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Abstract
Let K be a nonempty closed bounded convex subset of an arbitrary smooth Banach
space X and T : K → K be a continuous strictly hemicontractive mapping. Under some
conditions, we obtain that the Mann iteration method with error term converges
strongly to a unique fixed point of T and is almost T -stable on K . As an application of
our results, we establish strong convergence of a multi-step iteration process.
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1 Introduction
Chidume [] established that the Mann iteration sequence converges strongly to the
unique fixed point of T in case T is a Lipschitz strongly pseudo-contractive mapping from
a bounded closed convex subset of Lp (or lp) into itself. Schu [] generalized the result in
[] to both uniformly continuous strongly pseudo-contractive mappings and real smooth
Banach spaces. Park [] extended the result in [] to both strongly pseudocontractivemap-
pings and certain smooth Banach spaces. Rhoades [] proved that theMann and Ishikawa
iteration methods may exhibit different behavior for different classes of nonlinear map-
pings. Harder and Hicks [, ] revealed the importance of investigating the stability of
various iteration procedures for various classes of nonlinear mappings. Harder [] estab-
lished applications of stability results to first-order differential equations. Afterwords, sev-
eral generalizations have been made in various directions (see, for example, [, , –].
Let K be a nonempty closed bounded convex subset of an arbitrary smooth Banach

space X and T : K → K be a continuous strictly hemicontractive mapping. Under some
conditions, we obtain that the Mann iteration method with error term converges strongly
to a unique fixed point of T and is almost T-stable on K . As an application, we shall also
establish strong convergence of a multi-step iteration process. The results presented here
generalize the corresponding results in [–, , , ].
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2 Preliminaries
Let K be a nonempty subset of an arbitrary Banach space X and X∗ be its dual space. The
symbols D(T), R(T) and F(T) stand for the domain, the range and the set of fixed points
of T : X → X respectively (x is called a fixed point of T iff T(x) = x). We denote by J the
normalized duality mapping from X to X∗ defined by

J(x) =
{
f ∗ ∈ X∗ :

〈
x, f ∗〉 = ‖x‖ = ∥∥f ∗∥∥}.

Let T be a self-mapping of K .

Definition  The mapping T is called Lipshitzian if there exists L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖

for all x, y ∈ K . If L = , then T is called non-expansive and if  ≤ L < , T is called contrac-
tion.

Definition  [, ]
. The mapping T is said to be pseudocontractive if the inequality

‖x – y‖ ≤ ∥∥x – y + t
[
(I – T)x – (I – T)y

]∥∥ (.)

holds for each x, y ∈ K and for all t > .
. T is said to be strongly pseudocontractive if there exists t >  such that

‖x – y‖ ≤ ∥∥( + r)(x – y) – rt(Tx – Ty)
∥∥ (.)

for all x, y ∈D(T) and r > .
. T is said to be local strongly pseudocontractive if for each x ∈ D(T), there exists tx > 

such that

‖x – y‖ ≤ ∥∥( + r)(x – y) – rtx(Tx – Ty)
∥∥ (.)

for all y ∈ D(T) and r > .
. T is said to be strictly hemicontractive if F(T) �= ∅ and if there exists t >  such that

‖x – q‖ ≤ ∥∥( + r)(x – q) – rt(Tx – q)
∥∥ (.)

for all x ∈ D(T), q ∈ F(T) and r > .

Clearly, each strongly pseudocontractive operator is local strongly pseudocontractive.

Definition  [–] Let K be a nonempty convex subset of X and T : K → K be an op-
erator. Assume that xo ∈ K and xn+ = f (T ,xn) defines an iteration scheme which pro-
duces a sequence {xn}∞n= ⊂ K . Suppose, furthermore, that {xn}∞n= converges strongly to
q ∈ F(T) �= ∅. Let {yn}∞n= be any bounded sequence in K and put εn = ‖yn+ – f (T , yn)‖.
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() The iteration scheme {xn}∞n= defined by xn+ = f (T ,xn) is said to be T-stable on K if
limn→∞ εn =  implies that limn→∞ yn = q.

