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Abstract
In this paper, we give a reversed version of a generalized Aczél’s inequality which is
due to Wu and Debnath. As an application, an integral type of the reversed version of
the Aczél-Vasić-Pečarić inequality is obtained.
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1 Introduction
In , Aczél [] established the following inequality which is of wide application.

Theorem A If ai, bi (i = , , . . . ,n) are positive numbers such that a –
∑n

i= ai >  or b –∑n
i= bi > , then

(
a –

n∑
i=

ai

)(
b –

n∑
i=

bi

)
≤

(
ab –

n∑
i=

aibi

)

. ()

It is well known that Aczél’s inequality () plays an important role in the theory of func-
tional equations in non-Euclidean geometry. Various refinements, generalizations and ap-
plications of inequality () have appeared in literature (see, e.g., [–], [] and the refer-
ences therein).
One of the most important results in the works mentioned above is the exponential

generalization of () asserted by Theorem B.

Theorem B Let p and q be real numbers such that p,q �=  and 
p + 

q = , and let ai, bi
(i = , , . . . ,n) be positive numbers such that ap –

∑n
i= a

p
i >  and bq –

∑n
i= b

q
i > . Then,

for p > , we have

(
ap –

n∑
i=

api

) 
p
(
bq –

n∑
i=

bqi

) 
q

≤ ab –
n∑
i=

aibi. ()

If p <  (p �= ), we have the reverse inequality.

Remark . The case p >  of Theorem B was proved by Popoviciu []. The case p <  was
given in [] by Vasić and Pečarić.
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In another paper [], Vasić and Pečarić presented the following extension of inequal-
ity ().

Theorem C Let arj > , λj > , aλj
j –

∑n
r= a

λj
rj > , r = , , . . . ,n, j = , , . . . ,m, and let∑m

j=

λj

≥ . Then

m∏
j=

(
aλj
j –

n∑
r=

aλj
rj

) 
λj

≤
m∏
j=

aj –
n∑
r=

m∏
j=

arj. ()

Recently, it comes to our attention that an interesting generalization ofAczél’s inequality,
which was established by Wu and Debnath in [], is as follows.

Theorem D Let arj > , λj > , aλj
j –

∑n
r= a

λj
rj > , r = , , . . . ,n, j = , , . . . ,m, and let ρ =

min{∑m
j=


λj
, }. Then

m∏
j=

(
aλj
j –

n∑
r=

aλj
rj

) 
λj

≤ n–ρ

m∏
j=

aj –
n∑
r=

m∏
j=

arj, ()

and equality holds if and only if aj = n

pj aj = · · · = n


pj anj, j = , , . . . ,m for ρ < , or

aλ


aλj
j

=
aλ


aλj
j

= · · · = aλ
n

aλj
nj

, j = , , . . . ,m for ρ = .

The purpose of this work is to give a reversed version of inequality (). As application,
an integral type of the reversed version of the Aczél-Vasić-Pečarić inequality is obtained.

2 Reversed version of a generalized Aczél’s inequality
We need the following lemmas in our deduction.

Lemma . [] If xi ≥ , λi > , i = , , . . . ,n,  < p ≤ , then

n∑
i=

λix
p
i ≤

( n∑
i=

λi

)–p( n∑
i=

λixi

)p

. ()

The inequality is reversed for p ≥  or p < . In each case, the sign of the equality holds if
and only if xi = xj for all i, j = , , . . . ,n.

Lemma . [] (Generalized Hölder’s inequality) Let arj >  (j = , , . . . ,m, r = , , . . . ,n).
If λ �= , λj <  (j = , , . . . ,m),

∑m
j=


λj

≤ , then

n∑
r=

m∏
j=

arj ≥
m∏
j=

( n∑
r=

aλj
rj

) 
λj

. ()

The sign of the equality holds if and only if the m sets (ar), (ar), . . . , (arm) are proportional.
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Lemma . Let arj >  (r = , , . . . ,n, j = , , . . . ,m), let λ �= , λj <  (j = , , . . . ,m), and
let τ =max{∑m

j=

λj
, }. Then

n∑
r=

m∏
j=

arj ≥ n–τ

m∏
j=

( n∑
r=

aλj
rj

) 
λj

. ()

The sign of the equality holds if and only if the m sets (ar), (ar), . . . , (arm) are proportional
for

∑m
j=


λj

≤ , or aj = aj = · · · = anj, j = , , . . . ,m for
∑m

j=

λj
> .

