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Abstract
The Blasius problem has been used to describe the steady two-dimensional flow of a
slightly viscous incompressible fluid past a flat plate moving at a constant speed β ;
and it is well known that there exists the critical value β* < 0 such that it has at least
one solution for each β ≥ β* and has no positive solution for β < β*. The known
numerical result shows β* .

= –0.3541. In this paper, by the study of the integral
equation equivalent to the Blasius problem, we obtain the relation between the
velocity function f ′ and the shear stress functions f ′′, upper and lower bounds of ‖f ′′‖
and a new lower bound of β*. In particular, 4

√
27/9 ≤ ‖f ′′‖ ≤ √

3/3, β* > –0.45.
Regarding β*, previous results presented a lower bound –0.5 and an upper bound
–0.18733.
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1 Introduction
The Blasius problem [] arising in the boundary layer problems in fluid mechanics

f ′′′(η) + f (η)f ′′(η) =  on [,∞) (.)

subject to the boundary conditions

f () = , f ′() = β and f ′(∞) = , (.)

has been used to describe the steady two-dimensional flow of a slightly viscous incom-
pressible fluid past a flat plate. It also arises in the study of the mixed convection in porous
media [], where η is the similarity boundary layer ordinate, f (η) is the similarity stream
function, f ′(η) and f ′′(η) are the velocity and the shear stress functions, respectively. The
case of β <  corresponds to a flat plate moving at a steady speed opposite to that of a
uniform mainstream [].
Regarding the analytic study of the Blasius problem (.)-(.),Weyl [] proved that (.)-

(.) has one and only one solution for β = ; Coppel [] studied the case of β > ; the
cases of  < β <  [] and β >  [] were also investigated, respectively. Also, see []. In
, Hussaini and Lakin [] indicated that there exists a critical value β* <  such that
(.)-(.) has at least a solution for β ≥ β* and no solution for β < β*. A lower bound
was presented with β* ≥ –/ = –. and numerical results showed β* .= –. []. In
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, Brighi, Fruchard and Sari [] summarized historical study on the Blasius problem
and analyzed the case β <  in detail, in which the shape and the number of solutions were
determined. In , Yang [] obtained an upper bound β* < –/ = –.. The
Blasius problem is a special case of the Falkner-Skan equation, for β = , we may refer to
[–] for some recent results on the Falkner-Skan equation.
An open question is:What exactly is β*? Andwhat properties does the shear stress func-

tion f ′′(η) have? To our knowledge, there is little study on it. By the study of the integral
equation that is equivalent to the Blasius problem, in this paper, we present the relation
between f ′ and f ′′, upper and lower bounds of ‖f ′′‖ and new lower bounds of β*. In par-
ticular, √/ ≤ ‖f ′′‖ ≤ √

/, β* > –..

2 Upper and lower bounds of f ′′

Noticing the basic fact in [] that if f is a solution of (.)-(.), then f ′′ >  for η ∈ [,∞),
we use the so-called Crocco transformation [, ], which consists of choosing t = f ′ as an
independent variable and expressing z = f ′′ as a function of t, to change (.)-(.) to the
Crocco equation []

dz
dt

= –
t
z
, β ≤ t <  (.)

with the boundary conditions

z′(β) = , z() = . (.)

Integrating (.) from β to t, we have by (.)

z′(t) = –
∫ t

β

s
z(s)

ds on [β , ). (.)

Integrating (.) from t to , we obtain the following integral equation that is equivalent
to (.)-(.) [, ]:

z(t) =
∫ 

t

s( – s)
z(s)

ds + ( – t)
∫ t

β

s
z(s)

ds := Az(t) + ( – t)Bz(t), (.)

where z(t) ∈ C[β , ] and z(t) >  for t ∈ [β , ).
Since β* ≥ – 

 , our work is restricted to the case of – 
 ≤ β <  and begins with the

following lemma.

Theorem . Let z be a solution of (.), then
(i) ‖z‖ ≤ √

h(β);
(ii) – β

‖z‖ ≤ z() ≤ h(β)+β


√

h(β)
, where ‖z‖ =max{z(t) : t ∈ [β , ]}, h(β) = 

 ( – β – β).