() The iteration scheme {xn}∞n= defined by xn+ = f (T ,xn) is said to be almost T-stable
on K if

∑∞
n= εn <∞ implies that limn→∞ yn = q.

It is easy to verify that an iteration scheme {xn}∞n= which is T-stable on K is almost
T-stable on K .

Lemma  [] Let X be a smooth Banach space. Suppose one of the following holds:
() J is uniformly continuous on any bounded subsets of X ,
() 〈x – y, j(x) – j(y)〉 ≤ ‖x – y‖ for all x, y in X ,
() for any bounded subset D of X , there is a c : [,∞)→ [,∞) such that

Re
〈
x – y, j(x) – j(y)

〉 ≤ c
(‖x – y‖),

for all x, y ∈D, where c satisfies

lim
t→+

c(t)
t

= . (.)

Then for any ε >  and any bounded subset K , there exists δ >  such that

∥∥sx + ( – s)y
∥∥ ≤ ( – s)‖y‖ + sRe

〈
x, j(y)

〉
+ sε (.)

for all x, y ∈ K and s ∈ [, δ].

Lemma  [] Let T : D(T) ⊆ X → X be an operator with F(T) �= ϕ. Then T is strictly
hemicontractive if and only if there exists t >  such that for all x ∈ D(T) and q ∈ F(T),
there exists j(x – q) ∈ J(x – q) satisfying

Re
〈
x – Tx, j(x – q)

〉 ≥ (
 –


t

)
‖x – q‖. (.)

Lemma  [] Let X be an arbitrary normed linear space and T : D(T) ⊆ X → X be an
operator.
() If T is a local strongly pseudocontractive operator and F(T) �= ∅, then F(T) is a

singleton and T is strictly hemicontractive.
() If T is strictly hemicontractive, then F(T)is a singleton.

3 Main results
We now prove our main results.

Lemma  Let {αn}∞n=, {βn}∞n= and {γn}∞n= be nonnegative real sequences, and let ε′ >  be
a constant satisfying

βn+ ≤ (
 – αl

n
)
βn + ε′αn + γn; l ≥ ,n≥ ,

where
∑∞

n= αl
n = ∞, αn ≤  for all n ≥  and

∑∞
n= γn < ∞. Then, limn→∞ supβn ≤ ε′.

http://www.journalofinequalitiesandapplications.com/content/2012/1/207
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Proof By a straightforward argument, for n≥ k ≥ ,

βn+ ≤ βk

n∏
j=k

(
 – αl

j
)
+ ε′

n∑
j=k

αj

n∏
i=j+

(
 – αl

i
)
+

n∑
j=k

γj

n∏
i=j+

(
 – αl

i
)
, (.)

where we put
∏n

i=n+( – αl
i) = . Note that

∑n
j=k αj

∏n
i=j+( – αl

i) ≤ . It follows from (.)
that

βn+ ≤ exp

(
–

n∑
j=k

αl
j

)
βk + ε′ +

n∑
j=k

γj. (.)

For a given δ > , there exists a positive integer k such that
∑∞

j=k γj < δ. Thus (.) ensures
that

lim
n→∞ supβn ≤ ε′ + δ.

Letting δ → + yields limn→∞ supβn ≤ ε′. �

Remark 
(i) If γn =  for each n≥ , then Lemma  reduces to Lemma  of Park [].
(ii) If l = , then Lemma  reduces to Lemma . of Liu et al. [].

Theorem  Let Xbe a smooth Banach space satisfying any one of the Axioms ()-() of
Lemma . Let K be a nonempty closed bounded convex subset of X and T : K → K be a
continuous strictly hemicontractivemapping. Suppose that {un}∞n= is an arbitrary sequence
in K and {a′

n}∞n=, {b′
n}∞n= and {c′n}∞n= are any sequences in [, ] satisfying conditions (i)

a′
n + b′

n + c′n = , (ii) c′n = o(b′
n), (iii) limn→∞ b′

n =  and (iv)
∑∞

n= b′
n = ∞.