Proof Case (I). When λ < , then τ = . Obviously, inequality () is equivalent to inequal-
ity ().
Case (II). When λ >  with

∑m
j=


λj

≥ . Write
∑m

j=

λj

= t (t ≥ ), which implies∑m
j=


tλj

= . By inequality (), we have

( n∑
r=

m∏
j=

arj

)

=
n∑
s=

( m∏
i=

asi

) n∑
r=

m∏
j=

arj

≥
n∑
s=

( m∏
i=

asi

)[ m∏
j=

( n∑
r=

atλjrj

) 
tλj

]

=
n∑
s=

{(
atλs

n∑
r=

atλr

) 
tλ

–
∑m

j=

tλj

×
[ m∏

j=

(
atλs

n∑
r=

atλjrj

) 
tλj

]

×
[ m∏

j=

(
atλjsj

n∑
r=

atλr

) 
tλj

]}
. ()

Consequently, according to ( 
tλ

–
∑m

j=

tλj
)+ 

tλ
+ 

tλ
+ · · ·+ 

tλm + 
tλ

+ 
tλ

+ · · ·+ 
tλm = ,

by using inequality () on the right side of (), we observe that

( n∑
r=

m∏
j=

arj

)

≥
( n∑

s=

n∑
r=

atλs atλr

) 
tλ

–
∑m

j=

tλj

×
[ m∏

j=

( n∑
s=

n∑
r=

atλs atλjrj

) 
tλj

][ m∏
j=

( n∑
s=

n∑
r=

atλjsj a
tλ
r

) 
tλj

]
. ()

Additionally, using Lemma . together with t ≥ , we find

( n∑
s=

n∑
r=

atλs atλr

) 
tλ

–
∑m

j=

tλj

×
[ m∏

j=

( n∑
s=

n∑
r=

atλs atλjrj

) 
tλj

]

×
[ m∏

j=

( n∑
s=

n∑
r=

atλjsj a
tλ
r

) 
tλj

]

≥ (
n

)(–t)( 
tλ

–
∑m

j=

tλj

)
( n∑

s=

n∑
r=

aλ
s a

λ
r

) 
λ

–
∑m

j=

λj
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×
[ m∏

j=

(
n

) –t
tλj

( n∑
s=

n∑
r=

aλ
s a

λj
rj

) 
λj

][ m∏
j=

(
n

) –t
tλj

( n∑
s=

n∑
r=

aλj
sj a

λ
r

) 
λj

]

=
(
n

)–t( n∑
s=

n∑
r=

aλ
s a

λ
r

) 
λ

–
∑m

j=

λj

×
[ m∏

j=

( n∑
s=

n∑
r=

aλ
s a

λj
rj

) 
λj

][ m∏
j=

( n∑
s=

n∑
r=

aλj
sj a

λ
r

) 
λj

]

= n–t
( n∑

r=

aλ
r

) 
λ

–
∑m

j=

λj

×
{ m∏

j=

[( n∑
s=

n∑
r=

aλ
s a

λj
rj

)

×
( n∑

s=

n∑
r=

aλj
sj a

λ
r

)] 
λj

}

= n–t
( n∑

r=

aλ
r

) 
λ

–
∑m

j=

λj

×
{ m∏

j=

[( n∑
s=

aλ
s

)( n∑
r=

aλj
rj

)

×
( n∑

s=

aλj
sj

)( n∑
r=

aλ
r

)] 
λj

}

= n–t
m∏
j=

( n∑
r=

aλj
rj

) 
λj

. ()

Combining inequalities () and () leads to inequality () immediately.
Case (III). When λ >  with

∑m
j=


λj

≤ . Obviously, inequality () is equivalent to in-
equality ().
The condition of the equality for inequality can easily be obtained by Lemma . and

Lemma .. This completes the proof of Lemma .. �

Remark . It is clear that the generalized Hölder inequality () is a simple consequence
of Lemma . presented in this article.

Theorem . Let arj > , λ �= , λj <  (j = , , . . . ,m), aλj
j –

∑n
r= a

λj
rj > , r = , , . . . ,n,

j = , , . . . ,m, and let τ =max{∑m
j=


λj
, }. Then

m∏
j=

(
aλj
j –

n∑
r=

aλj
rj

) 
λj

≥ n–τ

m∏
j=

aj –
n∑
r=

m∏
j=

arj, ()

and the equality holds if and only if aj = n

λj aj = · · · = n


λj anj, j = , , . . . ,m for τ > , or

aλ


aλj
j

=
aλ


aλj
j

= · · · = aλ
n

aλj
nj

, j = , , . . . ,m for τ = .
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Proof Denote

aλj
j –

n∑
r=

aλj
rj = xλj

j , ()

and

m∏
j=

aj – nτ–
n∑
r=

m∏
j=

arj = nτ–
m∏
j=

xj. ()

By using inequality (), we have

m∏
j=

aj =
m∏
j=

(
xλj
j +

n∑
r=

aλj
rj

) 
λj

≤ nτ–

( m∏
j=

xj +
n∑
r=

m∏
j=

arj

)
, ()

that is,

(
xλm
m +

n∑
r=

aλm
rm

) 
λm m–∏

j=

(
xλj
j +

n∑
r=

aλj
rj

) 
λj

≤ nτ–

( m∏
j=

xj +
n∑
r=

m∏
j=

arj

)
. ()

