \lim_{n,m\to\infty} x_{k_n,l_n} = \ell$. Then for every $\varepsilon > 0$, t > 0 and nonzero $z \in X$, we can find a positive integer n_0 such that

 $\mathcal{F}(x_{k,l}, z; t) > 1 - \varepsilon$

for all $k, l \ge n_0$. If we take

$$K(\varepsilon,t) = \left\{ k \in I_n; l \in J_m : \mathcal{F}(x_{k,l} - \ell, z; t) \leq 1 - \varepsilon \right\},\$$

then it is easy to see that

$$K(\varepsilon, t) \subset \mathbf{N} \times \mathbf{N} - \{(k_{n_0+1}, l_{n_0+1}), (k_{n_0+2}, l_{n_0+2}), \ldots\},\$$

and finally,

$$\delta_{\bar{\lambda}}(K(\varepsilon,t)) \leq 1-1 = 0.$$

Thus $S_{\bar{\lambda}}^{R2N} - \lim x_{k,l} = \ell$. This completes the proof.

We now have

Definition 10 A sequence $x = (x_{k,l})$ in a random 2-normed space $(X, \mathcal{F}, *)$ is said to be λ -*double statistically Cauchy* with respect to \mathcal{F} if for each $\varepsilon > 0$, $\eta \in (0,1)$ and for nonzero $z \in X$, there exist $N = N(\varepsilon)$ and $M = M(\varepsilon)$ such that for all k, m > N and l, n > M,

$$\delta_{\bar{\lambda}}(\{k\in I_n; l\in J_m: \mathcal{F}(x_{k,l}-x_{MN},z;\varepsilon)\leq 1-\eta\})=0,$$

or equivalently,

$$\delta_{\bar{\lambda}}(\{k \in I_n; l \in J_m : \mathcal{F}(x_{k,l} - x_{MN}, z; \varepsilon) > 1 - \eta\}) = 1.$$

Theorem 5 Let $(X, \mathcal{F}, *)$ be a random 2-normed space. Then a sequence $(x_{k,l})$ in X is λ -double statistically convergent if and only if it is λ -double statistically Cauchy in random 2-normed space X.

Proof Let $(x_{k,l})$ be a λ -double statistically convergent to ℓ with respect to random 2-normed space, *i.e.*, $S_{\lambda}^{2R2N} - \lim x_k = \ell$. Let $\varepsilon > 0$ be given. Choose a > 0 such that

$$(1-a) * (1-a) > 1-\varepsilon.$$
 (3.2)

For t > 0 and for nonzero $z \in X$, define

$$A(a,t) = \left\{ k \in I_n; l \in J_m : \mathcal{F}\left(x_{k,l} - \ell, z; \frac{t}{2}\right) \le 1 - a \right\}.$$

Then

$$A^{c}(a,t) = \left\{k \in I_{n}; l \in J_{m}: \mathcal{F}\left(x_{k,l}-\ell,z;\frac{t}{2}\right) > 1-a\right\}.$$

Since $S_{\bar{\lambda}}^{2R2N} - \lim x_{k,l} = \ell$, it follows that $\delta_{\bar{\lambda}}(A(a,t)) = 0$, and finally, $\delta_{\bar{\lambda}}(A^c(a,t)) = 1$. Let $p, q \in A^c(a,t)$. Then

$$\mathcal{F}\left(x_{p,q}-\ell,z;\frac{t}{2}\right) > 1-a. \tag{3.3}$$

If we take

$$B(\varepsilon,t) = \left\{ k \in I_n; l \in J_m : \mathcal{F}(x_{k,l} - x_{p,q}, z; t) \leq 1 - \varepsilon \right\},\$$

then to prove the result it is sufficient to prove that $B(\varepsilon, t) \subseteq A(a, t)$.

Let $(k, l) \in B(\varepsilon, t) \cap A^{c}(a, t)$, then for nonzero $z \in X$, we have

$$\mathcal{F}(x_{k,l}-x_{p,q},z;t) \le 1-\varepsilon \quad \text{and} \quad \mathcal{F}\left(x_{k,l}-\ell,z;\frac{t}{2}\right) > 1-a.$$
 (3.4)

Now, from (3.1), (3.3) and (3.4), we get

$$\begin{aligned} 1-\varepsilon &\geq \mathcal{F}(x_{k,l}-x_{p,q},z;t) \geq \mathcal{F}\left(x_{k,l}-\ell,z;\frac{t}{2}\right) * \mathcal{F}\left(x_p-\ell,z;\frac{t}{2}\right) \\ &> (1-a) * (1-a) > (1-\varepsilon), \end{aligned}$$

which is not possible. Thus $B(\varepsilon, t) \subset A(a, t)$. Since $\delta_{\bar{\lambda}}(A(a, t)) = 0$, it follows that $\delta_{\bar{\lambda}}(B(\varepsilon, t)) = 0$. This shows that $(x_{k,l})$ is λ -double statistically Cauchy.