For a sequence {vn}∞n= in K , suppose that {xn}∞n= is the sequence generated from an arbi-
trary x ∈ K by

xn+ = a′
nxn + b′

nTvn + c′nun, n≥ , (.)

and satisfying limn→∞ ‖vn – xn‖ = .
Let {yn}∞n= be any sequence in K and define {εn}∞n= by

εn = ‖yn+ – pn‖, n≥ , (.)

where pn = a′
nyn + b′

nTvn + c′nun, such that limn→∞ ‖vn – yn‖ = .
Then
(a) the sequence {xn}∞n= converges strongly to a unique fixed point q of T ,
(b)

∑∞
n= εn <∞ implies that limn→∞ yn = q, so that {xn}∞n= is almost T-stable on K ,

(c) limn→∞ yn = q implies that limn→∞ εn = .

Proof From (ii), we have c′n = tnb′
n, where tn →  as n→ ∞.

It follows from Lemma  that F(T) is a singleton. That is, F(T) = {q} for some q ∈ K .

http://www.journalofinequalitiesandapplications.com/content/2012/1/207
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SetM =  + diamK . For all n≥ , it is easy to verify that

M = sup
n≥

‖xn – q‖ + sup
n≥

‖Tvn – q‖ + sup
n≥

‖un – q‖

+ sup
n≥

{‖pn – q‖} + sup
n≥

‖yn – q‖. (.)

For given any ε >  and the bounded subset K , there exists a δ >  satisfying (.). Note
that (ii), (iii), limn→∞ ‖vn – xn‖ =  and the continuity of T ensure that there exists an N
such that

b′
n <min

{
δ,


( – k)

}
, tn ≤ ε

M , ‖Tvn – Txn‖ ≤ ε

M
, n≥ N , (.)

where k = 
t and t satisfies (.). Using (.) and Lemma , we infer that

‖xn+ – q‖ =
∥∥(
 – b′

n
)
(xn – q) + b′

n(Tvn – q) + c′n(un – xn)
∥∥

≤ (∥∥(
 – b′

n
)
(xn – q) + b′

n(Tvn – q)
∥∥ + Mc′n

)
≤ ∥∥(

 – b′
n
)
(xn – q) + b′

n(Tvn – q)
∥∥ + Mc′n

≤ (
 – b′

n
)‖xn – q‖ + b′

nRe
(
Tvn – q, j(xn – q)

)
+ εb′

n + Mc′n

=
(
 – b′

n
)‖xn – q‖ + b′

nRe
(
Txn – q, j(xn – q)

)
+ b′

nRe
(
Tvn – Txn, j(xn – q)

)
+ εb′

n + Mc′n

≤ (
 – b′

n
)‖xn – q‖ + kb′

n‖xn – q‖

+ b′
n‖Tvn – Txn‖‖xn – q‖ + εb′

n + Mc′n

≤ (
 – ( – k)b′

n
)‖xn – q‖

+ Mb′
n‖Tvn – Txn‖ + εb′

n + Mc′n

≤ (
 – ( – k)b′

n
)‖xn – q‖ + εb′

n, (.)

for all n ≥ N .
Put

βn = ‖xn – q‖,
αn = ( – k)b′

n,

ε′ =
ε

( – k)
,

γn = ,

we have from (.)

βn+ ≤ ( – αn)βn + ε′αn + γn, n≥ .