Therefore, from (), () and (), we obtain

(
xλm
m +

n∑
r=

aλm
rm

) 
λm m–∏

j=

aj ≤
m∏
j=

aj. ()

Hence, we obtain

xλm
m ≥ aλm

m –
m∑
r=

aλm
rm , ()

that is,

xm ≤
(
aλm
m –

m∑
r=

aλm
rm

) 
λm

. ()

Therefore, we have

m∏
j=

xj ≤
(
aλm
m –

m∑
r=

aλm
rm

) 
λm m–∏

j=

xj

=

(
aλm
m –

m∑
r=

aλm
rm

) 
λm m–∏

j=

(
aλj
j –

m∑
r=

aλj
rj

) 
λj

=
m∏
j=

(
aλj
j –

m∑
r=

aλj
rj

) 
λj

. ()
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By using (), we immediately obtain the desired inequality (). The condition of the
equality for inequality () can easily be obtained by Lemma .. The proof of Theorem .
is completed. �

If we set
∑m

j=

λj

≤ , then from Theorem ., we obtain the following reversed version
of inequality ().

Corollary . Let arj > , λ �= , λj <  (j = , , . . . ,m),
∑m

j=

λj

≤ , aλj
j –

∑n
r= a

λj
rj > ,

r = , , . . . ,n, j = , , . . . ,m. Then

m∏
j=

(
aλj
j –

n∑
r=

aλj
rj

) 
λj

≥
m∏
j=

aj –
n∑
r=

m∏
j=

arj. ()

If we set m = , λ = p �= , λ = q < , ar = ar , ar = br (r = , , . . . ,n), then from Theo-
rem ., we obtain

Corollary . Let ar > , br >  (r = , , . . . ,n), ap –
∑n

r= a
p
r > , bq –

∑n
r= b

q
r > , p �= ,

q < , ρ =max{ 
p +


q , }. Then the following inequality holds:

(
ap –

n∑
r=

apr

) 
p
(
bq –

n∑
r=

bqr

) 
q

≥ n–ρab –
n∑
r=

arbr . ()

Remark . For 
p +


q = , inequality () reduces to the famous Aczél-Vasić-Pečarić in-

equality ().

3 Application
As application of the above results, we establish here an integral type of the reversed ver-
sion of the Aczél-Vasić-Pečarić inequality.

Theorem . Let λ > , λj <  (j = , , . . . ,m),
∑m

j= λj = , let Aj >  (j = , , . . . ,m), and

let fj(x) (j = , , . . . ,m) be positive Riemann integrable functions on [a,b] such that Aλj
j –∫ b

a f λj
j (x) dx > . Then

m∏
j=

(
Aλj
j –

∫ b

a
f λj
j (x) dx

) 
λj ≥

m∏
j=

Aj –
∫ b

a

m∏
j=

fj(x) dx. ()

Proof For any positive integer n, we choose an equidistant partition of [a,b] as

a < a +
b – a
n

< · · · < a +
b – a
n

k < · · · < a +
b – a
n

(n – ) < b,

xk = a +
b – a
n

k, �xk =
b – a
n

, k = , , . . . ,n.

Since the hypothesis Aλj
j –

∫ b
a f λj

j (x) dx >  (j = , , . . . ,m) implies that

Aλj
j – lim

n→∞

n∑
k=

f λj
j

(
a +

k(b – a)
n

)
b – a
n

>  (j = , , . . . ,m),
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there exists a positive integer N such that

Aλj
j –

n∑
k=

f λj
j

(
a +

k(b – a)
n

)
b – a
n

>  for all n >N and j = , , . . . ,m.

By using Theorem ., we obtain that for any n >N , the following inequality holds:

m∏
j=

[
Aλj
j –

n∑
k=

f λj
j

(
a +

k(b – a)
n

)
b – a
n

] 
λj

≥
m∏
j=

Aj –
n∑
k=

[ m∏
j=

fj
(
a +

k(b – a)
n

)](
b – a
n

)∑m
j=


λj
. ()

Since

m∑
j=


λj

= ,

we have

m∏
j=

[
Aλj
j –

n∑
k=

f λj
j

(
a +

k(b – a)
n

)
b – a
n

] 
λj

≥
m∏
j=

Aj –
n∑
k=

[ m∏
j=

fj
(
a +

k(b – a)
n

)](
b – a
n

)
. ()

In view of the hypotheses that fj(x) (j = , , . . . ,m) are positive Riemann integrable func-
tions on [a,b], we conclude that

∏m
j= fj(x) and f λj

j (x) are also integrable on [a,b]. Passing
the limit as n → ∞ on both sides of inequality (), we obtain inequality (). The proof
of Theorem . is completed. �
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