Proof Let t̃ ∈ [β , ] such that ‖z‖ = z(t̃) =max{z(t) : t ∈ [β , ]}. By (.), we know z′(t) > 
for t ∈ (β , ], and then z(t) is strictly increasing (β , ]. This, together with z(t̃) > , implies
 < t̃ < . From (.), we know z′′(t)z(t) = –t. Integrating this equality from β to t̃, we have

∫ t̃

β

z′′(s)z(s)ds = –
∫ t̃

β

s ds = –
t̃ – β


.
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Noticing that z′(t̃) = z′(β) = , we obtain

∫ t̃

β

z′′(s)z(s)ds = z′(s)z(s)|t̃β –
∫ t̃

β

z′(s)ds = –
∫ t̃

β

z′(s)ds≤ .

Consequently, |β| ≤ t̃.
(i) From z′(t̃) = –

∫ t̃
β

s
z(s) ds = –Bz(t̃), we know Bz(t) ≥ Bz(t̃) =  for t ∈ [t̃, ). This implies

Az(t) ≤ z(t), t ∈ [t̃, ).
By A′z(t) = – t(–t)

z(t) , we have

Az(t)
(
–Az(t)

)′ ≤ z(t)
(
–Az(t)

)′ ≤ t( – t) for t ∈ [t̃, ). (.)

Noticing that z(t̃) = Az(t̃) and z() = , integrating (.) from t̃ to , we have by |β| ≤ t̃

‖z‖ = [
Az(t̃)

] ≤ 
∫ 

t̃
s( – s)ds≤ 

∫ 

|β|
s( – s)ds

=


(
 – β – β) = h(β).

(ii) Integrating (.) from β to , we have

z() = –
∫ 

β

Bz(t)dt + z(β) ≥
∫ 

β

∫ t

β

–s
‖z‖ dsdt + z(β) ≥ –

β

‖z‖ ,

which implies that the left inequality of (ii) holds.
Noticing that |β| ≤ t̃ and utilizing (.) and (.), we know

z(t̃) – z() =
∫ t̃



∫ t̃

t

s
z(s)

dsdt ≥
∫ |β|



∫ |β|

t

s
‖z‖ dsdt = –

β

‖z‖ .

And then z() ≤ ‖z‖ + β

‖z‖ ≤ √
h(β) + β


√

h(β)
= h(β)+β


√

h(β)
. Hence, (ii) holds. �

Let

l(t) =

⎧⎨
⎩



√

h(β)
(t + t – β)( – t), t ∈ [, ],



√

h(β)
(βt – t – β), t ∈ [β , )

and

u(t) =

⎧⎨
⎩

√
h(β)( ln 

+t + ( – t) ln +t
–t ), t ∈ [, ],

h(β)+β+βt–t


√

h(β)
, t ∈ [β , ).

Utilizing Theorem ., we can obtain upper and lower bounds of z as follows.

Theorem . Let z be a solution of (.), then l(t)≤ z(t) ≤ u(t) for t ∈ [β , ].
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Proof For t ∈ [β , ), we have by (.) and Theorem .(i)

z′(t) = –Bz(t) ≥
∫ t

β

–s√
h(β)

ds =
β – t


√
h(β)

on [β , ). (.)

From this, we have

z(t) ≥
∫ t

β

β – s


√
h(β)

ds + z(β) ≥ 

√
h(β)

(
βt – t – β).

Hence, z(t) ≥ l(t) for t ∈ [β , ).
For t ∈ [, ], let ε > , we define a function hε(t) as follows:

hε(t) =


‖z‖ + ε

(
–

β


( – t) +

∫ 


G(t, s)s ds

)
for t ∈ [, ],

whereG(t, s) is the Green function for w′′(t) =  with boundary conditions w() =  = w()
defined by

G(t, s) =

{
t( – s),  ≤ t ≤ s ≤ ,
s( – t),  ≤ s ≤ t ≤ .