Observe that
∑∞

n= αn = ∞, αn <  for all n≥ . It follows from Lemma  that

lim
n→∞ sup‖xn – q‖ ≤ ε′.

http://www.journalofinequalitiesandapplications.com/content/2012/1/207
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Letting ε′ → +, we obtain that limn→∞ sup‖xn – q‖ = , which implies that xn → q as
n→ ∞.
On the same lines, we obtain

‖pn – q‖ =
∥∥(
 – b′

n
)
(yn – q) + b′

n(Tvn – q) + c′n(un – yn)
∥∥

≤ (∥∥(
 – b′

n
)
(yn – q) + b′

n(Tvn – q)
∥∥ + Mc′n

)
≤ ∥∥(

 – b′
n
)
(yn – q) + b′

n(Tvn – q)
∥∥ + Mc′n

≤ (
 – b′

n
)‖yn – q‖ + b′

nRe
(
Tvn – q, j(yn – q)

)
+ εb′

n + Mc′n

=
(
 – b′

n
)‖yn – q‖ + b′

nRe
(
Tyn – q, j(yn – q)

)
+ b′

nRe
(
Tvn – Tyn, j(yn – q)

)
+ εb′

n + Mc′n

≤ (
 – b′

n
)‖yn – q‖ + kb′

n‖yn – q‖

+ b′
n‖Tvn – Tyn‖‖yn – q‖ + εb′

n + Mc′n

≤ (
 – ( – k)b′

n
)‖yn – q‖

+ Mb′
n‖Tvn – Tyn‖ + εb′

n + Mc′n

≤ (
 – ( – k)b′

n
)‖yn – q‖ + εb′

n, (.)

for all n ≥ N .
Suppose that

∑∞
n= εn < ∞. In view of (.) and (.), we infer that

‖yn+ – q‖ ≤ (‖yn+ – pn‖ + ‖pn – q‖)
≤ ‖pn – q‖ + Mεn

≤ [
 – b′

n( – k)
]‖yn – q‖ + εb′

n + Mεn, (.)

for all n ≥ N .
Now, put

βn = ‖yn – q‖,
αn = ( – k)b′

n,

ε′ =
ε

( – k)
,

γn = Mεn,

and we have from (.)

βn+ ≤ ( – αn)βn + ε′αn + γn, n≥ .

Observe that
∑∞

n= αn = ∞, αn <  and
∑∞

n= γn < ∞ for all n≥ . It follows from Lemma 
that

lim
n→∞ sup‖yn – q‖ ≤ ε′.

http://www.journalofinequalitiesandapplications.com/content/2012/1/207
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Letting ε′ → +, we obtain that limn→∞ sup‖yn – q‖ = , which implies that yn → q as
n→ ∞.
Conversely, suppose that limn→∞ yn = q, then (iii) and (.) imply that

εn ≤ ‖yn+ – q‖ + ‖pn – q‖
≤ ‖yn+ – q‖ + [[

 – ( – k)b′
n
]‖yn – q‖ + εb′

n
] 


→ ,

as n→ ∞, that is, εn →  as n→ ∞. �

Using the methods of the proof of Theorem , we can easily prove the following.

Theorem  Let X, K , T and {un}∞n=, be as in Theorem . Suppose that {a′
n}∞n=, {b′

n}∞n=
and {c′n}∞n= are sequences in [, ] satisfying conditions (i), (iii)-(iv) and

∞∑
n=

c′n < ∞.

If {xn}∞n=, {vn}∞n=, {yn}∞n=, {pn}∞n= and {εn}∞n= are as in Theorem , then the conclusions of
Theorem  hold.

Corollary  Let X be a smooth Banach space satisfying any one of the Axioms ()-() of
Lemma . Let K be a nonempty closed bounded convex subset of X and T : K → K be a
Lipschitz strictly hemicontractive mapping. Suppose that {un}∞n= is an arbitrary sequence
in K and {a′

n}∞n=, {b′
n}∞n= and {c′n}∞n= are any sequences in [, ] satisfying conditions (i)

a′
n + b′

n + c′n = , (ii) c′n = o(b′
n), (iii) limn→∞ b′

n =  and (iv)
∑∞

n= b′
n = ∞.