Conversely, suppose $(x_{k,l})$ is λ -double statistically Cauchy but not λ -double statistically convergent with respect to \mathcal{F} . Then for each $\varepsilon > 0$, t > 0 and for nonzero $z \in X$, there exist a positive integer $N = N(\varepsilon)$ and $M = M(\varepsilon)$ such that

$$A(\varepsilon,t) = \left\{ k \in I_n; l \in J_m : \mathcal{F}(x_{k,l} - x_{NM}, z; t) \leq 1 - \varepsilon \right\}.$$

Then

$$\delta_{\bar{\lambda}}(A(\varepsilon,t)) = 0$$

and

$$\delta_{\bar{\lambda}}(A^c(\varepsilon,t)) = 1. \tag{3.5}$$

For t > 0, choose a > 0 such that

$$(1-a)*(1-a)>1-\varepsilon \tag{3.6}$$

is satisfied, and we take

$$B(a,t) = \left\{k \in I_n; l \in J_m: \mathcal{F}\left(x_{k,l}-\ell,z;\frac{t}{2}\right) > 1-a\right\}.$$

If $N, M \in B(a, t)$, then $\mathcal{F}(x_{N,M} - \ell, z; \frac{t}{2}) > 1 - a$. Since

$$\mathcal{F}(x_{k,l}-x_{NM},z;t) \geq \mathcal{F}\left(x_{k,l}-\ell,z;\frac{t}{2}\right) * \mathcal{F}\left(x_{N,M}-\ell,z;\frac{t}{2}\right) > (1-a) * (1-a) > 1-\varepsilon,$$

then we have

$$\delta_{\bar{\lambda}}(\{x_{k,l}: \mathcal{F}(x_{k,l}-x_{NM},z;t)>1-\varepsilon\})=0,$$

i.e., $\delta_{\bar{\lambda}}(A^c(\varepsilon, t)) = 0$, which contradicts (3.5) as $\delta_{\bar{\lambda}}(A^c(\varepsilon, t)) = 1$. Hence $(x_{k,l})$ is λ -double statistically convergent.

This completes the proof.

Competing interests

The author declares that they have no competing interests.

Received: 12 March 2012 Accepted: 22 August 2012 Published: 25 September 2012

References

- 1. Menger, K: Statistical metrics. Proc. Natl. Acad. Sci. USA 28, 535-537 (1942)
- 2. Alsina, C, Schweizer, B, Sklar, A: Continuity properties of probabilistic norms. J. Math. Anal. Appl. 208, 446-452 (1997)
- 3. Schweizer, B, Sklar, A: Statistical metric spaces. Pac. J. Math. 10, 313-334 (1960)
- 4. Schweizer, B, Sklar, A: Probabilistic Metric Spaces. North Holland, Amsterdam (1983)
- 5. Sempi, C: A short and partial history of probabilistic normed spaces. Mediterr. J. Math. 3, 283-300 (2006)
- 6. Šerstnev, AN: On the notion of a random normed space. Dokl. Akad. Nauk SSSR 149, 280-283 (1963)
- 7. Goleţ, I: On probabilistic 2-normed spaces. Novi Sad J. Math. 35, 95-102 (2006)
- 8. Gähler, S: 2-metrische Raume and ihre topologische Struktur. Math. Nachr. 26, 115-148 (1963)
- 9. Gähler, S: Linear 2-normietre Raume. Math. Nachr. 28, 1-43 (1965)
- 10. Gürdal, M, Pehlivan, S: The statistical convergence in 2-Banach spaces. Thai J. Math. 2(1), 107-113 (2004)
- 11. Gürdal, M, Pehlivan, S: Statistical convergence in 2-normed spaces. Southeast Asian Bull. Math. 33, 257-264 (2009)
- 12. Savas, E: Δ^m -strongly summable sequence spaces in 2-normed spaces defined by ideal convergence and an Orlicz function. Appl. Math. Comput. **217**, 271-276 (2010)
- Savas, E: On some new sequence spaces in 2-normed spaces using Ideal convergence and an Orlicz function. J. Inequal. Appl. 2010, Article Number 482392 (2010). doi:10.1155/2010/482392
- 14. Savas, E: A-sequence spaces in 2-normed space defined by ideal convergence and an Orlicz function. Abstr. Appl. Anal. 2011, Article ID 741382 (2011)
- 15. Fast, H: Sur la convergence statistique. Colloq. Math. 2, 241-244 (1951)
- 16. Schoenberg, IJ: The integrability of certain functions and related summability methods. Am. Math. Mon. 66, 361-375 (1959)
- 17. Salát, T: On statistical convergence of real numbers. Math. Slovaca 30, 139-150 (1980)
- 18. Fridy, JA: On statistical convergence. Analysis 5, 301-313 (1985)
- 19. Mursaleen, M: λ -Statistical convergence. Math. Slovaca **50**, 111-115 (2000)
- 20. Mursaleen, M: Statistical convergence in random 2-normed spaces. Acta Sci. Math. 76(1-2), 101-109 (2010)

- 21. Bipan, H, Savas, E: Lacunary statistical convergence in random 2-normed space. Preprint
- 22. Savaş, E: λ-statistical convergence in random 2-normed space. Iranian Journal of Science and Technology. Preprint
- Savas, E: λ̄-double sequence spaces of fuzzy real numbers defined by Orlicz function. Math. Commun. 14, 287-297 (2009)
- Savas, E: On λ
 -statistically convergent double sequences of fuzzy numbers. J. Inequal. Appl. 2008, Art. ID 147827 (2008)
- Savas, E, Mohiuddine, SA: λ
 -statistically convergent double sequences in probabilistic normed space. Math. Slovaca 62(1), 99-108 (2012)

doi:10.1186/1029-242X-2012-209

Cite this article as: Savas: On generalized double statistical convergence in a random 2-normed space. *Journal of Inequalities and Applications* 2012 2012:209.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com