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China and it is well known that there exists the critical value 8" < 0 such that it has at least
one solution for each B > B" and has no positive solution for B < B". The known
numerical result shows B° = -0.3541. In this paper, by the study of the integral
equation equivalent to the Blasius problem, we obtain the relation between the
velocity function f” and the shear stress functions ”, upper and lower bounds of |||
and a new lower bound of B". In particular, ¥/27/9 < ||| < +/3/3, B > -0.45.
Regarding B, previous results presented a lower bound -0.5 and an upper bound
-0.18733.
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1 Introduction

The Blasius problem [1] arising in the boundary layer problems in fluid mechanics

S @) +f(n)f"(n) =0 on[0,00) (11)

subject to the boundary conditions

f(0)=0,  f(0)=p and f'(c0)=1, (1.2)

has been used to describe the steady two-dimensional flow of a slightly viscous incom-
pressible fluid past a flat plate. It also arises in the study of the mixed convection in porous
media [2], where 7 is the similarity boundary layer ordinate, f(5) is the similarity stream
function, f'(n) and f”(n) are the velocity and the shear stress functions, respectively. The
case of B < 0 corresponds to a flat plate moving at a steady speed opposite to that of a
uniform mainstream [3].

Regarding the analytic study of the Blasius problem (1.1)-(1.2), Weyl [4] proved that (1.1)-
(1.2) has one and only one solution for 8 = 0; Coppel [5] studied the case of 8 > 0; the
cases of 0 < B <1 [6] and B > 1 [7] were also investigated, respectively. Also, see [8]. In
1986, Hussaini and Lakin [9] indicated that there exists a critical value 8~ < 0 such that
(1.1)-(1.2) has at least a solution for 8 > 8" and no solution for 8 < 8°. A lower bound
was presented with 87 > —1/2 = 0.5 and numerical results showed 8~ = —0.3541 [9]. In
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2008, Brighi, Fruchard and Sari [10] summarized historical study on the Blasius problem
and analyzed the case § < 0 in detail, in which the shape and the number of solutions were
determined. In 2010, Yang [11] obtained an upper bound 8" < —~18733/10° = —0.18733. The
Blasius problem is a special case of the Falkner-Skan equation, for 8 = 0, we may refer to
[12-15] for some recent results on the Falkner-Skan equation.

An open question is: What exactly is 8°? And what properties does the shear stress func-
tion f”(n) have? To our knowledge, there is little study on it. By the study of the integral
equation that is equivalent to the Blasius problem, in this paper, we present the relation
between f’ and f”, upper and lower bounds of ||f”|| and new lower bounds of 8°. In par-
ticular, v/27/9 < |f"|| <+/3/3, B~ > -0.45.

2 Upper and lower bounds of f”

Noticing the basic fact in [10] that if f is a solution of (1.1)-(1.2), then f” > 0 for 5 € [0, c0),
we use the so-called Crocco transformation [9, 10], which consists of choosing ¢ = f as an
independent variable and expressing z = f” as a function of ¢, to change (1.1)-(1.2) to the
Crocco equation [10]

d*z

t
E:—;, ,Bft<]. (21)

with the boundary conditions
Z(B)=0, z(1) = 0. (2.2)

Integrating (2.1) from g to t, we have by (2.2)

P
Z(t) = /,;Z(s)ds on [5,1). (2.3)

Integrating (2.3) from ¢ to 1, we obtain the following integral equation that is equivalent
to (1.1)-(1.2) [10, 11]:

1 1-— t
) = f =9 v a-n / 2 dsi= Az(t) + (1 - £)B2(), (2.4)
¢ 2(s) p 2(s)
where z(¢) € C[B,1] and z(¢) > 0 for £ € [,1).
Since 8° > —%, our work is restricted to the case of —% < B < 0 and begins with the
following lemma.

Theorem 2.1 Let z be a solution of (2.4), then

(@) llzll =h(B);

3 + 3
(i)) -5 <2(0) < % where ||z|| = max{z(t) : ¢ € [8,1]}, h(B) = 1(1 - 38> - 23).
Proof Let t € [B,1] such that |z|| = z(f) = max{z(¢) : t € [B,1]}. By (2.3), we know z/(t) > 0
for ¢ € (8,0], and then z(¢) is strictly increasing (8, 0]. This, together with z(Z) > 0, implies
0 < < 1. From (2.1), we know z"(¢)z(¢) = —t. Integrating this equality from S to #, we have

i i 72 2
/tz”(s)z(s)ds=—/tsd3=—t —p .
s p 2
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Noticing that Z'(£) = Z/(8) = 0, we obtain

‘/ﬁtz”(s)z(s) ds = z/(s)z(s)lfs - /ﬂ[z’z(s) ds=- /ﬂtz/z(s) ds < 0.

Consequently, || < £.

(i) From 2'(¢) = - [, ﬁt 5as= —Bz(t), we know Bz(t) > Bz(f) = 0 for ¢t € [£,1). This implies
Az(t) <z(t), t € [£,1).

