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Abstract
In this paper, we first introduce the new notion ofMT -cyclic contraction and
establish some new existence and convergence theorems of iterates of best
proximity points forMT -cyclic contractions. Some nontrivial examples illustrating
our results are also given.
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1 Introduction and preliminaries
Throughout this paper, we denote by N and R the sets of positive integers and real
numbers, respectively. Let A and B be nonempty subsets of a nonempty set E. A map
S : A ∪ B → A ∪ B is called a cyclic map if S(A) ⊂ B and S(B) ⊂ A. Let (X,d) be a metric
space and T : A∪ B → A∪ B be a cyclic map. For any nonempty subsets A and B of X, let

dist(A,B) = inf
{
d(x, y) : x ∈ A, y ∈ B

}
.

A point x ∈ A∪ B is called to be a best proximity point for T if d(x,Tx) = dist(A,B).

Definition . ([]) Let A and B be nonempty subsets of a metric space (X,d). A map
T : A∪ B → A∪ B is called a cyclic contraction if the following conditions hold:
() T(A) ⊂ B and T(B)⊂ A;
() there exists k ∈ (, ) such that d(Tx,Ty) ≤ kd(x, y) + ( – k)dist(A,B) for all x ∈ A,

y ∈ B.

Remark . Let A and B be nonempty closed subsets of a complete metric space (X,d)
and T : A ∪ B → A ∪ B be a cyclic contraction. If A ∩ B �= ∅, then dist(A,B) =  and T is a
contraction on the complete metric space (A∩B,d). Hence, applying the Banach contrac-
tion principle, we know that T has a unique fixed point in A∩ B.

Recently, under some weaker assumptions over a map T , the existence, uniqueness and
convergence of iterates to the best proximity point were investigated by several authors;
see [–] and references therein. In [], Eldred and Veeramani first proved the following
interesting best proximity point theorem.
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Theorem EV ([, Proposition .]) Let A and B be nonempty closed subsets of a complete
metric space X. Let T : A ∪ B → A ∪ B be a cyclic contraction map, x ∈ A and define
xn+ = Txn, n ∈ N. Suppose {xn–} has a convergent subsequence in A. Then there exists
x ∈ A such that d(x,Tx) = dist(A,B).

Let f be a real-valued function defined on R. For c ∈R, we recall that

lim sup
x→c

f (x) = inf
ε>

sup
<|x–c|<ε

f (x)

and

lim sup
x→c+

f (x) = inf
ε>

sup
<x–c<ε

f (x).

Definition . ([–]) A function ϕ : [,∞) → [, ) is said to be an MT -function (or
R-function) if lim sups→t+ ϕ(s) <  for all t ∈ [,∞).

It is obvious that if ϕ : [,∞) → [, ) is a nondecreasing function or a nonincreasing
function, then ϕ is anMT -function. So the set ofMT -functions is a rich class.
Very recently, Du [] first proved some characterizations ofMT -functions.

Theorem D ([]) Let ϕ : [,∞)→ [, ) be a function. Then the following statements are
equivalent.
(a) ϕ is anMT -function.
(b) For each t ∈ [,∞), there exist r()t ∈ [, ) and ε

()
t >  such that ϕ(s)≤ r()t for all

s ∈ (t, t + ε
()
t ).

(c) For each t ∈ [,∞), there exist r()t ∈ [, ) and ε
()
t >  such that ϕ(s)≤ r()t for all

s ∈ [t, t + ε
()
t ].

(d) For each t ∈ [,∞), there exist r()t ∈ [, ) and ε
()
t >  such that ϕ(s)≤ r()t for all

s ∈ (t, t + ε
()
t ].

(e) For each t ∈ [,∞), there exist r()t ∈ [, ) and ε
()
t >  such that ϕ(s)≤ r()t for all

s ∈ [t, t + ε
()
t ).