(.)

Next, we prove z(t) ≥ hε(t) for t ∈ [, ].
In fact, if there exists t ∈ [, ] such that z(t) < hε(t), since hε() =  = z(), hε() =

– β

(‖z‖+ε) < – β

‖z‖ ≤ z() by Theorem .(ii), then t ∈ (, ) and there exists an interval
(a,b)� (, ) such that

t ∈ (a,b), z(t) < hε(t) for t ∈ (a,b), z(a) = hε(a), z(b) = hε(b).

Let ϕ(t) = hε(t) – z(t), then ϕ(a) =  = ϕ(b) and ϕ(t) > . Let ξ ∈ (a,b) such that ϕ(ξ ) =
max{ϕ(t) : t ∈ [a,b]}, then ϕ′′(ξ ) ≤ . On the other hand, we know easily that

ϕ′′(t) = h′′
ε (t) – z′′(t) = –

t
‖z‖ + ε

+
t

z(t)
>  for t ∈ (a,b).

Then ϕ′′(ξ ) > , a contradiction.
Taking ε → , we have

z(t) ≥ 
‖z‖

(
–

β


( – t) +

∫ 


G(t, s)s ds

)
for t ∈ [, ].

Since
∫ 
 G(t, s)s ds =

(t+t)(–t)
 , we have

z(t) ≥ 
‖z‖

(
t + t – β)( – t). (.)

Theorem .(i) leads to

z(t) ≥ 

√
h(β)

(
t + t – β)( – t) = l(t) for t ∈ [, ].
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Finally, we prove z(t) ≤ u(t). For t ∈ [β , ), integrating (.) from t to , we obtain z() –
z(t) ≥ t–βt


√

h(β)
. Then by Theorem .(ii),

z(t) ≤ z() –
t – βt

√
h(β)

≤ h(β) + β


√
h(β)

–
t – βt

√
h(β)

= u(t).

For t ∈ [, ), since z(t) ≥ l(t)≥ 

√

h(β)
(t + t)( – t) := l(t), we have

z(t) ≤
∫ 

t

s( – s)
z(s)

ds + ( – t)
∫ t



s
z(s)

ds

≤
∫ 

t

s( – s)
l(s)

ds + ( – t)
∫ t



s
l(s)

ds

= 
√
h(β)

(∫ 

t


 + s

ds + ( – t)
∫ t




 – s

ds
)

= 
√
h(β)

(
 ln


 + t

+ ( – t) ln
 + t
 – t

)
= u(t). �

Combining Theorems . and ., we obtain

Corollary . Let z be a solution of (.), then 
√
h(β)

√
l(

√
+β

 ) ≤ ‖z‖ ≤ √
h(β). In par-

ticular,
√
 ≤ ‖z‖ ≤

√

 .

Proof Let gβ (t) = (t + t – β)( – t), by (.), we have z(t) ≥ 
‖z‖gβ (t) on [, ]. From

g ′
β (t̂) = , we obtain t̂ =

√
+β

 , and then max{gβ (t) : t ∈ [, ]} = gβ (
√

+β

 ). Hence,

‖z‖ ≥ 
‖z‖gβ (

√
+β

 ). This, together with gβ (
√

+β

 ) = 
√
h(β)l(

√
+β

 ), implies ‖z‖ ≥

√
h(β)

√
l(

√
+β

 ). The right hand is from Theorem .(i).

Since h(σ )≤ h() = 
 for σ ≥ , hence ‖z‖ ≤ √

h() =
√

 .

Since gβ (t) ≥ t( + t)( – t) := g(t) for t ∈ [, ], by g ′
(t̂) = , we have t̂ =

√

 . Hence,

max{g(t) : t ∈ [, ]} = g(t̂) = 
√


 . By (.), we obtain

‖z‖ ≥ z(t) ≥ g(t)
‖z‖ on [, ].