By A'z(t) = t(l t , we have

Az(t)(-Az(t)) < z(t)(-Az(t)) <t -¢t) fortel[E1). (2.5)

Noticing that z(f) = Az(f) and z(1) = 0, integrating (2.5) from  to 1, we have by || <

1

llzl* = [AZ(Z)]2 < 2[s(1 —s)ds< 2/ s(1-s)ds

1Bl
1
= 5 (1-387-28°) = h(p).

(ii) Integrating (2.3) from B to 0, we have

3
z(0) = — /Bz(t)dt+Z(/3) //ﬂ” ”de +2(B) = BﬁZII

which implies that the left inequality of (ii) holds.
Noticing that |8| < f and utilizing (2.1) and (2.2), we know

1Bl I8l g B3
—d dt > T asat=—o—
2(t) - z(0) = // s /0 /t 2l & ‘ 3zl

And then Z( ) =< ”Z” + 3||Z|| = vV h( 3\/— 3h\(;)—ﬁ Hence, (11) holds. O
Let
1 (t +12-28%1-1), tel0,1],
1) = { VN

6\/_ (3% -t2-28%), te[B,0)

and

3y/h(B)2In 2 + 1-1)In 1), te(0,1],
u(t) = 6h(ﬁ)+2,63+3/32t t3, te(B,0).
3/ h(B)

Utilizing Theorem 2.1, we can obtain upper and lower bounds of z as follows.

Theorem 2.2 Let z be a solution of (2.4), then I(t) < z(t) < u(t) for t € [B,1].
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Proof For ¢t € [B,0), we have by (2.3) and Theorem 2.1(i)

,32—1’2

—S
ds =
NN

Z(t) = -Bz(t) > /ﬁ [8,0). (2.6)

From this, we have

[,62_52 1 ) 3 3
) > | ———=ds+z(B) > 38%t -t - 2p83).
D= ) T = 6\/h(/3)( g 7

Hence, z(t) > [(¢) for t € [B,0).
For ¢ € [0,1], let € > 0, we define a function /,(¢) as follows:

he(t)

3 1
(—'B—(l—t)+/ G(t,s)sds) for t € [0,1],
0

Tzl +e\ 3

where G(¢,s) is the Green function for w”(t) = 0 with boundary conditions w(0) = 0 = w(1)
defined by

tl-s), 0<t<s<l,

Glt.s) = {s(l—t), 0<s<t<l. @7)

Next, we prove z(t) > h.(t) for ¢ € [0,1].

In fact, if there exists £, € [0,1] such that z(¢y) < k.(t), since k(1) = 0 = z(1), h.(0) =
—3(”‘j+g) < —% < z(0) by Theorem 2.1(ii), then #, € (0,1) and there exists an interval
(a,b) € (0,1) such that

to € (a,b),z(t) < h(t) fort e (a,b),z(a)=h.(a),z(b) = h.(b).

Let ¢(t) = h.(t) — z(t), then ¢(a) = 0 = p(b) and ¢(ty) > 0. Let & € (a, b) such that ¢(§) =
max{¢(t) : t € [a,b]}, then ¢”(§) < 0. On the other hand, we know easily that

t t
+——>0 forte(a,b).

eO=HO-20= T

Then ¢”(£) > 0, a contradiction.
Taking ¢ — 0, we have

3 1
z(t) > ﬁ (—%(1 —t) +/0 G(t,s)sds) for t € [0,1].

Since fol G(t,s)sds = (”tiﬁ, we have
z(t) > 1 (t+£2-28%)(1-0) (2.8)
~ 6|zl ) ’

Theorem 2.1(i) leads to

z(t) =

(t+2-28%)1-1)=U(t) forte]l0,1].

1
6/ h(B)
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Finally, we prove z(£) < u(t). For t € [B,0), integrating (2.6) from ¢ to 0, we obtain z(0) —
z(t) > jihﬂ(;;. Then by Theorem 2.1(ii),

N

2 —-3p% - 3h(B) + B> 3 -3B%

T 6J/nB) ~ 3Jh(B)  6Jh(p)

z(t) <z(0) u(t).

For ¢ € [0,1), since z(t) > I(t) > ———(t + *)(1 - £) := [o(¢), we have

6/h(B)
Ls1-3) Lo
z(t)f/t - ds+(1—t)/o %ds

Lg(1—ys) tos
§/t 10G) ds+(1—t)f0 lo—(s)ds

1 t
=6 h(ﬁ)(/ lljds+(1—t)/0 l_lszds)

_ 3,/h(,3)(21n% +(1-)n g) — u(t). -

Combining Theorems 2.1 and 2.2, we obtain

Corollary 2.1 Let z be a solution of (2.4), then /h(B) l(—'3+6)33) < |zl < Vh(B). In par-

3
4
ticular, @ <|z| < ?