(f ) For any nonincreasing sequence {xn}n∈N in [,∞), we have  ≤ supn∈N ϕ(xn) < .
(g) ϕ is a function of contractive factor []; that is, for any strictly decreasing sequence

{xn}n∈N in [,∞), we have  ≤ supn∈N ϕ(xn) < .

Motivated by the concepts of cyclic contractions andMT -functions, we first introduce
the concept ofMT -cyclic contractions.

Definition . Let A and B be nonempty subsets of a metric space (X,d). If a map T :
A∪ B→ A∪ B satisfies
(MT) T(A) ⊂ B and T(B)⊂ A;
(MT) there exists anMT -function ϕ : [,∞)→ [, ) such that

d(Tx,Ty)≤ ϕ
(
d(x, y)

)
d(x, y) +

(
–ϕ

(
d(x, y)

))
dist(A,B) for any x ∈ A and y ∈ B,

then T is called anMT -cyclic contraction with respect to ϕ on A∪ B.
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Remark . It is obvious that (MT) implies that T satisfies d(Tx,Ty) ≤ d(x, y) for any
x ∈ A and y ∈ B.

The following example gives a map T which is an MT -cyclic contraction but not a
cyclic contraction.

Example A Let X = {v, v, v, . . .} be a countable set and {τn} be a strictly increasing con-
vergent sequence of positive real numbers. Denote by τ∞ := limn→∞ τn. Then τ < τ∞. Let
d : X ×X → [,∞) be defined by d(vn, vn) =  for all n ∈N and d(vn, vm) = d(vm, vn) = τm if
m > n. Then d is a metric on X. Set A = {v, v, v, . . .}, B = {v, v, v, . . .}. So A∪ B = X and
dist(A,B) = τ. Now we define a map T : A∪ B → A∪ B by

Tvn
def=

⎧⎨
⎩
v, if n = ,

vn–, if n > 

for n ∈ N. It is easy to see that T(A) = B and T(B) = A, and so (MT) holds. Define ϕ :
[,∞)→ [, ) as

ϕ(t) def=

⎧⎨
⎩

τn–
τn

, if t = τn for some n ∈N with n > ,

, otherwise.

Since {τn} is strictly increasing, lim sups→t+ ϕ(s) =  <  for all t ∈ [,∞). Hence ϕ is an
MT -function. Clearly, limn→∞ d(vn, vn+) = limn→∞ τn+ = τ∞ and d(Tv,Tv) = τ. For
m,n ∈N withm > n andm > , d(Tvn,Tvm) = τm–. So limn→∞ d(Tvn,Tvn+) = limn→∞ τn =
τ∞. We claim that T is not a cyclic contraction on A∪B. Indeed, suppose that T is a cyclic
contraction on A∪ B. Thus there exists k ∈ [, ) such that

d(Tvn,Tvn+)≤ kd(vn, vn+) + ( – k)dist(A,B) for all n ∈N. (∗)

From (∗), we get τ∞ ≤ τ, which is a contradiction. Therefore, T is not a cyclic contraction
on A∪ B.
Next, we show that T is anMT -cyclic contraction with respect to ϕ. To verify (MT),

we need to observe the following cases:
(i) Since ϕ(d(v, v)) = ϕ(τ) = , we obtain

ϕ
(
d(v, v)

)
d(v, v) +

(
 – ϕ

(
d(v, v)

))
dist(A,B) = τ = d(Tv,Tv);

(ii) For m,n ∈ N with m > n and m > , we have

ϕ
(
d(vn, vm)

)
d(vn, vm) +

(
 – ϕ

(
d(vn, vm)

))
dist(A,B) = ϕ(τm)τm +

(
 – ϕ(τm)

)
τ

> τm– = d(Tvn,Tvm).

From above, we can prove that (MT) holds. Hence T is anMT -cyclic contraction with
respect to ϕ. Moreover, since d(v,Tv) = dist(A,B), v ∈ A is a best proximity point for T .
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In this paper, we establish some new existence and convergence theorems of iterates
of best proximity points for MT -cyclic contractions. Our results include some known
results in the literature as special cases.