For a sequence {vn}∞n= in K , suppose that {xn}∞n= is the sequence generated from an arbi-
trary x ∈ K by

xn+ = a′
nxn + b′

nTvn + c′nun, n≥ ,

and satisfying limn→∞ ‖vn – xn‖ = .
Let {yn}∞n= be any sequence in K and define {εn}∞n= by

εn = ‖yn+ – pn‖, n≥ ,

where pn = a′
nyn + b′

nTvn + c′nun, such that limn→∞ ‖vn – yn‖ = .
Then
(a) the sequence {xn}∞n= converges strongly to a unique fixed point q of T ,
(b)

∑∞
n= εn <∞ implies that limn→∞ yn = q, so that {xn}∞n= is almost T-stable on K ,

(c) limn→∞ yn = q implies that limn→∞ εn = .

Corollary  Let X, K , T and {un}∞n= be as in Corollary . Suppose that {a′
n}∞n=, {b′

n}∞n=
and {c′n}∞n= are sequences in [, ] satisfying conditions (i), (iii)-(iv) and

∞∑
n=

c′n < ∞.

http://www.journalofinequalitiesandapplications.com/content/2012/1/207


Hussain et al. Journal of Inequalities and Applications 2012, 2012:207 Page 8 of 11
http://www.journalofinequalitiesandapplications.com/content/2012/1/207

If {xn}∞n=, {vn}∞n=, {yn}∞n=, {pn}∞n= and {εn}∞n= are as in Corollary , then the conclusions
of Corollary  hold.

Corollary  Let X be a smooth Banach space satisfying any one of the Axioms ()-() of
Lemma . Let K be a nonempty closed bounded convex subset of X and T : K → K be a
continuous strictly hemicontractive mapping. Suppose that {αn}∞n= is a sequence in [, ]
satisfying conditions (i) limn→∞ αn =  and (ii)

∑∞
n= αn = ∞.

For a sequence {vn}∞n= in K , suppose that {xn}∞n= is the sequence generated from an arbi-
trary x ∈ K by

xn+ = αnxn + ( – αn)Tvn, n≥ ,

and satisfying limn→∞ ‖vn – xn‖ = .
Let {yn}∞n= be any sequence in K and define {εn}∞n= by

εn = ‖yn+ – pn‖, n≥ ,

where pn = αnyn + ( – αn)Tvn, such that limn→∞ ‖vn – yn‖ = .
Then
(a) the sequence {xn}∞n= converges strongly to a unique fixed point q of T ,
(b)

∑∞
n= εn <∞ implies that limn→∞ yn = q, so that {xn}∞n= is almost T-stable on K ,

(c) limn→∞ yn = q implies that limn→∞ εn = .

Corollary  Let X be a smooth Banach space satisfying any one of the Axioms ()-()
of Lemma . Let K be a nonempty closed bounded convex subset of X and T : K → K be
a Lipschitz strictly hemicontractive mapping. Suppose that {αn}∞n= is a sequence in [, ]
satisfying conditions (i) limn→∞ αn =  and (ii)

∑∞
n= αn = ∞.

For a sequence {vn}∞n= in K , suppose that {xn}∞n= is the sequence generated from an arbi-
trary x ∈ K by

xn+ = αnxn + ( – αn)Tvn, n≥ ,

and satisfying limn→∞ ‖vn – xn‖ = .
Let {yn}∞n= be any sequence in K and define {εn}∞n= by

εn = ‖yn+ – pn‖, n≥ ,

where pn = αnyn + ( – αn)Tvn, such that limn→∞ ‖vn – yn‖ = .
Then
(a) the sequence {xn}∞n= converges strongly to a unique fixed point q of T ,
(b)

∑∞
n= εn <∞ implies that limn→∞ yn = q, so that {xn}∞n= is almost T-stable on K ,

(c) limn→∞ yn = q implies that limn→∞ εn = .