Proof Let gg(t) = (t + £> — 283)(1 - ¢), by (2.8), we have z(t) > mgﬂ(t) on [0,1]. From

A/3+683

g4(2) = 0, we obtain = ¥==—, and then max{gs(t) : ¢ € [0,1]} = gy(
lzll = grgs (V). This, together with ga(Y52) = 6 /A(BY(Y5L), implies |lz]| =

3+683
3 d ). Hence,

Vh(B1/ (X 3;6’33 ). The right hand is from Theorem 2.1(i).

Since h(c) < h(0) = % for o > 0, hence ||z|| < Vh(0) = ?
Since gg(t) > t(1 + £)(1 — ¢) := go(¢) for ¢ € [0,1], by g(’)(f) =0, we have f = g Hence,
max{go(¢): t € [0,1]} = go(%) = %g’ By (2.8), we obtain

t
el = 20 = 29 on [o,11
6llz|
i 2@ _ V3 Y7
From this, we have ||z|| > olzl = T e llzll = =5 0

Based on Theorem 2.2, Corollary 2.1, f'() = ¢ and f"(n) = z(t), we obtain the relation
between the velocity function f” and the shear stress functions f”, upper and lower bounds

of |[f”|l = sup{f”(n) : n € [0, 00}.

Theorem 2.3 Let f be a solution of (1.1)-(1.2), then
(©) 1) <f" < u(f’) for n € [0,00);

(if) {‘/Wﬂ)\/: V) < f1l < /R(B). Specially, Y2 < |If"|| < 2.
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Remark 2.1 There exists very little study on the upper and lower bounds of f”(n); Theo-
rem 2.3 fills this gap. Other studies can be found in [9, 10].

3 New lower bound of §8°

To obtain a better lower bound of 8°, we first prove

Theorem 3.1 Let z be a solution of (2.4), then

1 6 5
3—1440h(/3)(60ﬂ -1928° +7).

1
/ (1-29)2%(s)ds
B

Proof Firstly, we prove

£ - 2|

2\/h(B)

12 (t)| = on [0,1]. 3.1)

Integrating (2.1) from ¢ to , we obtain by Z/(£) = 0

tog b ? - -
‘@)= | —d ds = ,b).
Z(t) /t ) s Z/t‘ ") s N0 on [0,f)
Integrating (2.1) from  to ¢, we have by Z/(¢) = 0
z'(t):/t_—sds</t _ ds = il <0 onl4l].
i 2 T i Jh(B) 2/h(B) ~

Hence, (3.1) holds.
From (2.6) and (3.1), we know

1 0 1
(1-9)2%(s)ds = | (1-5)2*(s)d (1-5)2%(s)d
/ﬁ $)Z*(s)ds /ﬁ $)Z(s s+/0 $)Z%(s)ds

0 1
> #(m[/ﬂ (l—s)(ﬁz—s2)2d5+/(; (l—s)(sz—f2)2ds:|.

By
0 ) 1
/ 1-5)(B*-5*) ds=—(58° -16p°),
8 30
1 ~o\ 2 1 - -
/ (1-5)(5* = P) ds = — (1-5P + 157
0 30
and
1\> 7 7
1-52+15¢*=15(2 -~ ) + —=> —,
6 12712
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we obtain
1o92@ds> — [ (555 1687 +
/ﬁ Bl S‘lzoh(ﬁ)[(’g - ’3)+ﬁ]
o1 6 5
= Lraongg (608° ~19267+7). O
Let

2 4 5 6 1
H(B)=73-4808" +7208* +192B8° —3808°, pB¢c [_5,0],
Since

H'(B) = -9608 +2880° + 9608* — 22808° > -9608(1-36%) >0 on [—%,0),

9 4396387 0 H 1 55395529
-—— =<0, —— )=
20 3200000 25 48828125

’

then there exists a unique j € (—%, —%) = (-0.45,-0.44) such that H(8) = 0, H(B) > 0 for

B € (B,0) and H(B) < 0 for B & (-3, B).
Theorem 3.2 If < B, the Blasius problem (1.1)-(1.2) has no solution and then 8~ > —0.45.

Proof The proofis by contradiction. If for some g < B,(1.1)-(1.2) hasa solution f and then
(2.1) has a solution z. Rewrite (2.1) as follows:

(20)Z (1)) +t=2"(¢).
Integrating this equality from 8 to ¢ and noticing that z'(8) = 0, we obtain

z(t)Z (¢) + Ltsds = /l;tz/z(s) ds.

Integrating the last equality from B to 1 and using z(1) = 0, we have

_%zz(ﬂ) +/ﬂ1 /ﬁtsdsdtz /ﬁl /ﬂtz’z(s)dsdtz/ﬂl(l—s)z/z(s)ds.

This, together with z(8) > 0 and Theorem 3.1, implies

1-38%+28% (' [ 1 6 5
T_/ﬂ /ﬂ sdsdt>m(60ﬂ -1928° +7).
Since
1-38%2+2p° 1 p 5 _ H(p)
6  1440h(B) (605° ~1926° +7) = 1440h(B)’

then H(B) > 0, a contradiction. Hence, 8° > B > —0.45. O
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Remark 3.1 Theorem 3.2 improves the lower bound of 8" from —0.5 in [9] to —0.45.
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