2 Existence and convergence theorems for best proximity points
First, we establish the following convergence theorem forMT -cyclic contractions, which
is one of the main results in this paper.

Theorem . Let A and B be nonempty subsets of a metric space (X,d) and T : A ∪ B →
A∪B be anMT -cyclic contraction with respect to ϕ. Then there exists a sequence {xn}n∈N
such that limn→∞ d(xn,Txn) = infn∈N d(xn,Txn) = dist(A,B).

Proof Let x ∈ A∪B be given. Define an iterative sequence {xn}n∈N by xn+ = Txn for n ∈N.
Clearly, dist(A,B)≤ d(xn,xn+) for all n ∈ N. If there exists j ∈N such that xj = xj+ ∈ A∩B,
then limn→∞ d(xn,xn+) = infn∈N d(xn,xn+) = dist(A,B) = . So it suffices to consider the
case xn+ �= xn for all n ∈ N. By Remark ., it is easy to see that the sequence {d(xn,xn+)}
is nonincreasing in (,∞). Then

t := lim
n→∞d(xn,xn+) = inf

n∈N
d(xn,xn+)≥ . (.)

Since ϕ is anMT -function, applying Theorem D, we get

 ≤ sup
n∈N

ϕ
(
d(xn,xn+)

)
< .

Let λ := supn∈N ϕ(d(xn,xn+)). Then  ≤ ϕ(d(xn,xn+)) ≤ λ <  for all n ∈ N. If x ∈ A, then,
by (MT), we have xn– ∈ A and xn ∈ B for all n ∈N. Notice first that (MT) implies that

d(x,x) = d(Tx,Tx)

≤ ϕ
(
d(x,x)

)
d(x,x) +

(
 – ϕ

(
d(x,x)

))
dist(A,B)

≤ λd(x,x) + dist(A,B)

and

d(x,x) = d(Tx,Tx)

≤ ϕ
(
d(x,x)

)
d(x,x) +

(
 – ϕ

(
d(x,x)

))
dist(A,B)

≤ ϕ
(
d(x,x)

)[
λd(x,x) + dist(A,B)

]
+

(
 – ϕ

(
d(x,x)

))
dist(A,B)

= ϕ
(
d(x,x)

)
λd(x,x) + dist(A,B)

≤ λd(x,x) + dist(A,B).

On the other hand, if x ∈ B, then xn ∈ A and xn– ∈ B for all n ∈ N. Applying (MT)
again, we also have

d(x,x)≤ λd(x,x) + dist(A,B)
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and

d(x,x) ≤ λd(x,x) + dist(A,B).

Hence, by induction, one can obtain

dist(A,B)≤ d(xn+,xn+)≤ λnd(x,x) + dist(A,B) for all n ∈N. (.)

Since λ ∈ [, ), limn→∞ λn = . Using (.) and (.), we obtain limn→∞ d(xn,xn+) =
infn∈N d(xn,xn+) = dist(A,B). The proof is completed. �

Here we give a nontrivial example illustrating Theorem ..

Example B Let X = {v, v, v, . . .} be a countable set. Define a strictly decreasing sequence
{τn} of positive real numbers by τn = 

 +

n for all n ∈ N. Then limn→∞ τn = 

 . Let d : X ×
X → [,∞) be defined by d(vn, vn) =  for all n ∈ N and d(vn, vm) = d(vm, vn) = τn if m > n.
Then d is a metric on X. Set A = {v, v, v, . . .} and B = {v, v, v, . . .}. So

lim
n→∞d(vn, vn+) = inf

n∈N
d(vn, vn+) = lim

n→∞ τn = dist(A,B) =


.

Let T : A∪ B → A∪ B be defined by

Tvn
def= vn+ for n ∈N.