4 Applications to amulti-step iteration process
Khan et al. [] have introduced and studied a multi-step iteration process for a finite
family of selfmappings. We now introduce a modified multi-step process as follows:
Let K be a nonempty closed convex subset of a real normed space E and T,T, . . . ,Tp :

K → K (p≥ ) be a family of selfmappings.

http://www.journalofinequalitiesandapplications.com/content/2012/1/207
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Algorithm  For a given x ∈ K , compute the sequence {xn}n≥ by the iteration process
of arbitrary fixed order p≥ ,

xn+ = ( – αn)xn + αnTyn,

yin =
(
 – β i

n
)
xn + β i

nTi+yi+n ; i = , , . . . ,p – , (.)

yp–n =
(
 – βp–

n
)
xn + βp–

n Tpxn, n≥ ,

which is called the modified multi-step iteration process, where {αn}n≥, {β i
n}n≥ ⊂ [, ],

i = , , . . . ,p – .

For p = , we obtain the following three-step iteration process:

Algorithm  For a given x ∈ K , compute the sequence {xn}n≥ by the iteration process:

xn+ = ( – αn)xn + αnTyn,

yn =
(
 – β

n
)
xn + β

nTyn, (.)

yn =
(
 – β

n
)
xn + β

nTxn, n≥ ,

where {αn}n≥, {β
n}n≥ and {β

n}n≥ are three real sequences in [, ].

For p = , we obtain the Ishikawa [] iteration process:

Algorithm  For a given x ∈ K , compute the sequence {xn}n≥ by the iteration process

xn+ = ( – αn)xn + αnTyn,

yn =
(
 – β

n
)
xn + β

nTxn, n ≥ ,
(.)

where {αn}n≥ and {β
n}n≥ are two real sequences in [, ].

If T = T , T = I , β
n =  in (.), we obtain the Mann iteration process []:

Algorithm For any given x ∈ K , compute the sequence {xn}n≥ by the iteration process

xn+ = ( – αn)xn + αnTxn, n ≥ , (.)

where {αn} is a real sequence in [, ].

Theorem  Let K be a nonempty closed bounded convex subset of a smooth Banach
space X andT,T, . . . ,Tp (p≥ ) be selfmappings of K .Let T be a continuous strictly hemi-
contractivemapping. Let {αn}n≥, {β i

n}n≥ ⊂ [, ], i = , , . . . ,p– be real sequences in [, ]
satisfying

∑
n≥ αn = ∞, limn→∞ αn =  and limn→∞ β

n = . For arbitrary x ∈ K , define the
sequence {xn}n≥ by (.). Then {xn}n≥ converges strongly to a point in

⋂p
i= F(Ti) �= ∅.

Proof By applying Corollary  under assumption that T is continuous strictly hemicon-
tractive mapping, we obtain Theorem  which proves strong convergence of the iteration

http://www.journalofinequalitiesandapplications.com/content/2012/1/207
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process defined by (.). We will check only the condition limn→∞ ‖vn – xn‖ =  by taking
T = T and vn = yn,

‖vn – xn‖ =
∥∥yn – xn

∥∥
=

∥∥(
 – β

n
)
xn + β

nTyn – xn
∥∥

= β
n
∥∥Tyn – xn

∥∥
≤ Mβ

n.

Now, from the condition limn→∞ β
n = , it can be easily seen that limn→∞ ‖vn – xn‖ = .

�

Corollary  Let K be a nonempty closed bounded convex subset of a smooth Banach
space X and T,T, . . . ,Tp (p≥ ) be selfmappings of K . Let T be a Lipschitz strictly hemi-
contractivemapping. Let {αn}n≥, {β i

n}n≥ ⊂ [, ], i = , , . . . ,p– be real sequences in [, ]
satisfying

∑
n≥ αn = ∞, limn→∞ αn =  and limn→∞ β

n = . For arbitrary x ∈ K , define the
sequence {xn}n≥ by (.). Then {xn}n≥ converges strongly to a point in

⋂p
i= F(Ti) �= ∅.

Remark  Similar results can be found for the iteration processes with error terms, we
omit the details.
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