From this, we have ‖z‖ ≥ g(t̂)
‖z‖ =

√


‖z‖ , i.e., ‖z‖ ≥ √
 . �

Based on Theorem ., Corollary ., f ′(η) = t and f ′′(η) = z(t), we obtain the relation
between the velocity function f ′ and the shear stress functions f ′′, upper and lower bounds
of ‖f ′′‖ = sup{f ′′(η) : η ∈ [,∞}.

Theorem . Let f be a solution of (.)-(.), then
(i) l(f ′) ≤ f ′′ ≤ u(f ′) for η ∈ [,∞);

(ii) 
√
h(β)

√
l(

√
+β

 ) ≤ ‖f ′′‖ ≤ √
h(β). Specially,

√
 ≤ ‖f ′′‖ ≤

√

 .
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Remark . There exists very little study on the upper and lower bounds of f ′′(η); Theo-
rem . fills this gap. Other studies can be found in [, ].

3 New lower bound of β*

To obtain a better lower bound of β*, we first prove

Theorem . Let z be a solution of (.), then

∫ 

β

( – s)z′(s)ds≥ 
h(β)

(
β – β + 

)
.

Proof Firstly, we prove

∣∣z′(t)
∣∣ ≥ |t – t̃|


√
h(β)

on [, ]. (.)

Integrating (.) from t to t̃, we obtain by z′(t̃) = 

z′(t) =
∫ t̃

t

s
z(s)

ds≥
∫ t̃

t

s√
h(β)

ds =
t̃ – t


√
h(β)

on [, t̃).

Integrating (.) from t̃ to t, we have by z′(t̃) = 

z′(t) =
∫ t

t̃

–s
z(s)

ds≤
∫ t

t̃

–s√
h(β)

ds =
t̃ – t


√
h(β)

≤  on [t̃, ].

Hence, (.) holds.
From (.) and (.), we know

∫ 

β

( – s)z′(s)ds =
∫ 

β

( – s)z′(s)ds +
∫ 


( – s)z′(s)ds

≥ 
h(β)

[∫ 

β

( – s)
(
β – s

) ds + ∫ 


( – s)

(
s – t̃

) ds].
By

∫ 

β

( – s)
(
β – s

) ds = 


(
β – β),

∫ 


( – s)

(
s – t̃

) ds = 


(
 – t̃ + t̃

)

and

 – t̃ + t̃ = 
(
t̃ –




)

+



≥ 


,
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we obtain

∫ 

β

( – s)z′(s)ds≥ 
h(β)

[(
β – β) + 



]

=


h(β)
(
β – β + 

)
. �

Let

H(β) =  – β + β + β – β, β ∈
[
–


, 

]
.

Since

H ′(β) = –β + β + β – β > –β
(
 – β) >  on

[
–


, 

)
,

H
(
–



)
= –




< , H
(
–



)
=



> ,

then there exists a unique β̃ ∈ (– 
 , –


 ) = (–.,–.) such thatH(β̃) = ,H(β) >  for

β ∈ (β̃ , ) and H(β) <  for β ∈ (– 
 , β̃).

Theorem. If β ≤ β̃ , the Blasius problem (.)-(.) has no solution and then β* > –..

Proof The proof is by contradiction. If for some β ≤ β̃ , (.)-(.) has a solution f and then
(.) has a solution z. Rewrite (.) as follows:

(
z(t)z′(t)

)′ + t = z′(t).

Integrating this equality from β to t and noticing that z′(β) = , we obtain

z(t)z′(t) +
∫ t

β

s ds =
∫ t

β

z′(s)ds.

Integrating the last equality from β to  and using z() = , we have

–


z(β) +

∫ 

β

∫ t

β

s dsdt =
∫ 

β

∫ t

β

z′(s)dsdt =
∫ 

β

( – s)z′(s)ds.

This, together with z(β) >  and Theorem ., implies

 – β + β


=

∫ 

β

∫ t

β

s dsdt >


h(β)
(
β – β + 

)
.

Since

 – β + β


–


h(β)

(
β – β + 

)
=

H(β)
h(β)

,

then H(β) > , a contradiction. Hence, β* > β̃ > –.. �
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Remark . Theorem . improves the lower bound of β* from –. in [] to –..
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