It is easy to see that T(A) = B and T(B) ⊂ A and so (MT) holds. Let x = v ∈ A be given.
Define an iterative sequence {xn}n∈N by xn+ = Txn for n ∈N. So {xn} and {vn} are identical,
and hence limn→∞ d(xn,xn+) = infn∈N d(xn,xn+) = dist(A,B) = 

 . Define ϕ : [,∞)→ [, )
as

ϕ(t) def=

⎧⎨
⎩

τn+
τn

, if t = τn for some n ∈N,

, otherwise.

Since lim sups→t+ ϕ(s) =  <  for all t ∈ [,∞), ϕ is an MT -function. Now, we verify
(MT). Form,n ∈N with m > n, since {τn} is strictly decreasing and τn+

τn
< ,

ϕ
(
d(xn,xm)

)
d(xn,xm) +

(
 – ϕ

(
d(xn,xm)

))
dist(A,B)

= τn+ +



(
 –

τn+

τn

)

> τn+ = d(Txn,Txm),

which prove that (MT) holds. Hence T is an MT -cyclic contraction with respect to ϕ.
Therefore, all the assumptions of Theorem . are satisfied and the conclusion can follow
from Theorem ..

The following best proximity point theorem can be given immediately from Theo-
rem ..
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Theorem . Let A and B be nonempty subsets of a metric space (X,d) and T : A ∪ B →
A∪B be a cyclicmap. Suppose that there exists a nondecreasing (or nonincreasing) function
τ : [,∞)→ [, ) such that

d(Tx,Ty) ≤ τ
(
d(x, y)

)
d(x, y) +

(
 – τ

(
d(x, y)

))
dist(A,B) for any x ∈ A and y ∈ B.

Then there exists a sequence {xn}n∈N such that limn→∞ d(xn,Txn) = infn∈N d(xn,Txn) =
dist(A,B).

Corollary . ([]) Let A and B be nonempty subsets of a metric space (X,d) and T :
A ∪ B → A ∪ B be a cyclic contraction. Then there exists a sequence {xn}n∈N such that
limn→∞ d(xn,Txn) = infn∈N d(xn,Txn) = dist(A,B).

Here, we give an existence theorem for best proximity points.

Theorem . Let A and B be nonempty subsets of a metric space (X,d) and T : A ∪ B →
A∪B be a cyclic map. Let x ∈ A be given. Define an iterative sequence {xn}n∈N by xn+ = Txn
for n ∈N. Suppose that

(i) d(Tx,Ty) ≤ d(x, y) for any x ∈ A and y ∈ B;
(ii) {xn–} has a convergent subsequence in A;
(iii) limn→∞ d(xn,xn+) = dist(A,B).

Then there exists v ∈ A such that d(v,Tv) = dist(A,B).

Proof Since T is a cyclic map and x ∈ A, xn– ∈ A and xn ∈ B for all n ∈N. By (ii), {xn–}
has a convergent subsequence {xnk–} and xnk– → v as k → ∞ for some v ∈ A. Since

dist(A,B)≤ d(v,xnk ) ≤ d(v,xnk–) + d(xnk–,xnk ) for all k ∈N,

it follows from limn→∞ d(v,xnk–) =  and the condition (iii) that limn→∞ d(v,xnk ) =
dist(A,B). By (i), we have

dist(A,B)≤ d(Tv,xnk+) ≤ d(v,xnk ) for all k ∈N,

which implies d(v,Tv) = dist(A,B). �

Applying Theorems . and ., we establish the following new best proximity point
theorem forMT -cyclic contractions.

Theorem . Let A and B be nonempty subsets of a metric space (X,d) and T : A ∪ B →
A∪B be anMT -cyclic contraction with respect to ϕ. Let x ∈ A be given. Define an iterative
sequence {xn}n∈N by xn+ = Txn for n ∈ N. Suppose that {xn–} has a convergent subsequence
in A, then there exists v ∈ A such that d(v,Tv) = dist(A,B).

Remark . ([, Proposition .]) (i.e. Theorem EV) is a special case of Theorem ..
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